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ABSTRACT
While margin-based deep face recognition models, such as ArcFace
and AdaFace, have achieved remarkable successes over the recent
years, they may suffer from degraded performances when encoun-
tering training sets corrupted with noises. This is often inevitable
when massively large scale datasets need to be dealt with, yet it
remains difficult to construct clean enough face datasets under
these circumstances. In this paper, we propose a robust deep face
recognition model, RobustFace, by combining the advantages of
margin-based learning models with the strength of mining-based
approaches to effectively mitigate the impact of noises during train-
ings. Specifically, we introduce a noise-adaptive mining strategy to
dynamically adjust the emphasis balance between hard and noise
samples by monitoring the model’s recognition performances at
the batch level to provide optimization-oriented feedback, enabling
direct training on noisy datasets without the requirement of pre-
training. Extensive experiments validate that our proposed Robust-
Face achieves competitive performances in comparison with the
existing SoTA models when trained with clean datasets. When
trained with both real-world and synthetic noisy datasets, Robust-
Face significantly outperforms the existing models, especially when
the synthetic noisy datasets are corrupted with both close-set and
open-set noises. While the existing baseline models suffer from
an average performance drop of around 40%, under these circum-
stances, our proposed still delivers accuracy rates of more than
90%.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Face Recognition, Noise Label, Hard SampleMining, Noise-resistant
Loss

1 INTRODUCTION
While deep convolutional neural networks (DCNNs) have achieved
enormous success in face recognition, its application to massively
large-scale datasets still remains a challenging task and hence
spaces exist for further research and investigations. The work re-
ported in[29], for example, has indicated that a million-scale face
recognition (FR) dataset typically exhibits a noise rate exceeding
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(a) Mining-based Loss
(CurricularFace)

(b) Margin-based Loss
(ArcFace)

(c) Mining-based Antinoise Loss
(Ours)

(d) Mining-based Antinoise Loss
(BoundaryFace)

Figure 1: Comparative illustration of the histogram distribu-
tions of cos𝜃 for different deep models on a training set that
is corrupted with 40% close-set noise, where 𝜃 is an angle be-
tween the current sample and the class center. As seen, during
the initial stages of training, 𝐻𝑖𝑠𝑡𝑐𝑙𝑒𝑎𝑛 and 𝐻𝑖𝑠𝑡𝑛𝑜𝑖𝑠𝑦 largely
overlaps since the models are not trained yet. As training
progresses, 𝐻𝑖𝑠𝑡𝑐𝑙𝑒𝑎𝑛 starts to shift to the right, resulting in a
reduction of the overlapping regionwith𝐻𝑖𝑠𝑡𝑛𝑜𝑖𝑠𝑦 , indicating
that the smaller the overlapped region, the less the learning
model is affected by noises (i.e. more robust to noises). Com-
pared with the other 3 existing models, as seen in fig. 1c, our
proposed demonstrates the smallest overlapping region and
its corresponding value of cos𝜃 closest to 1 on its horizontal
axis, indicating that the proposed achieves the highest level
of robustness to noises.

30%, adversely affecting the performance of CNNmodels. The rapid
increase of training datasets, such as Glint360K [2], comprising
360K identities and 18 million images, inevitably introduces noises,
making robust face recognition an important topic for intensive in-
vestigations and research. Yet elimination of erroneous labels from
large-scale FR datasets are both costly and challenging. Despite
some efforts proposing automated or semi-automated methods for
cleaning large-scale FR datasets [3, 10, 22, 34, 40], the problem still
remains non-resolved, indicating that acquisition of large-scale
clean datasets with high-quality will involve significant costs and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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𝑐𝑜𝑠𝜃𝑗 , 𝑗 ≠ 𝑦𝑖

Figure 2: Illustration of the training process for face recognition by our proposed model RobustFace. Via 𝑙2 normalization on
both the embedding feature 𝑥𝑖 ∈ R512 and the centers’ weight𝑊 ∈ R512×𝑁 , we get cos𝜃 𝑗 (logit) for each class as𝑊𝑇

𝑗
𝑥𝑖 . Afterwards,

based on the distribution of the angle 𝑐𝑜𝑠𝜃𝑦𝑖 , we classify the samples into easy, hard, and noise samples. By reinforcing the
learning on hard samples and weakening the learning on noise samples through the application of applying a modulation
function to the negative cosine (cos𝜃 𝑗 , 𝑗 ≠ 𝑦𝑖 ), we add an angular margin penalty𝑚 to formulate cos(𝜃𝑦𝑖 +𝑚) and multiply cos𝜃 𝑗
with the feature scale 𝑠, and then get the logits to go through the softmax function to construct the cross entropy loss.

manual annotation is unavoidable. Although learning from noisy
datasets has been extensively studied in the field of image classi-
fication [8, 9, 11, 24, 26, 28], none of them, however, is applicable
to the tasks of face recognition [12]. This is due to the fact that FR
datasets often consist of large-scale classes, yet each of which con-
tains relatively few images, making it extremely difficult to identify
the relationship patterns from those noisy samples. Consequently,
methods designed for classifications cannot be directly applied to
FR tasks.

