Under review as a conference paper at ICLR 2024

END-TO-END STORY PLOT GENERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Story plots, while short, carry most of the essential information of a full story
that may contain tens of thousands of words. We study the problem of auto-
matic generation of story plots, which includes story premise, character descrip-
tions, plot outlines, etc. To generate a single engaging plot, existing plot gen-
erators (e.g., DOC (Yang et al. [2022a))) require hundreds to thousands of calls
to LLMs (e.g., OpenAl API) in the planning stage of the story plot, which is
costly and takes at least several minutes. Moreover, the hard-wired nature of the
method makes the pipeline non-differentiable, blocking fast specialization and
personalization of the plot generator. In this paper, we propose three models,
OpenPlot, E2EPlot and RLP1lot, to address these challenges. OpenPlot
replaces expensive OpenAl API calls with LLaMA?2 (Touvron et al., [2023) calls
via careful prompt designs, which leads to inexpensive generation of high-quality
training datasets of story plots. We then train an end-to-end story plot genera-
tor, E2EP 1ot, by supervised fine-tuning (SFT) using approximately 13000 story
plots generated by OpenPlot. E2EPlot generates story plots of comparable
quality to OpenPlot, and is > 10x faster (1k tokens in only 30 seconds on aver-
age). Finally, we obtain RLP 1ot that is further fine-tuned with RLHF on several
different reward models for different aspects of story quality, which yields 60.0%
winning rate against E2EP 1ot along the aspect of suspense and surprise.

1 INTRODUCTIONS

Storytelling has been of great importance throughout human history. In ancient eras, narratives
served as an important medium for disseminating knowledge between generations. Even today, the
significance of stories remains undiminished since they continue to shape our cultural paradigms,
foster empathy, and convey various ideas. Beyond its historical importance, people love reading
stories because they get to experience events that might never happen to them.

In the era of large language models (LLMs), readers have greater access to stories as they can now
be crafted not only by human authors but also by LLMs. Many previous works can automatically
generate short stories, where the length ranges from several sentences to a couple of paragraphs (Fan
et al.,[2018;|Yao et al.,|2019;[Rashkin et al.} | 2020;Han et al.,[2022). However, even a short story from
a human perspective typically consists of thousands of words, which is a long context for a language
model. It has long been a challenge for Al to generate long-form, coherent stories (Charniakl, 1972}
Turner, 2014), let alone interesting ones. While there have been advances in dealing with long
context for LLMs (Chen et al., [2023a; [Han et al., 2023 |Chen et al., 2023b; |X1ao0 et al., |2023)), on
a broader scale, generating high-quality long outputs remains a major challenge even for the most
advanced LLMs such as GPT4 (OpenAl, 2023)) and Llama 2 (Touvron et al., 2023)).

A more recent line of work (Yang et al., 2022bja; Zhou et al., 2023) focuses on improving the
quality of generated stories in terms of length and coherence. By generating stories hierarchically,
calling LLMs recursively, or adding more detailed control during the generation, these methods are
able to generate longer and higher-quality stories than a rolling-window baseline, i.e., iteratively
prompting LLMs such as ChatGPT to continue writing. However, these previous methods consist
of complex hard-wired procedures. For example, the DOC method (Yang et al., [2022a)) generates
hierarchical outlines with one bullet point per LLM call in a breadth-first order. To ensure the quality
of each bullet point, DOC requires multiple responses per prompt and performs rejection sampling.
This requires thousands of calls to InstructGPT3-175B (text-davinci-002) in the planning stage that
generates story plots, which is costly and time-consuming compared to the plain rolling-window

Under review as a conference paper at ICLR 2024

method and is hard to improve by fine-tuning since the generation procedure is hard-wired and
thus not differentiable. Thus, it is appealing to have an end-to-end model, which not only has fast
generation speed and can be further fine-tuned but can also generate high-quality stories comparable
to the state-of-the-art method.

However, it might be overly ambitious to aim for an end-to-end model that can directly generate a
complete story that is long and of high quality, even with SOTA LLMSs. Therefore we focus on story
plot generation, which has two benefits. First, the story plots are much shorter than stories in their
entire forms, are highly structured and carry almost all the essential information of the story. This
makes it much easier for LLMs to learn and generate, for reward models to give preference signals,
and for humans to read and evaluate. Second, story plots can lead to detailed story rendering via
existing pipelines (e.g., DOC (Yang et al.| |2022a)) by calling LLMs with proper prompting and logit
controls (Yang & Klein,2021)), which makes them convenient bridges that connect the entire story.

In this work, we aim to create an end-to-end story plot generator that can automatically generate
story plots with one LLM forward pass. To train such an end-to-end model, we first re-implement
the story plot generation procedure, namely OpenPlot, of the DOC method using Llama2-13B-
chat (Touvron et al.||2023). OpenP 1ot is a fully reproducible and parallelizable pipeline, compared
to the DOC pipeline which relies on OpenAl APIs and may subject to model update and rate limit
that are out of reach by end users.

Using OpenPlot, we generate a large batch of story plots, which are used to fine-tune an end-
to-end model, namely E2EP1ot, based on Llama2-7B-chat. E2EP1lot is able to generate story
plots of comparable quality to OpenPlot, according to GPT4 (OpenAll 2023) evaluation results
among overall qualities (see Section |3|for details), and at a 10x faster speed (about 1000 tokens in
30 seconds), while the generation speed of DOC is much slower, taking several minutes to generate
a story plot by calling OpenAI APIs many times.

Finally, to demonstrate that E2EP 1ot is capable of specializing into specific human feedback, we
further fine-tune it along various aspects related to story quality (e.g., interestingness, coherence,
good ending, etc.). Specifically, we train several different reward models, one for each aspects
according to GPT4 (OpenAll [2023)) evaluation results (see Section [3| for details), and further fine-
tune E2EP1lot by RLHF to improve the quality of the generator. The resulting model, RLP1ot,
yields 60% win rate against E2EP 1ot along the aspect of suspense and surprise.

2 METHODS

In this section, we introduce our full pipeline for building the end-to-end story plot generator
(OpenPlot, E2EPlot and RLP1ot) in details. In Section we re-design the existing DOC
pipeline (Yang et al. [2022a)) by Llama?2 to get rid of the restriction of rate limits and unpredictable
model update in calling OpenAl APIs. The resulting pipeline, OpenPlot, enables large batch
generation, allowing us to create a large training dataset. In Section we use the training
dataset to fine-tune the Llama2-7B-chat model (Touvron et al.,[2023) to obtain an end-to-end model,
E2EPlot. In Section[2.3] we further train several reward models for different aspects and improve
E2EP1lot using RLHF to yield RLP1lot.

2.1 PIPELINE FOR CREATING DATASETS: OPENPLOT

We first discuss the motivation for modifying the previous pipeline and the major challenges in
Section and then discuss the solutions in detail in Section More details of the exact
format of the prompts we used are deferred to Appendix [A]

2.1.1 MOTIVATION AND MAJOR CHALLENGES

To train an end-to-end story plot generator, we first need to create a large training dataset consisting
of thousands of story plots. The previous DOC pipeline (Yang et al.| 2022al) is a promising candidate
for creating a high-quality training set since it is one of the state-of-the-art approaches for story plot
generation. However, it cannot be directly applied to our case for the following reasons. First,
the original DOC method heavily relies on OpenAl API calls, and thus the generation procedure is
largely constrained by the OpenAl API rate limit if done in parallel. Second, it uses a completion

Under review as a conference paper at ICLR 2024

model that supports suffix (i.e., a model that can do text infilling given a text prefix and a text suffix,
Bavarian et al.[(2022)) to perform most tasks, while many advanced LLMs, such as GPT4 (OpenAl,
2023) and Llama2 (Touvron et al.,[2023), are chat models and do not support suffix.