For those massively large scale datasets with the risk of being
corrupted by noises, loss design becomes a crucial aspect for break
through solutions. Over recent years, state of the arts in loss design
is represented by margin based approaches [1, 4, 18, 30], such as
ArcFace [6] and AdaFace [15], and mining based approaches [16,
17, 27, 36], such as CurricularFace [14] and BoundaryFace [33], as
well as their combined approaches [14, 31]. While margin-based
loss aims to enhance the discriminative power by adaptively in-
troducing margins in accordance with the quality of concerned
images, all margin-based approaches share the common principle
that the importance of hard samples and the impact of noisy samples
are relatively overlooked. As a result, recent research [14, 31, 39]
has focused on further improving the FR performances through
hard sample mining. MV-Arc-Softmax [31] explicitly defines mis-
classified samples as hard samples and emphasizes their roles by
increasing the weight of their negative cosine similarity with a
preset constant. In contrast, CurricularFace [14] focuses on curricu-
lum learning, emphasizing those easy samples at early stages and,
at later stages, attentions are gradually shifted to those difficult
samples. The weakness for mining based loss design, however, lies
in the fact that the influence of noise on mining is overlooked. Re-
cent work [5, 7, 9, 12, 33] has begun to design noise-resistant loss
functions to mitigate the influence of noises, and one representative
example is BoundaryFace [33], which reduces the impact of close-
set label noises on training by adding a label correction module.
BoundaryFace, however, does not work well for open-set noises in

FR tasks. Sub-center ArcFace [5] introduces sub-centers to relax the
intra-class constraint of ArcFace to improve the robustness to label
noise. However, while discarding the weak sub-centers containing
noisy samples, it also discards some hard samples that have training
value. Therefore, the design of a loss function that can perform
hard sample mining and tolerate both close-set and open-set noises
remains to be an unsolved research problem.

In this paper, we propose a new deep face recognition model:
RobustFace, to address the above problem. In comparison with the
existing models, it has the feature that training is governed by a
noise-adaptive and hard sample mining loss function, which is de-
signed to improve the robustness of deep learning models in the
presence of both close-set and open-set noises, enabling direct learn-
ing of more effective facial features on large-scale noisy datasets.
As shown in fig. 2, this can be verified by observing not only the
distribution of the angles between noise and clean samples, but
also the distribution of the current class centre at different training
stages. Essentially, our proposed utilizes the cos𝜃 distribution to
"filter out" noise samples and apply a dynamic weighting scheme
to enhance the learning process from hard samples while reducing
the attention to noise samples. Unlike the existing methods, such
as BoundaryFace [33] that requires additional pre-training of the
network to handle noises, our proposed RobustFace introduces an
adaptive noise handling strategy throughout the entire training
process, minimizing the impact of noise from the initial stages on
the model. Extensive experiments validate that the proposed Ro-
bustFace provides a more stable training under open-set face noises,
compared with other existing approaches.

In summary, our contributions can be highlighted as follows:

• We propose a novel antinoise loss function to enable direct
and robust training on large-scale noisy datasets, which not
only effectively mines cleaner hard samples from noisy train-
ing sets, but also reinforce its learning from these samples
whilst weakening the learning from noisy samples.
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(a) Decision Boundary (ArcFace vs. Ours).
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(b) Discriminant Boundary.

Figure 3: (a) illustration of the decision boundaries for ArcFace and the proposed RobustFace, where the blue line, red line and
yellow line denote the decision boundary of Softmax, ArcFace and RobustFace, respectively. The purple line is the decision
boundary regarding noises for our proposed RobustFace. (b) Illustration of adaptive discriminant boundary for the proposed
RobustFace, where those low-confidence noise samples that are unable to promptly optimize towards the class centers are
classified as noises.

• We propose a novel paradigm for robust face recognition
via monitoring the deep model’s recognition ability at the
batch level and estimating the noise ratio in the dataset. This
proposed paradigm features in serving as a surrogate, where
its computational overhead is kept at the minimum.

• Compared with the existing models, our proposed Robust-
Face achieves the advantage that, without pre-training, the
model is able to filter noises and hence minimizes their im-
pact even from initial stages.

• We have carried out extensive experiments to evaluate the
proposed RobustFace, for which the results show that the
proposed outperforms the representative existing state of
the arts on datasets with closed-set and open-set noises,
whilst maintaining competitive performances over those
high quality clean datasets.

2 THE PROPOSED APPROACH
2.1 Adaptive Mining and Margining Loss
Due to the fact that lack of discriminative capability in the learned
features prevents the existing softmax loss from achieving effective
face recognition in practical applications, a number of variants
have been reported, which can be broadly classified into two types:
margin-based loss functions and mining-based loss functions. For
the convenience of investigations, we summarize all those variants
into the following general form:

𝐿 = −𝐼 (𝑝 (𝑥𝑖 )) log
𝑒𝑠𝑇 (cos𝜃𝑦𝑖 )

𝑒𝑠𝑇 (cos𝜃𝑦𝑖 ) +∑𝑛
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠𝐺 (𝑡,cos𝜃 𝑗 )
(1)

where𝑝 (𝑥𝑖 ) = 𝑒𝑠𝑇 (cos𝜃𝑦𝑖 )

𝑒𝑠𝑇 (cos𝜃𝑦𝑖 )+∑𝑛
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠𝐺 (𝑡,cos𝜃 𝑗 ) is the predicted ground

truth probability, and 𝐼 (𝑝 (𝑥𝑖 )) is an indicator function. 𝑇 (cos𝜃𝑦𝑖 )
and 𝐺 (𝑡, cos𝜃 𝑗 ) are functions that modulate the positive cosine
similarity and negative cosine similarity, respectively.