To this end, we follow the logic of [Yang et al.| (2022a) to build the pipeline while replacing text-
davinci-002 with Llama2-13B-chat (Touvron et al., 2023). However, replacing text-davinci-002
with Llama2-13B-chat introduces new challenges for the story plot generation. Below, we first list
three major challenges and the high-level ideas of corresponding solutions, and then discuss the
solutions in detail in Section 2.1.21

* Challenge 1: How to generate the outline in a breadth-first and coarse-to-fine man-
ner and leverage proper contextual information? The story plot generated by the DOC
pipeline contains the Premise, Setting, Characters, and Outline (see Table |/| for the exact
form of story plots). The outline is hierarchical and contains two levels of bullet points[ﬂ
The DOC method generates one bullet point at a time in breadth-first order (or, equiva-
lently, a coarse-to-fine manner), i.e., it first generates all the top-level bullet points and then
expands each top-level point (e.g., Point 1) by generating sub-level points (e.g., Point 1a,
Point 1b, etc.) under it. This coarse-to-fine manner is consistent with the way humans
make plans. However, note that the second-level points need to be consistent with not only
the previous and current top-level outlines but also the subsequent top-level outlines. For
example, the bullet point 2a needs to be consistent with Point 1 and Point 2, but also needs
to be consistent with the content of Point 3 since it has already been generated. Therefore,
one should include as many existing outline points as possible regardless of the relative
position. An ideal solution is that if we have access to a completion model which supports
suffix, we can put the preceding points in the prompt and the subsequent points in the suffix,
which is helpful to keep the consistency of the whole outline.

¢ Challenge 2: How to use chat models to substitute for completion models that support
suffix? The previous DOC method with text-davinci-002, a completion model that supports
suffix, adopted the above method to generate the hierarchical outline. However, since we
use Llama?2 for our rebuilt pipeline and Llama?2 is a chat model that does not accept a
suffix, we must develop a new solution to keep the consistency of the generated outline. We
address this issue by simulating a completion model using a chat model. The high-level idea
is that we start the prompt with detailed instructions on how to perform a completion task,
then provide the suffix before the original prompt. By our observation, it would be better
to provide the suffix first and then the original prompt, since the generated content usually
continues with the end of the whole prompt. More details are discussed in Section [2.1.2]
and Appendix [A]

* Challenge 3: How to maintain the quality of the story? The DOC pipeline generates
one point at a time and requires hundreds of LLM calls, and a single failed step could derail
the whole story. To prevent this, the DOC pipeline generates multiple candidate responses
and selects the best one at each step. However, due to the performance difference between
different LLMs, after replacing text-davinci-002 with Llama2-13b-chat, the prompt for
the original DOC pipeline does not necessarily work for our rebuilt pipeline. Therefore,
we carefully designed the prompts with detailed instructions to ensure the quality of the
generated story. We will discuss some concrete examples of the instructions in the prompt

in Section 2.1.21

2.1.2 OVERVIEW AND DISCUSSION OF THE PIPELINE

We discussed the high-level solution to major challenges for our rebuilt DOC pipeline, OpenP lot,
in Section In this section, we discuss more details of the prompt design for the pipeline. One
can refer to Appendix [A] for the exact form of prompts we use in the pipeline, and examples of the
structure of story plots are provided in Table

Premise. The first step is to generate a premise for the story. For the previous DOC pipeline, it
suffices to provide the prompt of “Write a premise for a short story.” For OpenPlot, the same

! Actually, the DOC method supports different numbers of levels for the hierarchical outline. In this paper,
we focus on a two-level hierarchy.

Under review as a conference paper at ICLR 2024

prompt might result in a response with an unexpected format. To ensure that the format of the
output is structured and thus easy to process, we end the prompt with “Premise: ~ to enforce that
the language model’s response starts after “Premise: ”

Setting. After obtaining the premise of the whole story, the next step is to infer the story’s setting
from the premise. This step is relatively simple and does not require additional design strategies.

Characters. One of the most important elements in a story is the characters, whose intrinsic mo-
tivations and interactions with each other are vital to the trajectory of the whole story. Based on the
premise and setting, we generate characters one by one. For each character, we first generate their
full name and then their portrait.

Remark 2.1. In the original DOC method, one only needs to end the prompt with “Character
Portrait: 7 to guide the LLM to generate the portrait. However, when we replace the text-davinci-
002 engine with the Llama2 model, due to the performance difference between these two models,
the Llama2 model tends to output a longer description for the portrait. Moreover, the output of
Llama? focuses more on the age and appearance of the character instead of occupation, experiences,
or relationships with other characters (e.g., “Tom is 22 years old and has brown curly hair”).
Therefore, we add detailed instructions on generating portraits such as “focusing on relationship
between characters, occupation and experience instead of appearance” to ensure the generated
portraits contain more useful information about the character.

After generating the first character, we can repeat the above procedure to generate more characters.
We can control the number of major characters in the story, and in our implementation, we set the
desired number to be 3-6, since too few characters is likely to make the story boring, and too many
characters may reduce opportunities for characters to interact with each other.

Outline. After generating all the major characters, we are ready to build the main skeleton of the
story. Similar to DOC, we aim to create a hierarchical outline. In this paper, we create two-level
hierarchical outlines, where the top level typically contains four bullet points, and the second level
contains three to four subpoints under each top-level point. We also generate the outline in breadth-
first order, i.e., we first generate the top-level outline (numbered as 1, 2, 3, ...) and then generate
the sub-level outline (numbered as 1a, 1b, ..., 2a,...).

Remark 2.2. To make the generated story plots more reasonable, we add corresponding instruc-
tions. First, to control the length of the top-level outline, we require the LLM to use no more than
4 points. Second, to make the generation procedure more stable, we require the LLM to generate
only one point at a time. Third, during the preliminary experiments, we found that the generated
plots sometimes have a missing ending; to address this issue, we explicitly ask the LLM to make sure
that the generated top-level outline has a clear ending. A tricky point is that adding “IMPORTANT:
Please” significantly improves the quality of the generated outline regarding a clear ending.

After generating the top bullet point 1, we can include the content of point 1 in the prompt and
continue to generate the subsequent points until the whole top-level outline is complete. Since we
generate the outline in breadth-first order, we will expand each top-level node in sequence. Note
that it is important to keep the generated subpoint consistent with not only the previous points but
also the subsequent points. To achieve this, the original DOC method uses a completion model
(text-davinci-002) and adds a suffix containing the content of all subsequent points. Since we use
Llama?2 in our rebuilt pipeline, which is a chat model and thus does not accept suffixes, we need to
simulate a completion model using a chat model.

Remark 2.3. 7o simulate a completion model using a chat model, we need to include all the contents
in the prompt for the chat model and add detailed instructions. First, we observe that putting the
content of the original prompt after the suffix makes it easier for the LLM to continue with the
original prompt. Second, we also need to add instructions at the beginning of the whole prompt, such
as “Your output should not contain the content of the suffix. Only use the suffix as complementary
information” to obtain desired results since otherwise, the LLM will memorize the context of the
suffix, and the output will be nearly identical to the suffix. There is also a detailed instruction in the
prefix (i.e., the original prompt for the completion model) on how to generate the current sub-level

“Note that this is a guiding prompt strategy (Saravial, 2022).

Under review as a conference paper at ICLR 2024

points, such as “generating one or two points without repeating the content of the suffix and stop”,
which can “reinforce” the requirement that the output should not repeat the content of the suffix.
See more details and the exact format of the prompt and instructions in Appendix[A]

After expanding each top-level point by generating sub-points, we obtain a hierarchical outline, and
the story plot generation procedure is finished.

2.2 TRAINING END-TO-END MODEL: E2EPLOT

After building the pipeline for batch generation of story plots, we can use the generated dataset to
train an end-to-end model. We first generated 16000 story plots and then filtered them by excluding
bad-structured outlines (we noticed that a small portion of story plots generated by OpenP 1ot have
missing outline bullet points, e.g., top-level point 1 is missing and the outline starts with second-
level point 1a) to get 12824 plots as the training set, and performed SFT. In the training set, we
use the premise as the prompt and the remaining parts of the story plots as the response. The end-
to-end model is fine-tuned for 1000 steps with a mini-batch size of 8 using 8 x A100 80G GPUs
simultaneously (so one step equals 8 x 8 = 64 story plots, and one epoch roughly equals 200 steps)
from Llama2-7B-chat (Touvron et al., [2023)) within a few hours.

To test the quality of story plots generated by our end-to-end model E2EP1ot, we generate 500
premises, and for each premise, we generate a story plot pair, one from the DOC pipeline with
Llama?2 (i.e., OpenPlot) and the other from E2EP1lot. We compare the overall quality of the
500 story plot pairs using GPT4 (OpenAl 2023) as the reference. As Table[5]shows, the story plots
generated by E2EP 1ot have comparable quality (slightly better) to the DOC pipeline with Llama2
(OpenPlot). Further details of evaluation by GPT4 are deferred to Appendix

DOC OpenPlot E2EPlot
(w/ OpenAl API) (DOC w/ LLama?2) (SFT)
Generation speed) o > mins ~ 30 mins ~30s
(with rate limit and several dollars)
Calls to LLM > 100 > 100 1

Table 1: Comparison of DOC, OpenPlot, and E2EP1ot to generate one story plot.

Table [I] compares the performance of our end-to-end model E2EPlot and the previous DOC
pipeline in generation procedure. In Section [3] we also provide an example of story plots gener-
ated from the same premise by OpenPlot and E2EP1ot, respectively.

2.3 REWARD MODEL TRAINING AND RLHF: RLPLoT

One of the most important advantages of an end-to-end model such as our E2EPlot is that it
can be easily fine-tuned from human feedback as long as a good reward model can be learned.
With the pipeline in Sectionusing oasst-sft-6-1lama-30b (Kopf et al.| 2023)@ we generate 7000
comparison story plot pairs, where each pair contains two story plots with the same premise. We use
the same premise for each pair since it might be hard to compare two totally different story plots,
and by controlling the premise, the preference labels might contain richer information related to our
aspects of interest. Table 2] shows preference questions we ask human annotators to answer, where
each question corresponds to one aspect of story quality. Note that there is no Q2 in Table[2]since Q2
asks annotators to explain their answer to Q1 with a minimum word count of 25, which is designed
primarily to ensure the quality of the label.

Remark 2.4. The following is an example of the answers to Q2: “ In Plot A, there is a clear
development of the relationship between the characters. It’s obvious when Raven begins to learn
about human emotion from James, and it’s played out smoothly. In Plot B, Luna seems to have some
repetitive plot points and the overarching plot is more about the human characters realizing that the
android is intelligent. I prefer Plot A where Raven has the realization that she’s massively impactful

3We use oasst-Ilama-30b since when we produce the dataset containing 7000 comparison story plot pairs,
Llama2 has not been released.

Under review as a conference paper at ICLR 2024

Q1 Which story plot is more interesting to you overall?

Q3 In your opinion, which one of the plots above could generate a more interesting book or movie (wWhen
a full story is written based on it)?

Q4 Which story plot created more suspense and surprise?

Q5 Which story’s characters or events do you identify with or care for more?

Q6 Which story has a better ending?

Table 2: Five different questions for 7000 comparison story plot pairs.

on the elderly man’s life because of how close their relationship has become.” The answer to Q2 is
consistent with the answer to Q1 for the same annotator.

Table[3|shows the human evaluation results for the 7000 story plot pairs. For each question (aspect),
we keep the plot pairs that the response is either “Plot A is better” or “Plot B is better”, and train a
reward model from Llama2-7B-chat (Touvron et al.} 2023)) using cross-entropy loss for that specific
aspect. Compared to [Ammanabrolu et al.| (2019)), where the reward is based on how close the gen-
erated event is to a pre-trained goal, our reward model training is more similar to CARP
[2022), a contrastively-trained preference model as a reward signal in story generation. Note
that our reward model is trained on story plots instead of the whole story, which makes learning
and human labeling easier without losing important signals. Finally, we obtain five different reward
models along different aspects. Table [shows the validation accuracy of our trained reward models
for each aspect, where the training-validation split ratio is 9 : 1.

Aspects Plot A PlotB Both Neither

Q1 32% 42% 12% 15%
Q3 31% 41% 14% 14%
Q4 29% 38% 13% 20%
Q5 30% 39% 14% 17%
Q6 30% 37% 9% 24%

Table 3: Human preference labels on 7000 story plot pairs.

Questions/aspects Q1 Q3 Q4 Q5 Q6
Validation accuracy 0.6050 0.5903 0.6365 0.5945 0.6723

Table 4: Validation accuracy for five different reward models on corresponding questions/aspects.

Using the trained reward models, we can further do RLHF on our end-to-end model E2EP 1ot to
improve the quality of the generated story plots in various aspects. We use standard RLHF training

objective (e.g., Equation (2) in|Ouyang et al.[(2022)):

E(b = E(r,y)wDﬁfL [7)9 (T y) - /6 1Og(ﬂ—§L(y‘m)/ﬂSFT(y|l))]

where 5" is the learned policy by RLHF, 7 is the reward model, 75" is the policy after SFT (our
E2EP1lot), and f is to control the KL divergence. The prompt z, i.e., the premise, is generated
by the OpenPlot pipeline. We show the performance of our end-to-end model after RLHF (i.e.,
RLP1lot) in Section[3]

3 RESULTS

In this section, we provide quantitative results on the quality of the generated story plots of our
end-to-end models after SFT (E2EP1ot) and RLHF (RLP1ot). We also provide an example of the

Under review as a conference paper at ICLR 2024

story plot generated by E2EP 1ot for better visualization. Table [/| presents two story plots, where
the left one is generated by E2EP 1ot, and the right one is generated by OpenP 1ot using the same
premise. The two story plots are of similar quality, while our end-to-end model E2EP1ot is much
more efficient as shown in Section 2.2

We show the quantitative results for E2EP1ot in Section and RLP1lot in Section The
details of GPT4 evaluation is deferred to Appendix B}

3.1 PERFORMANCE OF END-TO-END MODEL AFTER SFT

OpenPlot Wins E2EPlot Wins Ties

45.8% 46.8% 7.4%

Table 5: Comparison of generated story plots by OpenPlot and E2EP 1ot using GPT4 evaluation.
We compare 500 story plot pairs where each pair has the same premise. The result shows that our
end-to-end model E2EP 1ot can generate story plots of comparable quality to the DOC pipeline
with Llama?2.