For margin-based loss functions, such as ArcFace, the func-
tions are defined as: 𝐼 (𝑝 (𝑥𝑖 )) = 1, 𝑇 (cos𝜃𝑦𝑖 ) = cos(𝜃𝑦𝑖 +𝑚), and

𝐺 (𝑡, cos𝜃 𝑗 ) = cos𝜃 𝑗 . These functions only modify the positive co-
sine similarity of each sample to achieve intra-class compactness,
whilst the modulation coefficients of each sample’s negative cosine
similarities are fixed as 1.

For mining-based softmax, such as MV-Arc-Softmax, Curricu-
larFace, mining essentially emphasizes the value of hard samples,
focusing on the relationship between the negative cosine similarity
and the positive cosine similarity. That is 𝐼 (𝑝 (𝑥𝑖 )) = 1, and thus
MV-Arc-Softmax can be formulated as follows:

𝐺 (𝑡, cos𝜃 𝑗 ) =
{
cos𝜃 𝑗 , 𝑇 (cos𝜃𝑦𝑖 ) − cos𝜃 𝑗 ≥ 0
cos𝜃 𝑗 + 𝑡, 𝑇 (cos𝜃𝑦𝑖 ) − cos𝜃 𝑗 < 0

(2)

and CurricularFace formula is defined as follows:

𝐺 (𝑡, cos𝜃 𝑗 ) =
{
cos𝜃 𝑗 , 𝑇 (cos𝜃𝑦𝑖 ) − cos𝜃 𝑗 ≥ 0
cos𝜃 𝑗 (𝑡 + cos𝜃 𝑗 ), 𝑇 (cos𝜃𝑦𝑖 ) − cos𝜃 𝑗 < 0

(3)

As can be seen from the formula above, if a sample is easy, its
negative cosine similarity remains unchanged; otherwise, it will
be amplified. Specifically, when 𝑇 (cos𝜃𝑦𝑖 ) − cos𝜃 𝑗 < 0, MV-Arc-
Softmax and CurricularFace enhance training on hard samples by
amplifying negative cosine similarities with 𝐺 (𝑡, cos𝜃 𝑗 ).

To facilitate both intra-class compactness and inter-class sepa-
rability, we propose a new loss function by adopting an additive
angular margin to implement the cosine similarity modulating func-
tion 𝑇 (cos𝜃𝑦𝑖 ) and maximize the class discriminative ability. In
addition, we further introduce a negative cosine similarity modulat-
ing function𝐺 (𝑡, cos𝜃 𝑗 ) to mine and reinforce the learning of hard
samples while alleviating the adverse effects of noise samples on
training. In this way, not only the discriminative capability is en-
hanced, but also the robustness to noise in the dataset is improved.
As a result, the loss function for our proposed RobustFace follows
the general form as described in eq. (1), in which 𝐼 (𝑝 (𝑥𝑖 )) = 1, and
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details of the modulating functions are given below:

𝑇 (cos𝜃𝑦𝑖 ) = cos(𝜃𝑦𝑖 +𝑚)

𝐺 (𝑡, cos𝜃 𝑗 ) =


cos𝜃 𝑗 , 𝑓𝑒𝑎𝑠𝑦

cos𝜃 𝑗 (1 + 𝑡), 𝑓ℎ𝑎𝑟𝑑

(1 − 𝜑)𝜎 cos𝜃 𝑗 , 𝑓𝑛𝑜𝑖𝑠𝑒

(4)

where 𝜑 represents a dynamic parameter, which is introduced to
provide an adaptive control over the influence of noise in accor-
dance with the training progress. Details of its determination are
provided in section 2.2. as shown in eqs. (5) and (6), and 𝜎 is the
modulation parameter set to the default value of 2.

As mentioned in the preceding equations, our proposed model
exhibits a flexible decision boundary to address diverse scenar-
ios. In order to maximize the class discriminative capability, as
seen in fig. 3a, ArcFace introduces a margin function 𝑇 (𝑐𝑜𝑠𝜃𝑦𝑖 ) =
𝑐𝑜𝑠 (𝜃𝑦𝑖 +𝑚) from the perspective of positive cosine similarity. This
is illustrated by the transition from the blue line to the red line
in fig. 3a, where𝑚 denotes the angular margin added by ArcFace.
To enhance its capability in anti-noise, we further introduce an
additional margin, denoted as 𝑔 = cos𝜃 𝑗 (1 + 𝑡), from the negative
cosine similarity for hard samples. Correspondingly, the decision
boundary is defined as 𝑐𝑜𝑠 (𝜃𝑦𝑖 +𝑚) = 𝑐𝑜𝑠𝜃 𝑗 + 𝑡𝑐𝑜𝑠𝜃 𝑗 (see the yel-
low line in fig. 3a), reinforcing the learning of hard samples and
further improving class discriminability. In addition, we adaptively
adjust the weights of noise samples during different training stages.
This adaptation leads to the evolution of the decision boundary
𝑐𝑜𝑠 (𝜃𝑦𝑖 + 𝑚) = (1 − 𝜑)𝜎 cos𝜃 𝑗 (the blue line in fig. 3a), which
gradually reduces the emphasis on noise samples as the model’s
recognition capability improves. Consequently, the decision bound-
ary experiences the transition towards the purple line, forming a
dynamic margin defined as 𝑑 = (1 − 𝜑)𝜎 cos𝜃 𝑗 , details of which
are illustrated in fig. 3a.