Table [5] shows that our end-to-end model E2EP 1ot can generate story plots of comparable quality

to the DOC pipeline with Llama2 (OpenPlot), at a much faster generation speed. Moreover, our
end-to-end model can be easily fined-tuned from human feedback as shown in Section[3.2]

3.2 PERFORMANCE OF END-TO-END MODEL AFTER RLHF

Aspects E2EPlot Wins RLPlot Wins Ties

Q1 44.0% 54.0% 2.0%
Q3 50.3% 46.0% 3.7%
Q4 39.3% 60.0% 0.7%
Q5 48.0% 50.0% 2.0%
Q6 42.3% 53.7% 4.0%

Table 6: Comparison of generated story plots by end-to-end SFT model (E2EP1ot) and five dif-
ferent RLHF models (RLP1ot) using GPT4 evaluation. For each row, we compare 300 story plot
pairs where each pair has the same premise. We bold the results with a higher winning rate.

After SFT, we perform RLHF on our end-to-end model E2EP 1ot using five reward models for
different aspects as discussed in Section[2.3|respectively, and obtain five models after RLHF. Models
for Q1 to Q5 are trained for 20 steps, while the model for Q6 is trained for 40 steps, where each
step corresponds to 64 story plots. The quality of models after RLHF (RLP1ot) are shown in
Table [l For RLP1lot for each aspect, we compare its quality to E2EP 1ot using 300 premises.
For each premise, we let GPT4 compare which model generates a better story plot measured by the
corresponding aspect.

Note that for some aspects (e.g., Q4, Q1, and Q6), the quality of the end-to-end model has improved
after RLHF, while for other aspects (e.g., Q3), the model gets slightly worse. This might be because
some aspects are more difficult to learn than others, which is also consistent with the result in Table E]
where Q3 has the lowest validation accuracy. It remains an important future direction to learn a more
accurate reward model in a better way.

4 RELATED WORKS

Automatic story generation. Many previous works studying automatic story generation mainly
focus on short stories with lengths of several sentences (Wang & Wan|, 2019} |Yao et al., 2019; |Qin
et al.l 2019} [Wang et all 2022)). Several recent works aim to generate long and coherent stories
spanning thousands of words (Yang et al., 2022bfaj [Zhou et al., 2023). All these works aim to

Under review as a conference paper at ICLR 2024

Premise: “A teenage girl discovers a magical app that allows her to alter reality with just a few taps on
her smartphone screen. However, she soon realizes that the app’s magic comes at a terrible price.”

Settings: The story is set in the present day, in a
small town in the United States.

Characters:

Ava Rose: Ava Rose is 17 years old and a tech-
savvy teenager who loves nothing more than spend-
ing her free time exploring the latest apps and gad-
gets.

Elianore Starr: Elianore Starr is 28 years old and a
brilliant app developer who has been working with
Ava’s older brother, Ethan, on a top-secret project.

Outline:
1. Ava discovers the magical app and begins to use
it to alter reality, but she soon realizes that the app’s
magic comes at a terrible price. Scene: Characters:
Ava Rose
a. Ava discovers the app and starts to use it to
improve her life and the lives of her friends. Scene:
the town where Ava lives. Characters: Ava Rose
b. Ava’s friends become suspicious of her sud-
den changes and start to distance themselves from
her. Scene: the town where Ava lives. Characters:
Ava Rose

2. Ava confides in her best friend, Tess, about
the app’s dark side, and the two girls try to figure
out a way to stop the app’s power from consumin-
ing Ava’s life. Scene: Characters: Ava Rose, Tess
Sawyer

3. Elianore, the brilliant app developer, is recruited
by Ava to help her fix the app and reverse its nega-
tive effects. Scene: Characters: Ava Rose, Elianore
Starr

4. Ava and Elianore succeed in creating a new app
that is free from the dark magic, but not before
Ava’s family and friends have suffered serious con-
sequences as a result of their use of the app. Scene:
Characters: Ava Rose, Elianore Starr

d. Ava and her loved ones are finally safe from
the app’s power, but they will never be the same
again. Scene: the town where Ava lives. Charac-
ters: Ava Rose

Settings: The story is set in the present day, in a

small suburban town with a typical American high
school.

Characters:

Jesse James: Jesse James is 17 years old, a high
school student with a rebellious streak and a passion
for photography.

Dean Defoe: Dean Defoe is 35 years old, a wealthy
tech entrepreneur with a mysterious past.

Outline:
1. Jesse discovers the magical app and starts experi-
menting with it, creating small alterations to her re-
ality without fully understanding the consequences.
Scene: Characters: Jesse James

a. Jesse discovers the app and starts using it
to enhance her reality, but she soon realizes that the
alterations are not temporary and begin to have un-
intended consequences. Scene: Jesse’s bedroom.
Characters: Jesse James

b. Jesse’s reality starts to change in unexpected
ways, causing her to question her own perceptions
and reality. Scene: Jesse’s high school. Characters:
Jesse James

2. As Jesse continues to use the app, the alterations
become more profound and dangerous, revealing a
darker truth about the app’s magic and the people
behind it. Scene: Characters: Jesse James

3. Jesse and her friends must work together to un-
cover the truth about the app, the entrepreneurs be-
hind it, and the terrible price they are forcing upon
the world. Scene: Characters: Jesse James

4. Jesse and her friends’ investigations led them to
uncover a shocking secret about the app that threat-
ens to destroy the fabric of reality and undo all that
they have ever known. Scene: Characters: Jesse
James

d. Jesse and her friends’ investigations lead
them to a shocking revelation that threatens to undo
all they have ever known. Scene: a high-tech labo-
ratory. Characters: Jesse James

Table 7: Story plots generated by E2EP 1ot and OpenPlot with the same premise. The left one is
generated by our end-to-end model E2EP 1ot, and the right one is generated by the DOC pipeline
with Llama2 (OpenPlot). Some contents of the plots are omitted for better visualization. One can
see that the above two story plots are of similar quality.

Under review as a conference paper at ICLR 2024

generate a complete story, while our work focuses on story plot generation, which we conjecture
is the most challenging and important part of story generation. In fact, lots of other works also
recognize the importance of planning and thus either use story plots explicitly (L1 et al., 2013} [Fan
et al., 2018 |Yao et al., 2019} |Goldfarb-Tarrant et al.,[2020; Rashkin et al.,[2020; Tian & Peng}, 2022}
Yang et al., |2022bza) or their counterparts implicitly (Miao & Blunsom, [2016} |Wang & Wanl 2019;
Wang et al., 2022} [Fan et al., 2019; |Peng et al., 2018; [Ippolito et al., 2019; | Xu et al., |2020; |Lin &
Riedl, |2021) to improve generation quality. Regarding length and coherence, |Yang et al.| (2022a) is
the most comparable to ours, although we use a more efficient end-to-end generator.

Beyond text-based story generation, some previous work also study relevant topics in the scope of
multimodality, such as visual storytelling (sequential vision-to-language) (Ting-Hao et al.| [2016)),
story visualization (paragraph to sequence of images) (L1 et al.}[2019) and StoryBench (text prompts
to video stories) (Buglarello et al.| 2023)).

Prompt engineering. To generate high-quality story plot datasets for training the end-to-end
model as well as the reward models, we need a hard-wired pipeline to generate story plots by repeat-
edly prompting LLMs. Many previous works demonstrate the importance of prompt design (Brown
et al., 2020; [Zhong et al., [2021} Sanh et al., 2021} |Lee et al., 2021; |Ouyang et al., |2022; Wu et al.,
2022; |[Kojima et al.l [2022; [Liu et all [2023), and even for long-form generation, one important
paradigm is to treat prompting as a subroutine and recursively prompt (Yang et al., 2022bga; Zhou
et al.| 2023)). Our pipeline for generating training datasets follows Yang et al.[(2022a)) while replac-
ing OpenAl API calls with the Llama2 model, which eliminates the rate limit and makes large batch
generation feasible.

Long context generation. Various recent efforts have focused on long context generation either by
extending the length of the context window (Haviv et al.|[2022; [Sun et al.| [2022bj Press et al., 2022}
Chen et al.| 2023a)) or improving efficiency for long context generation (Child et al.| 2019; Kitaev
et al., 2020; [Choromanski et al.| 2022} |[Zhang et al., 2023). Although the length of the outputs has
been extended, these mechanisms do not necessarily guarantee the quality of the generated context,
especially for story generation. Besides mechanical modifications, some works achieve long context
generation in a hierarchical manner (Fan et al., 2018; |Yao et al., 2019; |[Fan et al.| 2019} [Tan et al.,
2021 [Sun et al., 2022a; |Yang et al., 2022a; |Zhou et al.| |2023). In this paper, we avoid generating
super long outputs by focusing on generating plots, which typically consist of around 1k tokens.
However, after the plot generation stage, the above mechanisms for extending context length or
accelerating inference would be helpful in generating a complete long story given the plot.

Human-in-the-loop story generation. Different from automatic story generation, several previ-
ous works use human-in-the-loop methods to generate long stories (Goldfarb-Tarrant et al., 2019
Coenen et al.; 2021} |Lee et al.,|2022;/Chung et al., 2022} [ppolito et al.,|2022; Mirowski et al.,[2023)).
Note that although our end-to-end generator is totally automatic without human intervention, it is
easy for humans to co-create after the plot generation stage. Since the story plot is relatively short
and thus easy for humans to evaluate, one can easily edit the plot to obtain a more desired story.

5 CONCLUSIONS

In this work, we study end-to-end story plot generation. By improving the previous story plot
generation pipeline and obtaining high-quality training data, we successfully train an end-to-end
model, which is able to generate story plots of comparable quality to the most advanced methods
to date much more efficiently. Moreover, due to the end-to-end nature of our method, we further
fine-tune it with human feedback, which improves the model for different aspects.

There are many important and interesting future directions. For example, the current generation
speed is around 30 seconds, which is still somewhat slow from a user experience perspective. It
might be possible to incorporate techniques for more efficient inference such as|Zhang et al.| (2023)
into our end-to-end model. Also, since the previous DOC pipeline has more flexibility for controlling
the level of granularity, it would be appealing to train an end-to-end model that inherits this property.
Additionally, a high-quality reward model is important to improve the end-to-end generator.

Under review as a conference paper at ICLR 2024

REFERENCES

Prithviraj Ammanabrolu, Ethan Tien, Wesley Cheung, Zhaochen Luo, William Ma, Lara Martin,
and Mark Riedl. Guided neural language generation for automated storytelling. In Proceedings
of the Second Workshop on Storytelling, pp. 46-55, 2019.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Emanuele Bugliarello, Hernan Moraldo, Ruben Villegas, Mohammad Babaeizadeh, Moham-
mad Taghi Saffar, Han Zhang, Dumitru Erhan, Vittorio Ferrari, Pieter-Jan Kindermans, and Paul
Voigtlaender. Storybench: A multifaceted benchmark for continuous story visualization, 2023.

Louis Castricato, Alexander Havrilla, Shahbuland Matiana, Michael Pieler, Anbang Ye, Ian Yang,
Spencer Frazier, and Mark Riedl. Robust preference learning for storytelling via contrastive
reinforcement learning. arXiv preprint arXiv:2210.07792, 2022.

Eugene Charniak. Toward a model of children’s story comprehension. PhD thesis, Massachusetts
Institute of Technology, 1972.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation, 2023a.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023b.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers, 2022.

John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Eytan Adar, and Minsuk
Chang. Talebrush: Sketching stories with generative pretrained language models. In Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1-19, 2022.

Andy Coenen, Luke Davis, Daphne Ippolito, Emily Reif, and Ann Yuan. Wordcraft: a human-ai
collaborative editor for story writing. arXiv preprint arXiv:2107.07430, 2021.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation, 2018.

Angela Fan, Mike Lewis, and Yann Dauphin. Strategies for structuring story generation. arXiv
preprint arXiv:1902.01109, 2019.

Seraphina Goldfarb-Tarrant, Haining Feng, and Nanyun Peng. Plan, write, and revise: an interactive
system for open-domain story generation. arXiv preprint arXiv:1904.02357, 2019.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph Weischedel, and Nanyun Peng. Content
planning for neural story generation with aristotelian rescoring. arXiv preprint arXiv:2009.09870,
2020.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. arXiv preprint arXiv:2308.16137,
2023.

Rujun Han, Hong Chen, Yufei Tian, and Nanyun Peng. Go back in time: Generating flashbacks in
stories with event temporal prompts. arXiv preprint arXiv:2205.01898, 2022.

10

Under review as a conference paper at ICLR 2024

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information, 2022.

Daphne Ippolito, David Grangier, Chris Callison-Burch, and Douglas Eck. Unsupervised hierarchi-
cal story infilling. In Proceedings of the First Workshop on Narrative Understanding, pp. 37-43,
2019.

Daphne Ippolito, Ann Yuan, Andy Coenen, and Sehmon Burnam. Creative writing with
an ai-powered writing assistant: Perspectives from professional writers. arXiv preprint
arXiv:2211.05030, 2022.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richard Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Mattick. Openassistant conversations — democratizing large language model align-
ment, 2023.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Dialogue state tracking with a language model
using schema-driven prompting. arXiv preprint arXiv:2109.07506, 2021.

Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai collaborative writing
dataset for exploring language model capabilities. In Proceedings of the 2022 CHI conference on
human factors in computing systems, pp. 1-19, 2022.

Boyang Li, Stephen Lee-Urban, George Johnston, and Mark Riedl. Story generation with crowd-
sourced plot graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 27,
pp. 598-604, 2013.

Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng, Yuexin Wu, Lawrence Carin, David Carl-
son, and Jianfeng Gao. Storygan: A sequential conditional gan for story visualization. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6329-6338,
2019.