2.2 Improved Discrimination between Hard and
Noise Samples

Dynamic control over the training progress. To enable a dy-
namic adjustment of the noise discriminant boundary and the
importance weighting over samples, we introduce a parameter
𝜑 in eq. (4) to monitor the training progress. By continuously mon-
itoring the training indicator at the batch level, the proposed Ro-
bustFace can dynamically adapt its training strategies in response
to those ongoing changes and performances, and hence optimizing
its ability to handle noise and hard samples during the training
process. Although other existing evaluation metrics could also be
considered to formulate the training indicator, there exist, however,
some limitations that prevent from their utilization. While loss
values, for example, are able to measure the differences between
the predicted and the targeted, they cannot intuitively demonstrate
the ongoing recognition performances during the process of train-
ing. Other metrics, such as AUC-ROC, Recall, and F1-Score etc.,
have the problem that they can not be monitored at batch level,
yet incurring significant computational overheads, especially for
face recognitions upon massively large scale datasets. To this end,
we propose to use the ratio of cosines, which satisfy the condi-
tion: cos(𝜃 𝑗 ) ≥ cos(𝜃𝑦𝑖 +𝑚), to the total cosines 𝐶 (cos𝜃 𝑗 ) in each

(a) Accuracy for CFP-FP. (b) The 𝜑-Value Curves.

Figure 4: (a) Illustration of the varying performances by
ResNet-34, which is trained by the proposed RobustFace with
different ratios of close-set noises (i.e. 0%, 20%, 40%). (b) il-
lustration of how the values of 𝜑 varies when the proposed
RobustFace is trained with different ratios of close-set noises
(i.e. 0%, 20%, 40%)

batch as the training indicator. In this way, the recognition perfor-
mances at the batch level can be intuitively monitored during the
training process, yet the incurred computational overhead remains
negligible, details of which are given below:

𝜑 =
1
𝑛

𝑛∑︁
𝑖=1

𝜑𝑖 , 𝜑 =
𝐶 (cos𝜃 𝑗>cos(𝜃𝑦𝑖 +𝑚) )

𝐶 (cos𝜃 𝑗 )
(1 − 𝜇) (5)

where 𝑛 is the batch size, 𝜇 represents the prior noise rate of
the current training set. As 𝜇 normally has minor impacts on the
model’s results under low noise conditions, it is commonly set to

𝜇 = 0, that is, 𝜑 =
𝐶 (cos𝜃 𝑗>cos(𝜃𝑦𝑖 +𝑚) )

𝐶 (cos𝜃 𝑗 )
.

When the batch size is small, the batch statistics 𝜑 might be
unstable. To address this, we employ exponential moving average
(EMA) across multiple batches to stabilize 𝜑 . Specifically, let 𝜑 (𝑘 )

denote the 𝑘-th step batch statistics of the training indicator, we
have:

𝜑 = 𝛼𝜑 (𝑘 ) + (1 − 𝛼)𝜑 (𝑘−1) (6)
where 𝜑 is adjusted by using a momentum 𝛼 , which is set to 0.99.

To indicate the ongoing status of training progress, 𝜑 is required
to assess model performances, enabling efficient monitoring at the
batch level with minimal computational overhead. From fig. 4, it
can be observed that the curves of 𝜑 (fig. 4b) exhibits a shape and
trend similar to that of the accuracy curve on the validation set
(fig. 4a) when the training set contains varying degrees of noises
( 0%, 20%, and 40% closed-set noise). These findings provide com-
pelling evidences that 𝜑 is indeed an effective indicator in reflection
of the ongoing status of the model’s training progress. In addition,
it is also found that the convergence upper limit of 𝜑 reflects the
noise rate of the current training set as shown in fig. 4b. Hence,
this approach can be used to approximate the value of the prior
noise rate 𝜇. While the model’s final performance is typically not
sensitive to the value of 𝜇, a more accurate estimation of 𝜇 can
stabilize the training process, and thus improve the performances,
especially in the presence of significant noises. Therefore, if one
desires to train the model using a precise prior noise rate 𝜇, the
following steps can be taken: 1) Set 𝜇 to the default value of 0 and
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Table 1: Experimental results in recognition accuracy rates
upon the varying values of 𝑚1 in close-set noisy environ-
ments.

Method(%) Noise Ratio AgeDB [21] CALFW [38]

𝑚1=0.10 94.35 93.96
𝑚1=0.15 94.65 94.11
𝑚1=0.20

0%
94.47 93.90

𝑚1=0.10 93.53 93.45
𝑚1=0.15 93.72 93.49
𝑚1=0.20

20%
93.79 93.47

𝑚1=0.10 91.84 92.25
𝑚1=0.15 92.22 92.47
𝑚1=0.20

40%
92.17 92.33

Table 2: Experimental results in recognition accuracy rates
upon the varying values of 𝑡 .