Zhiyu Lin and Mark O Riedl. Plug-and-blend: a framework for plug-and-play controllable story
generation with sketches. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 17, pp. 58-65, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1-35, 2023.

Yishu Miao and Phil Blunsom. Language as a latent variable: Discrete generative models for sen-
tence compression. arXiv preprint arXiv:1609.07317, 2016.

Piotr Mirowski, Kory W Mathewson, Jaylen Pittman, and Richard Evans. Co-writing screenplays
and theatre scripts with language models: Evaluation by industry professionals. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1-34, 2023.

OpenAl. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May, and Kevin Knight. Towards controllable story
generation. In Proceedings of the First Workshop on Storytelling, pp. 4349, 2018.

11

Under review as a conference paper at ICLR 2024

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, and Yejin
Choi. Counterfactual story reasoning and generation. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 5043-5053, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1509. URL
https://aclanthology.org/D19-1509.

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and Jianfeng Gao. Plotmachines: Outline-
conditioned generation with dynamic plot state tracking. arXiv preprint arXiv:2004.14967, 2020.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Elvis Saravia. Prompt Engineering Guide. https.//github.com/dair-ai/Prompt-Engineering-Guide,
12 2022.

Xiaofei Sun, Zijun Sun, Yuxian Meng, Jiwei Li, and Chun Fan. Summarize, outline, and elaborate:
Long-text generation via hierarchical supervision from extractive summaries. In Proceedings
of the 29th International Conference on Computational Linguistics, pp. 6392—-6402, Gyeongju,
Republic of Korea, October 2022a. International Committee on Computational Linguistics. URL
https://aclanthology.org/2022.coling—1.556.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaud-
hary, Xia Song, and Furu Wei. A length-extrapolatable transformer, 2022b.

Bowen Tan, Zichao Yang, Maruan Al-Shedivat, Eric P. Xing, and Zhiting Hu. Progressive generation
of long text with pretrained language models, 2021.

Yufei Tian and Nanyun Peng. Zero-shot sonnet generation with discourse-level planning and aes-
thetics features. arXiv preprint arXiv:2205.01821, 2022.

Ting-Hao, Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Jacob
Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli, Dhruv Batra, C. Lawrence Zitnick, Devi
Parikh, Lucy Vanderwende, Michel Galley, and Margaret Mitchell. Visual storytelling, 2016.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Scott R Turner. The creative process: A computer model of storytelling and creativity. Psychology
Press, 2014.

Rose E Wang, Esin Durmus, Noah Goodman, and Tatsunori Hashimoto. Language modeling via
stochastic processes. arXiv preprint arXiv:2203.11370, 2022.

Tianming Wang and Xiaojun Wan. T-cvae: Transformer-based conditioned variational autoencoder
for story completion. In IJCAI, pp. 5233-5239, 2019.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353-32368, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul Puri, Pascale Fung, Anima Anandkumar,
and Bryan Catanzaro. Megatron-cntrl: Controllable story generation with external knowledge
using large-scale language models. arXiv preprint arXiv:2010.00840, 2020.

12

https://aclanthology.org/D19-1509
https://aclanthology.org/2022.coling-1.556

Under review as a conference paper at ICLR 2024

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218, 2021.

Kevin Yang, Dan Klein, Nanyun Peng, and Yuandong Tian. Doc: Improving long story coherence
with detailed outline control. arXiv preprint arXiv:2212.10077, 2022a.

Kevin Yang, Nanyun Peng, Yuandong Tian, and Dan Klein. Re3: Generating longer stories with
recursive reprompting and revision. arXiv preprint arXiv:2210.06774, 2022b.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui Yan. Plan-and-
write: Towards better automatic storytelling, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H _2 o: Heavy-hitter oracle for efficient
generative inference of large language models. arXiv preprint arXiv:2306.14048, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. Adapting language models for zero-shot
learning by meta-tuning on dataset and prompt collections. arXiv preprint arXiv:2104.04670,
2021.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
text. arXiv preprint arXiv:2305.13304, 2023.

13

Under review as a conference paper at ICLR 2024

A DETAILED PROMPTS IN SECTION

In this section, we provide the details of the whole rebuilt DOC pipeline, OpenPlot, including the
exact format of the main prompts. Note that some comments and remarks have already appeared in
Section [2.1.2] We keep those repeated contents in this section so that readers can find all important
and necessary information in this section without referring back to Section[2.1.2]

Premise. The first step is to generate a premise for the story. We use the following prompt:

Write a premise for a short story in one paragraph with two to three sentences.

Premise:

Note that we enforce that the language model’s response starts after “Premise:”. This structure
precludes non-informative responses such as “Sure!”, “No problem!” and ensures that the format of
the output is structured and thus easy to process.

Setting. After obtaining the premise of the whole story, we also infer the setting of the story from
the premise using the following prompt:

Premise: PREMISE

Describe the setting of the story.

The story is set in
Here, PREMISE is the premise of the story, which is the output of the previous prompt. For example,
PREMISE could be “Alex dreams of becoming a famous writer but becomes trapped in a time warp,
reliving the same day over and over.” The premise and the setting build the most basic skeleton of
the story. In the following parts, we use SETTING to denote the content of the settings, such as

“The story is set in a world where magic is real and has been suppressed by a powerful and corrupt
government.”

Characters. One of the most important elements in a story is the characters, whose intrinsic mo-
tivation and interactions with each other are vital to the trajectories of the whole story. If one views
the whole story as an RL environment, the characters in the story play essentially the same role as
agents in RL. Based on the premise and settings, we use the following prompts to generate characters
one by one:

Premise: PREMISE

Setting: SETTING

List the names and details of all major characters.

1.
Full Name:

Premise: PREMISE

Setting: SETTING

List the names and details of all major characters.
1.

Full Name: NAME_1

Use ONLY one short sentence for the following description relevant to the story, focus-
ing on relationship between characters, occupation and experience instead of appear-
ance. Only ONE sentence is allowed!

14

Under review as a conference paper at ICLR 2024

Character Portrait: NAME_1 is

The first prompt helps to generate the name of the next character. We use NAME_k to denote the
full name of the k-th character (e.g., NAME_I can be “Jack Thomas”). After obtaining the name of
the k-th character, we use the second prompt to generate the character portrait for that character.

Remark A.1. Note that in the second prompt, we added detailed instructions on the generated
portrait. In the original DOC code (Yang et al.| |20224l), this instruction is unnecessary. However,
when we replace the text-davinci-002 engine with the open-sourced Llama2-13B-chat model, due to
the performance difference between these two models, the Llama2 model tends to output a longer
description for the portrait without any instruction. Moreover, without instruction, the output of
Llama?2 focuses more on the age appearance of the character instead of occupation, experiences,
or relationship with other characters (e.g., “Tom is 22 years old and has brown curly hair”). After
adding the above instruction, the output of the second prompt tends to contain more compact and
dense information about the character.

After generating the first character, we can repeat the above procedure to generate more charac-
ters. For example, the following prompt continues to generate the full name of the second charac-
ter:

Premise: PREMISE

Setting: SETTING

List the names and details of all major characters.

1.

Full Name: NAME_1

Character Portrait: PORTRAIT_1

2.