Method(%) CFP-FP CALFW CPLFW

𝑡 = 0.20 91.81 94.47 88.11
𝑡 = 0.25 91.78 94.50 88.11
𝑡 = 0.30 91.31 94.44 87.86

train the model. 2) Estimate a more accurate value of 𝜇 based on the
convergence upper limit of 𝜑 . 3) Adjust the value of 𝜇 accordingly
and retrain the model.

Soft Noise Discriminant Boundary. Given the difficulties in
learning noise samples, the relationship between the positive co-
sine similarity and the negative cosine similarity reflects the type
of samples. In other words, as CNNs can quickly memorize sim-
ple/clean samples and eventually learn difficult/noisy samples, the
noise samples may be distributed along the nearest negative class
discriminant boundary (i.e. cos𝜃 𝑗 = cos𝜃𝑦𝑖 ). On this basis, an addi-
tional soft buffer margin𝑚1 can be introduced as the soft discrim-
inant boundary between hard and noise samples. Therefore, the
noise determination condition 𝑓𝑛𝑜𝑖𝑠𝑒 can be constructed as follows:

𝑓𝑛𝑜𝑖𝑠𝑒 : ∃ 𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑦𝑖 } : cos𝜃 𝑗 ≥ cos(𝜃𝑦𝑖 −𝑚1) (7)

Where,𝑚1 is the updated additional soft buffer margin and calcu-
lated by:𝑚1 = (1−𝜑)2 ·𝑚1, and𝑚1 is an original soft buffer margin.
This formulation ensures that, as the training indicator 𝜑 improves,
the soft buffer margin𝑚1 gradually decreases, allowing for a more
precise discrimination between hard and noise samples with low
confidences.

Specifically, as shown in fig. 3b, easy samples with low separa-
bility (green area) have a smaller impact on the model’s learning,
whilst the high-confidence noise samples are easier to filter. Addi-
tionally, low confidence noise samples (red box) close to “bdy2” may
be mis-classified as hard samples, leading to a stronger negative
impact on the model’s optimization. Therefore, correct identifica-
tion of those low-confidence noise samples is crucial for enhancing

the discriminability of features. To address this issue, we introduce
a soft margin 𝑚1 to aggressively filter out noise samples with-
out concerning about potential misclassifications caused by the
model’s early recognition capability limitations. As the model’s
recognition capability, indicated by 𝜑 , improves, the confidence in
noise determination also increases. As a result, the “noise” decision
boundary gradually transitions from cos(𝜃𝑦𝑖 −𝑚1) = cos(𝜃 𝑗 ) to
cos(𝜃𝑦𝑖 ) = cos(𝜃 𝑗 ), thereby reassigning these samples as “noise”
and reducing the adverse effects caused by mis-classifications. By
employing this method, the proposed RobustFace is able to focus on
learnings from informative features (i.e., hard samples), reducing its
reliance on harmful features (i.e., noise samples), and accelerating
the model’s learning of correct features or patterns throughout the
entire training phase.

Given the fact that easy samples are closer to the class center
compared to hard samples, the condition cos𝜃 𝑗 ≤ cos(𝜃𝑦𝑖 +𝑚) will
hold even with an added penalty margin𝑚 = 0.5. Therefore, the
noise determination condition 𝑓easy can be formulated as:

𝑓𝑒𝑎𝑠𝑦 : ∃ 𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑦𝑖 } : cos𝜃 𝑗 ≤ cos(𝜃𝑦𝑖 +𝑚) (8)

Similarly, the noise determination condition 𝑓ℎ𝑎𝑟𝑑 can be formu-
lated as:

𝑓ℎ𝑎𝑟𝑑 :∃ 𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑦𝑖 } :
cos(𝜃𝑦𝑖 −𝑚1) > cos𝜃 𝑗 > cos(𝜃𝑦𝑖 +𝑚) (9)

3 EXPERIMENTS
3.1 Implementation Details

Datasets. Refined from the MS-Celeb1M[10], MS1MV2 [6] is a
widely used clean dataset for face recognition training, which con-
tains 85K identities and over 5.8M images. To simulate the datasets
with various levels of noises, synthetic datasets are created based on
MS1MV2. For close-set noises, the labels of MS1MV2 samples are
randomly flipped, and for open-set noises, Glint360K [2] is selected
as the source, and MS1MV2 samples are randomly replaced. In con-
trast, the original MS-Celeb-1M dataset is a large-scale dataset of
facial images, encompassing various poses, expressions, and com-
plex lighting conditions (100k identities, 10 million images). Unlike
the refined MS1MV2, MS-Celeb-1M is untreated, which consists
of many noisy faces, serving as the training set to evaluate per-
formances under realistic noise distributions. Based on the prior
noise estimation described in section 2.2, we estimate that the noise
rate in MS-Celeb-1M is approximately 40%, which closely aligns
with the findings in [29]. In summary, we evaluate the proposed
RobustFace on several popular benchmarking datasets, including
LFW [13], CFP-FP [25], CPLFW [37], AgeDB [21], CALFW [38],
IJB-B [32], and IJB-C [19].

Training Setup.To pre-process the datasets, we follow thework [35]
to align and crop the 112×112 faces with five landmarks, and em-
ploy ResNet with a 512-dimensional feature output as the backbone.
While the framework is implemented using PyTorch [23], the model
is trained on 8 NVIDIA A100-PCIE GPUs with a batch size of 128*8,
and the training is finished at 20 epochs. By setting the scale at
s = 64, trainings are performed using the SGD algorithm with a
momentum of 0.9 and weight decay of 5𝑒-4. Our source codes will
be made available after accepted.
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Table 3: Experimental results in recognition accuracy rates achieved by all assessed models when trained on real-world clean
and noisy datasets. [*=our evaluation of the released model]

Method(%) Train Data LFW [13] CALFW [38] AgeDB [21] CFP-FP [25] CPLFW [37] AVG

ArcFace [6] MS1MV2 99.82 95.45 98.28 98.27 92.08 96.78
MV-Softmax [31] MS1MV2 99.80 96.10 97.95 98.28 92.83 96.99
CurricularFace [14] MS1MV2 99.80 96.20 98.32 98.37 93.13 97.16
Sub-center Arcface*[5] MS1MV2 99.81 95.63 98.19 98.31 92.58 96.90
MagFace [20] MS1MV2 99.83 96.15 98.17 98.46 92.87 97.10
AdaFace [15] MS1MV2 99.82 96.08 98.05 98.49 93.53 97.19
BoundaryFace*[33] MS1MV2 99.81 96.14 98.17 98.49 93.14 97.15
RobustFace,R100 MS1MV2 99.82 96.23 98.19 98.39 93.03 97.13

ArcFace*,R50 MS-Celeb-1M 99.66 97.30 96.82 95.37 91.27 96.08
CurricularFace*,R50 MS-Celeb-1M 99.74 97.54 96.82 95.58 92.39 96.41
Sub-center Arcface*,R50 MS-Celeb-1M 99.71 98.01 96.95 95.59 92.41 96.53
AdaFace*,R50 MS-Celeb-1M 99.69 97.47 96.97 95.39 92.14 96.33
BoundaryFace*,R50 MS-Celeb-1M 99.72 97.41 96.96 95.59 91.39 96.21
RobustFace,R50 MS-Celeb-1M 99.76 98.41 97.55 95.87 93.33 96.98

Table 4: 1:1 verification TAR@FAR on the datasets: IJB-B and
IJB-C.

Method(%)
IJB-B [32]

(TAR@FAR)
IJB-C [19]
(TAR@FAR)

1e-5 1e-4 1e-5 1e-4

ArcFace 63.35 85.03 70.77 87.73
CurricularFace 74.30 89.04 83.50 92.05
Sub-center Arcface 74.33 89.07 83.57 92.30
AdaFace 72.83 89.03 83.55 91.95
BoundaryFace 65.37 84.80 74.55 88.13
RobustFace 73.10 91.30 85.50 94.02

3.2 Ablation study

Effect of parameter𝑚1. As described in the previous section, the
soft buffer margin𝑚1 plays a crucial role in the proposed Robust-
Face, serving two main purposes: (i) adjusting the boundary for
noise sample classification; (ii) dynamically balance the impact of
noise during trainings. An appropriate setting of𝑚1 enables the
model to focus more on informative features in the presence of
noises, and hence enhancing its recognition performances and ro-
bustness. Consequently, it becomes important to further explore
the optimal value of𝑚1 under close-set noisy environments. As
reported in table 1, 𝑚1 = 0.15 achieves the best performance at
noise rates of 0% and 40%. For the dataset with a noise rate at
20%,𝑚1 = 0.2 demonstrates a slight advantage in AGEDB, whilst
𝑚1 = 0.15 remains optimal in CALFW. Via comprehensive con-
sideration of all these settings and their corresponding balances
across the varying results, we set 𝑚1 = 0.15 in the subsequent
experiments.

Effect of parameter 𝑡 .As described in eq. (4), the hyper-parameter
𝑡 is a modulation coefficient of the negative cosine similarity for

hard samples, which is introduced to determine an appropriate
emphasis on hard samples during the training process. The insensi-
tivity of the proposed RobustFace to the 𝑡 within a certain range
is demonstrated in table 2, based on which we set 𝑡 = 0.2 as the
optimal value for RobustFace in subsequent experiments.

3.3 Comparative Evaluation Against The
Existing SoTA Models

Learning from MS1MV2, MS-Celeb-1M. To validate the per-
formance of RobustFace on a clean training set, we carried out
extensive experiments in comparison with a number of the existing
SoTA models and report their performances on 5 benchmarking
datasets described in section 3.1. To provide a comprehensive as-
sessment, we follow the work [6] and select different backbones
(ResNet100, ResNet50) to showcase the flexibility and applicability
of our proposed method across various backbone architectures. The
experimental results are listed in table 3, from which it can be seen
that, even for a clean training dataset, the proposed RobustFace
achieves competitive performances when compared with those
mining-based models, such as CurricularFace [14] and Boundary-
Face [33]. As the primary advantage for RobustFace lies in the fact
that it is capable of effectively handling noisy training datasets,
RobustFace may be disadvantaged in the case of high quality train-
ing datasets. When trained with the clean and high quality dataset
MS1MV2, nonetheless, RobustFace still achieves the best result on
CALFW, the second best result on LFW, and competitive results for
all other validation datasets in comparison with the selected 5 exist-
ing SoTA models, details of which are indicated by the results listed
in the upper part of table 3. When trained with the noisy dataset
MS-Celeb-1M [10], the proposed RobustFace achieves the best re-
sults across all validation datasets in comparison with ArcFace,
CurricularFace, AdaFace, Sub-center Arcface [5] and Boundary-
Face, indicated from the results listed in the lower part of table 3.
Due to the fact that most of the existing models have reported their
experimental results trained on MS1MV2, we are able to assess
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Table 5: Experimental results in recognition accuracy rates achieved by all the assessed models, where the training set is
contaminated with different ratios of close-set noises.

Method(%) Noise Ratio LFW [13] CALFW [38] AgeDB [21] CFP-FP [25] CPLFW [37] AVG

ArcFace C-15% 99.77 96.03 97.60 96.32 91.52 96.25
CurricularFace C-15% 99.73 96.08 97.68 96.11 91.09 96.14
Sub-center Arcface C-15% 99.75 96.11 97.88 96.64 91.69 96.41
AdaFace C-15% 99.67 96.07 97.81 96.75 91.71 96.40
BoundaryFace C-15% 99.78 96.00 97.93 96.78 91.62 96.42
RobustFace (𝜇 = 0.15) C-15% 99.78 96.13 97.99 96.75 91.73 96.48

ArcFace C-30% 99.38 95.77 97.47 95.51 90.87 95.80
CurricularFace C-30% 99.04 95.76 97.04 95.43 90.87 95.63
Sub-center Arcface C-30% 99.21 95.81 97.22 95.49 90.91 95.72
AdaFace C-30% 99.59 95.77 97.27 95.43 90.60 95.73
BoundaryFace C-30% 99.23 95.83 97.23 95.37 90.43 95.62
RobustFace (𝜇 = 0.30) C-30% 99.61 95.91 97.51 95.69 91.09 95.96

ArcFace M-(15%, 5%) 65.78 59.49 55.33 57.90 52.07 58.11
CurricularFace M-(15%, 5%) 63.14 57.75 53.90 54.32 52.32 56.29
Sub-center Arcface M-(15%, 5%) 73.21 69.51 59.59 64.79 61.41 65.70
AdaFace M-(15%, 5%) 68.83 59.49 55.82 59.27 54.78 59.64
BoundaryFace M-(15%, 5%) 72.01 63.21 59.69 57.20 53.54 61.13
RobustFace (𝜇 = 0.20) M-(15%, 5%) 99.71 96.04 97.54 96.58 91.43 96.26

ArcFace M-(10%, 10%) 54.54 50.18 53.46 51.45 51.19 52.16
CurricularFace M-(10%, 10%) 63.43 55.86 55.18 51.91 51.26 55.53
Sub-center Arcface M-(10%, 10%) 69.20 67.39 57.21 60.43 56.90 62.22
AdaFace M-(10%, 10%) 62.70 57.76 55.38 52.13 51.71 55.94
BoundaryFace M-(10%, 10%) 51.53 49.98 49.41 51.75 50.06 50.55
RobustFace (𝜇 = 0.20) M-(10%, 10%) 99.75 96.08 97.62 96.14 91.28 96.17

the proposed RobustFace in comparison with all of them without
repeating any of their experiments. For the experiments trained on
the noisy dataset MS-Celeb-1M, however, none of these existing
models have reported any experimental results, and thus making it
an enormous task to complete comparative experiments with all of
them. To this end, we only selected the best performing models, i.e.
CurricularFace, AdaFace, and noise-resistant models, i.e. Sub-center
ArcFace and BoundaryFace, for the subsequent experiments, the
results of which are illustrated in the lower part of table 3. Consid-
ering the fact that our work started from referencing ArcFace, we
also included this model for additional coverage.

Further examination of the results listed in both upper part and
lower part of table 3 indicates that, whenmeasured in average recog-
nition rates, our proposed RobustFace only experienced a small drop
of 0.15 from being trained on MS1MV2 to that on MS-Celeb-1M, yet
in contrast, the drop experienced by the compared benchmarks, say
ArcFace, CurricularFace, Sub-center Arcface, AdaFace, and Bound-
aryFace, can be seen as 0.7, 0.75, 0.37, 0.86 and 0.94, respectively.

To further evaluate the performance of RobustFace on real-world
noise datasets, we conducted large-scale 1:1 face verification using
ResNet50 trained with RobustFace on the MS-Celeb-1M dataset.
For the 1:1 verification task, the number of positive and negative
matches is set up as: 10k and 8M in IJB-B, and 19k and 15M in IJB-C,
respectively. table 4 presents the experimental results in comparison
with the selected existing SoTA models, showcasing their TARs at

different FAR levels, including 1e-5, and 1e-4. As seen, the proposed
RobustFace demonstrates a remarkable performance improvement
on both IJB-B and IJB-C. When compared with the second best
models at FAR=1e-4, for example, the proposed RobustFace achieves
approximately 2.23 and 1.72 performance improvement over IJB-B
and IJB-C, respectively. Even at FAR of 1e-5, a significantly more
challenging level, our proposed still maintains superiority and the
improvement achieved is 1.93 over IJB-C.