Full Name:

We can control the number of major characters in the story, and in our implementation, we set the
desired number to be 3-6, since too few characters are likely to make the story boring, and too many
characters will reduce opportunities for characters to interact with each other.

Outline. After generating all the major characters, we are ready to build the main skeleton of
the story. Same as |Yang et al.| (2022a), we aim to create a hierarchical outline. In this paper, we
create two-level hierarchical outlines, where the top level typically contains four bullet points, and
the second level contains three to four subpoints under each top-level point. We also generate the
outline in breadth-first order, i.e., we first generate the top-level outline (numbered as 1, 2, 3, ...)
and then generate the sub-level outline (numbered as 1a, 1b, ..., 2a, ...). The following prompt can
be used to generate the first point of the top-level outline, where CHARACTERS contains the name
and portrait of all major characters.

Premise: PREMISE
Setting: SETTING
Characters: CHARACTERS

Outline the main plot points of the story using no more than 4 points, generating one
point at a time. IMPORTANT: Please make sure that the story has a clear end at or
before Point 4.

1.

Remark A.2. To make the generated story plots more reasonable, we added corresponding instruc-
tions. First, to control the length of the top-level outline, we require the LLM to use no more than 4
points. Second, to make the generation procedure more stable, we require the LLM to generate only
one point at a time. Third, during the preliminary experiments, we found that the generated plots

15

Under review as a conference paper at ICLR 2024

sometimes have a missing ending. To address this issue, we explicitly ask the LLM to make sure
that the generated top-level outline has a clear ending. A tricky part is that adding “IMPORTANT:
Please” significantly improves the quality of the generated outline in terms of a clear ending.

After generating the top bullet point 1, we can include the content of point 1 in the prompt and
continue to generate the subsequent points until the whole top-level outline is complete. Since we
generate the outline in breadth-first order, we will expand each top-level node in sequence. Note that
it is important to keep the generated subpoint consistent with not only the previous points but also the
subsequent points. To achieve this, [Yang et al.| (2022a)) use a completion model (text-davinci-002)
and add a suffix containing the content of all subsequent points. For example, to generate subpoint
1a, they use the prompt of the following format:

Premise: PREMISE
Setting: SETTING
Characters: CHARACTERS
Outline:

1. POINT_1

List the main events that occur under this heading using no more than 4 points, starting
from the beginning, generating one or two points without repeating the content of the
suffix and stop.

a.

SUFFIX:
b. POINT_2
c. POINT_3
d. POINT_4

The actual prompt in the above box is the content before “SUFFIX”, and the content after “SUFFIX”
can be passed to the completion model as an argument. We use POINT_k to denote the content of the
top-level bullet point &, which can be, e.g., “Luke discovers the mysterious box in his grandfather’s
attic and initially dismisses it as a strange trinket with no value.”

Remark A.3. There is a trick to make the generated content more consistent with the existing
content by shifting the points after the current point to a lower level, e.g., top-level point 2 is shifted
to sub-level point 1b. Also, detailed instruction on generating the current sub-level point is not
necessary for a completion model such as text-davinci-002, but is helpful when we call a chat model
such as Llama2. We will discuss this in detail in Remark[A.4]

Since we use Llama2 in our pipeline, which is a chat model and thus does not accept suffixes,
we need to simulate a completion model using a chat model. For convenience, we let CON-
TENT_OF_PREFIX and CONTENT_OF_SUFFIX denote the content before and after “SUFFIX”
in the above box respectively. Then one can use the following prompt to simulate a completion
model:

Imagine you are a text completion robot. Give the output of the following task with the
given suffix and prompt. Please follow the instructions below.

Instructions: Your output should not contain the content of the suffix. Only use the suf-
fix as complementary information. The output should mainly be based on the prompt.
Now the suffix begins.

Suffix:
CONTENT_OF_SUFFIX
End of Suffix

16

Under review as a conference paper at ICLR 2024

Now the prompt begins.
Prompt:
CONTENT_OF_PREFIX

Remark A.4. First, note that we put the content of the prefix after the suffix to make it easier for
the LLM to continue with the prefix. We also need to add instructions to obtain desired results since
otherwise, the LLM will memorize the context of the suffix, and the output will be nearly identical
to the suffix. In Remark[A.3] we also mentioned that there is a detailed instruction in the prefix on
how to generate the current sub-level points, which can “reinforce” the requirement that the output
should not repeat the content of the suffix.

After expanding each top-level point by generating sub-points, we obtain a hierarchical outline, and
the story plot generation procedure is finished.

B ADDITIONAL DETAILS OF GPT4 EVALUATION

We use the following prompt (adapted from Zheng et al.| (2023))) to compare two story plots with the
same premise:

Please act as an impartial judge and evaluate the quality of the story plots generated
by two AI models. The two story plots have the same premise. You should choose
the story plots that have better qualities. Your evaluation should focus on the overall
qualities. Begin your evaluation by comparing the two story plots and provide a short
explanation. Avoid any position biases and ensure that the order in which the story plots
were presented does not influence your decision. Do not allow the length of the story
plots to influence your evaluation. Be as objective as possible. After providing your
explanation, output your final verdict by strictly following this format: “[[A]]” if story
plot A is better, ”’[[B]]” if story plot B is better, and ”[[C]]” for a tie.

[The Start of story plot A]
STORY_PLOT_A

[The End of story plot A]

[The Start of story plot B]
STORY_PLOT_B

[The End of story plot B]

We use the above prompt to compare the overall qualities of E2EP1ot and OpenPlot. When
comparing E2EP 1ot and RLP1lot, we replace the sentence “Your evaluation should focus on the
overall qualities” with the corresponding aspect, e.g., “Your evaluation should focus on the Aspect:
Which story plot created more suspense and surprise?”.

For each comparison, we randomly shuffle the position of the two plots to avoid position bias.
Below, we provide an example of the response of GPT4:

After a careful comparison of both story plots, it is clear that story plot B generates
more suspense and surprise elements.

In story plot A, there are a few suspenseful elements like the discovery of the hidden
room in the attic and basement, and the revelation of the murderer’s identity. However,
these incidents are predictable to an extent as they are common tropes in detective sto-
ries. Moreover, the identity of the murderer, a member of the Blackwood family, is
revealed without a significant build-up which reduces the element of surprise.

Contrarily, in story plot B, there are several suspenseful and surprising twists. Initially,
Gertrude Rutledge, the mansion’s former housekeeper, becomes the prime suspect. The

17

Under review as a conference paper at ICLR 2024

story then reveals her as a ghost causing the disturbances. As the plot unfolds, there’s a
surprising revelation about Malcolm Crawford’s past and his connection to the haunting.
There is also the unexpected element of Gertrude Rutledge having an accomplice in the
murder and haunting. Each of these plot points introduces unexpected turns and secrets
that enhance the suspense and surprise of the story.