Learning from synthetic noise datasets. To provide a compre-
hensive evaluation on the proposed RobustFace, we follow the work
reported in [33] to apply two types of synthetic noise datasets, close-
set noise and open-set noise, to the training of the assessed models.
While the close-set noise is introduced by randomly changing the
labels of the facial images inside the training dataset, the open-set
noise is introduced by changing the label of those facial images
that are not included inside the training dataset. In this way, we
are able to provide a quantified assessment on the robustness of
the compared models and see how they perform under such seri-
ously synthesized noisy environments. To achieve a good balance
between computing cost and accuracy, we use the ResNet34. The
experimental results are listed in table 5, where the data ratio fig-
ures represent the proportion of labels being randomly changed.
As an example, C-15% (close-set rate: 15%) means that 15% of facial
labels inside the training set are randomly changed, creating the
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(a) Accuracy for CFP-FP. (b) Acc-peak vs. Acc-final.

Figure 5: Illustration of how all the assessed models’ perfor-
mances vary during trainings: (a) the varying results achieved
by all models when the training set contains 10% open-set
noise and 10% close-set noise. (b) the results in peak accu-
racy values (Acc-peak) and final accuracy values (Acc-final).
While the Acc-peak represents the highest validation accu-
racy achieved during the training process (dashed line), the
Acc-final denotes the final validation accuracy after the loss
has stabilized (solid line).

effect that 15% of the noise being added, since those labels have now
been corrupted. As seen in table 5, the proposed RobustFace trained
on the datasets with 15% and 30% close-set noise overwhelmingly
outperforms the baseline models, indicating its capability to learn
more discriminative features from noisy training sets.

Compared with the simple close-set face noise, the open-set
face noise is more challenging for face recognition tasks. As seen
in table 5, when the training sets are corrupted with 15% close-set
noise and 5% open-set noise, i.e. M(15%, 5%), all baseline models
suffered from significant performance drops, around 40%, across
all the five validation datasets, yet in contrast, our proposed Ro-
bustFace still maintains robust performances above 90% over all
the validation datasets. Even when the corruption percentage is
increased to M(10%, 10%), RobustFace still maintans an accuracy
of above 90% across all validation sets. Specifically, for the mixed
datasets M(15%, 5%) and M(10%, 10%), RobustFace achieves average
accuracies of 96.26% and 96.17%, respectively, while the highest
accuracies of other methods are only 65.70% and 62.22%.

To find out how the performances of the assessed models emerge
and vary over the ongoing training process, we monitored the
recognition accuracy rates over every 2000 iterations for all the
assessed models, and illustrate the experimental results in fig. 5.
As seen from fig. 5a, the baseline models, including ArcFace, Cur-
ricularFace, AdaFace, and BoundaryFace, struggle in effectively
handling the open-set noise (10%), suffering from significant ac-
curacy drops attributed to overfitting to the noise. Specifically, as
the training progresses, the impact of well-separated easy samples
on the model diminishes, while misclassified noise samples exert a
greater influence. This phenomenon causes the class centers to shift
towards wrong directions and gradually move away from those
classified samples, resulting in a substantial decline in recognition
rates. In fig. 5b, we illustrate the peak accuracy rates (Acc-peak)
in dashed lines that are achieved during the training process and
the final converged accuracy rates (Acc-final) in solid lines for all

the assessed models across the five validation datasets. As seen,
all the existing baseline models exhibit significant gaps between
their Acc-peak and Acc-final values. Yet in comparison with the
proposed RobustFace as given in the black solid line, the baseline
models illustrated significant shortfalls even with their Acc-peak
values. As a result, this experiment illustrates that the proposed
RobustFace outperforms the baseline models not only in terms of
the Acc-final, but also in terms of the Acc-peak ever achieved by
those baseline models during the whole training process.

Out of the above experiments, the proposed RobustFace demon-
strates the following advantages in comparison with the existing
baselines: (i) Capable of highlighting the role of mining those hard
samples to enhance the model’s discriminative capability, and thus
enabling competitive performances even trained on clean datasets
(See the results listed in table 3). (ii) Compared with the existing
mining-based models, the proposed RobustFace effectively isolates
those clean hard samples from noisy training sets to strengthen
the learning effectiveness of those samples while adaptively reduc-
ing its reliance on noisy samples. Consequently, both the model’s
discriminative capacity and the robustness to noises are signifi-
cantly enhanced (See the results given in table 5 and fig. 5). (iii)
The proposed RobustFace embeds with an adaptive noise-handling
strategy throughout the life cycle of trainings, via which the impact
of noises is minimized right from the initial stages of training, and
thus a stable training can be maintained even when more complex
noises are encountered, such as those mixtures of open-set and
close-set noises (See the results given in table 5 and fig. 5).

4 CONCLUSIONS
In this paper, we have proposed a robust deep model for face recog-
nitions, where a new loss function is constructed, featuring in
adaptive mining of those noise and hard samples. In comparison
with the existing approaches, the proposed RobustFace largely alle-
viates the poor performance of mining-based softmax on datasets
with severe noise corruptions, serving as the first known method
to effectively address open-set noises. In addition, the proposed
RobustFace is easy to implement, and the introduced noise-adaptive
mining has negligible computational overhead. Extensive evalua-
tions have been carried out on both real-world and synthetic noisy
datasets against the representative existing SoTA models across
five validation datasets, which are widely adopted in the field. The
experimental results illustrate that our proposed achieved com-
petitive and SoTA performances trained on clean datasets. When
trained with noisy datasets, especially with open-set noises, our
proposed significantly outperforms all the compared benchmarks
by considerable margins.
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