Therefore, the final verdict favors story plot B for its superior ability to create more
suspense and surprise. [[B]]

C HuMAN EVALUATION

In this section, we provide human evaluation results comparing the quality of OpenPlot,
E2EPlot and RLPlot. Since we have five RLPlot models, we name them RLPlot_Q1,
RLP1ot_Q3,RLPlot_Q4,RLP1lot_Q5, and RLP1ot_Q6, respectively. We sent 500 (OpenPlot
vs. E2EPlot) + 300 * 5 (RLP1lot vs. E2ZEP1lot) = 2000 story plot pairs, which are the same as
what we used for GPT4 evaluation, to the prolific platform, and around 1700 of them are labeled
(each pair requires one label, each participant are required to label five pairs, and some of the par-
ticipants labeled part of the five pairs). For each pair, the participants are required to answer seven
questions, where Q1-Q6 are the same as in Tableg Q2 is a free text explanation for Q1, and Q7 is
‘Which story is better in overall quality’. The result is shown in Appendix [C.1}

C.1 HUMAN EVALUATION RESULTS

The result for human evaluation is presented in Tables §] to[I3]

OpenPlot wins E2EPlot wins Tie

Q1 41.2% 43.4% 15.4%
Q3 40.5% 40.5% 19.0%
Q4 43.2% 40.7% 16.1%
Q5 40.2% 39.5% 20.2%
Q6 39.0% 39.8% 21.2%
Q7 38.5% 41.2% 20.2%

Table 8: Comparison of OpenPlot and E2EPlot on 410 story plot pairs (500 sent and 410 la-
beled) by human evaluation

RLPlot_Ql wins E2EPlot wins Tie

Q1 48.8% 37.9% 13.3%
Q3 44.8% 38.3% 16.9%
Q4 46.8% 32.3% 21.0%
Q5 40.7% 35.1% 24.2%
Q6 47.6% 35.1% 17.3%
Q7 43.1% 36.3% 20.6%

Table 9: Comparison of RLP1lot_Q1 and E2EPlot on 248 story plot pairs (300 sent and 248
labeled) by human evaluation

C.2 COMPLEMENTARY GPT4 EVALUATION RESULT

For completeness, we also provide corresponding evaluation results by GPT4. The result for GPT4
evaluation is presented in Tables [T4] to [I9}

18

Under review as a conference paper at ICLR 2024

RLPlot_Q3 wins E2EPlot wins Tie

Q1 41.5% 41.1% 17.4%
Q3 38.2% 41.1% 20.7%
Q4 34.4% 45.6% 19.9%
Q5 35.3% 38.6% 26.1%
Q6 39.4% 38.2% 22.4%
Q7 36.1% 41.9% 22.0%

Table 10: Comparison of RLP1ot_Q3 and E2EPlot on 241 story plot pairs (300 sent and 241
labeled) by human evaluation

RLPlot_Q4 wins E2EPlot wins Tie

Q1 41.3% 40.9% 17.9%
Q3 42.5% 39.3% 18.3%
Q4 40.1% 38.5% 21.4%
Q5 37.7% 38.5% 23.8%
Q6 40.1% 38.9% 21.0%
Q7 40.1% 38.1% 21.8%

Table 11: Comparison of RLP1ot_Q4 and E2EP1lot on 252 story plot pairs (300 sent and 252
labeled) by human evaluation

RLPlot_Q5 wins E2EPlot wins Tie

Q1 43.4% 43.0% 13.5%
Q3 45.0% 42.6% 12.4%
Q4 46.2% 42.6% 11.2%
Q5 43.8% 37.5% 18.7%
Q6 41.8% 38.2% 19.9%
Q7 43.0% 37.8% 19.1%

Table 12: Comparison of RLP1ot_Q5 and E2EPlot on 251 story plot pairs (300 sent and 251
labeled) by human evaluation

RLPlot_Q6 wins E2EPlot wins Tie

Q1 38.7% 44.0% 17.3%
Q3 35.9% 44.8% 19.4%
Q4 39.5% 41.1% 19.4%
Q5 35.1% 39.1% 25.8%
Q6 36.3% 45.2% 18.5%
Q7 35.9% 41.1% 23.0%

Table 13: Comparison of RLP1ot_Q6 and E2EPlot on 248 story plot pairs (300 sent and 248
labeled) by human evaluation

19

Under review as a conference paper at ICLR 2024

OpenPlot wins E2EPlot wins Tie

Q1 53.2% 45.2% 1.6%
Q3 53.6% 40.6% 5.8%
Q4 53.2% 45.6% 1.2%
Q5 53.0% 45.2% 1.8%
Qo6 48.2% 50.4% 1.4%
Q7 45.8% 46.8% 7.4%

Table 14: Comparison of OpenPlot and E2EP 1ot on 500 story plot pairs by GPT4 evaluation

RLPlot_Ql wins E2EPlot wins Tie

Q1 54.0% 44.0% 1.6%
Q3 53.0% 41.0% 6.0%
Q4 49.0% 50.7% 0.3%
Q5 51.7% 46.7% 1.7%
Q6 56.7% 41.0% 2.3%
Q7 49.7% 44.3% 6.0%

Table 15: Comparison of RLP1ot_Q1 and E2EP 1ot on 300 story plot pairs by GPT4 evaluation

RLPlot_Q3 wins E2EPlot wins Tie

Q1 45.3% 52.0% 2.7%
Q3 46.0% 50.3% 3.7%
Q4 43.3% 56.3% 0.3%
Q5 44.0% 55.0% 1.0%
Q6 49.7% 47.3% 3.0%
Q7 46.7% 44.3% 9.0%

Table 16: Comparison of RLP1ot_Q3 and E2EP 1ot on 300 story plot pairs by GPT4 evaluation

RLPlot_Q4 wins E2EPlot wins Tie

Q1 55.0% 43.0% 2.0%
Q3 51.7% 42.0% 6.3%
Q4 60.0% 39.3% 0.7%
Q5 51.7% 45.7% 2.7%
Q6 58.7% 40.3% 1.0%
Q7 44.7% 46.0% 9.3%

Table 17: Comparison of RLP1ot_Q4 and E2EP 1ot on 300 story plot pairs by GPT4 evaluation

RLPlot_Q5 wins E2EPlot wins Tie

Q1 40.3% 56.0% 3.7%
Q3 42.0% 53.0% 5.0%
Q4 41.7% 57.0% 1.3%
Q5 50.0% 48.0% 2.0%
Q6 51.0% 47.3% 1.7%
Q7 43.3% 49.7% 7.0%

Table 18: Comparison of RLP1ot_Q5 and E2EP 1ot on 300 story plot pairs by GPT4 evaluation

20

Under review as a conference paper at ICLR 2024

RLPlot_Q6 wins E2EPlot wins Tie

Q1 44.3% 53.7% 2.0%
Q3 42.7% 53.7% 3.7%
Q4 44.7% 55.0% 0.3%
Q5 42.3% 54.3% 3.3%
Q6 53.7% 42.3% 4.0%
Q7 44.7% 50.0% 5.3%

Table 19: Comparison of RLP1ot_Q6 and E2EP 1ot on 300 story plot pairs by GPT4 evaluation

21

	Introductions
	Methods
	Pipeline for creating datasets: OpenPlot
	Motivation and major challenges
	Overview and discussion of the pipeline

	Training End-to-end model: E2EPlot
	Reward Model Training and RLHF: RLPlot

	Results
	Performance of end-to-end model after SFT
	Performance of end-to-end model after RLHF

	Related Works
	Conclusions
	Detailed Prompts in sec:DOCprompts
	Additional Details of GPT4 Evaluation
	Human Evaluation
	Human evaluation results
	Complementary GPT4 evaluation result

