
A Appendix

We use Law(X) to denote the distribution of random variable X . When ν is a probability distribution
for over set Ω and A is a subset of Ω, we use ν(A) to denote the probability that the random variable
X belongs to A, when X is sampled from distribution ν.

A.1 Proofs

Lemma 1 If ν = Law(X), then f#ν = Law(f(X)).

Proof. Since ν = Law(X), for all Borel sets A, P (X ∈ A) = ν(A).

By definition, f#ν(A) = ν(f−1(A)) for all Borel sets A, and it follows that

f#ν(A) = P (X ∈ f−1(A)) = P (f(X) ∈ A)

for all Borel sets A.

We thus proved f#ν = Law(f(X)). �

Lemma 2 We have

T πµ(st, at) = Law(fγ,rt(Z)), i.e. T πµ(st, at) = Law(γZ + rt)

where st+1 ∼ P (st+1|st, at), at+1 ∼ π(at+1|st+1), rt ∼ R(rt|st, at), and Z ∼ µ(st+1, at+1).

Proof. For all Borel sets A, we have

P (fγ,rt(Z) ∈ A)

=

∫
RN

P (fγ,rt(Z) ∈ A)R(drt|st, at)

=

∫
S

∫
A

∫
RN

P (fγ,rt(Z(st+1, at+1)) ∈ A)R(drt|st, at)P (dst+1|st, at)π(dat+1|st+1)

where Law(Z(st+1, at+1)) = µ(st+1, at+1). By Lemma 1,

Law(fγ,rt(Z(st+1, at+1))) = fγ,rt#µ(st+1, at+1),

it follows that

P (fγ,rt(Z) ∈ A)

=

∫
S

∫
A

∫
RN

fγ,rt#µ(st+1, at+1)(A)R(drt|st, at)P (dst+1|st, at)π(dat+1|st+1)

for all Borel sets A. We then have

Law(fγ,rt(Z)) =

∫
S

∫
A

∫
RN

fγ,rt#µ(st+1, at+1)R(drt|st, at)P (dst+1|st, at)π(dat+1|st+1)

and Law(fγ,rt(Z)) = T πµ(st, at). �

Lemma 3 If r ∈ RN , we have

Wp(Law(fγ,r(Z1)),Law(fγ,r(Z2))) ≤ γWp(Law(Z1),Law(Z2))

Proof.

Denote ν1 = Law(Z1), ν2 = Law(Z2). Then we have

Law(fγ,r(Z1)) = fγ,r#ν1,Law(fγ,r(Z2)) = fγ,r#ν2

and Lemma 3 is equivalent to

Wp(fγ,r#ν1, fγ,r#ν2) ≤ γWp(ν1, ν2). (22)

12

For arbitrary ε > 0, suppose ν ∈ Γ(ν1, ν2) satisfies that

(

∫
RN×RN

d(x, y)pν(dNx, dNy))1/p < Wp(ν1, ν2) + ε

We consider the distribution fγ,r#ν, which holds that

fγ,r#ν(x, y) = ν(f−1
γ,r(x), f−1

γ,r(y))

The marginal distribution on the first N random variables for fγ,r#ν is

fγ,r#ν(x,RN) = ν(f−1
γ,r(x), f−1

γ,r(RN))

= ν(f−1
γ,r(x),RN)

= ν1(f−1
γ,r(x)) = fγ,r#ν1.

Similarly, the marginal distribution on the next N random variables for fγ,r#ν is fγ,r#ν2. We thus
have fγ,r#ν ∈ Γ(fγ,r#ν1, fγ,r#ν2).

It follows that

Wp(fγ,r#ν1, fγ,r#ν2) ≤
∫
RN×RN

d(x, y)pfγ,r#ν(dNx, dNy))1/p

= (

∫
RN×RN

d(x, y)pν(dN (f−1
γ,r(x)), dN (f−1

γ,r(y))))1/p

= (

∫
RN×RN

d(fγ,r(x), fγ,r(y))pν(dNx, dNy))1/p

= γ(

∫
RN×RN

d(x, y)pν(dNx, dNy))1/p

= γWp(ν1, ν2) + γε.

The above equation holds for arbitrary ε > 0, thus Wp(fγ,r#ν1, fγ,r#ν2) ≤ γWp(ν1, ν2). We thus
proved equation (22) and Lemma 3 is proved.

�

Lemma 4 Suppose Z1(·|A) and Z2(·|A) are two conditional distribution with range RN , and for
all values of a ∈ Ω,

Wp(Law(Z1(a)),Law(Z2(a))) ≤ c (23)

where Z1(a) ∼ Z1(·|A = a), and Z2(a) ∼ Z2(·|A = a).

Then for any distribution p(A) and A ∼ p(A), we have

Wp(Law(Z1),Law(Z2)) ≤ c (24)

where Z1 ∼ Z1(·|A), Z2 ∼ Z2(·|A).

Proof. By equation (23), for arbitrary ε > 0, there exists νa such that:

For all a, νa ∈ Γ(Law(Z1(a)),Law(Z2(a))), and (

∫
RN×RN

d(x, y)pνa(dNx, dNy))1/p ≤ c+ ε

We also have

Law(Z1)(·) =

∫
Ω

Law(Z1(a))(·)p(da)

We construct distribution ν such that

ν(x, y) =

∫
Ω

νa(x, y)p(da)

13

The marginal distribution on the first N random variables for ν is

ν(x,RN) =

∫
Ω

νa(x,RN)p(da)

=

∫
Ω

Law(Z1)(x)p(da)

= Law(Z1)(x)

Similarly, the marginal distribution on the next N random variables for ν is Law(Z2)(x). We thus
have ν ∈ Γ(Law(Z1),Law(Z2)).

It follows that

Wp(Law(Z1),Law(Z2)) ≤ (

∫
RN×RN

d(x, y)pν(dNx, dNy))1/p

= (

∫
RN×RN

d(x, y)p
∫

Ω

νa(dNx, dNy)p(da))1/p

= (

∫
Ω

∫
RN×RN

d(x, y)pνa(dNx, dNy)p(da))1/p

≤ (

∫
Ω

(c+ ε)pp(da))1/p = c+ ε.

The above equation holds for arbitrary ε > 0, thus Wp(Law(Z1),Law(Z2)) ≤ c. �

Theorem 1 For two joint distributions µ1 and µ2, we have
d̄p(T πµ1, T πµ2) ≤ γd̄p(µ1,µ2). (25)

Proof. We have d̄p(T πµ1, T πµ2) = supst,at Wp(T πµ1(st, at), T πµ2(st, at)).

For each (st, at), we let st+1 ∼ P (st+1|st, at), at+1 ∼ π(at+1|st+1), rt ∼ R(rt|st, at), Z1 ∼
µ1(st+1, at+1) and Z2 ∼ µ2(st+1, at+1).

By Lemma 2, we have

Wp(T πµ1(st, at), T πµ2(st, at)) = Wp(Law(fγ,rt(Z1)),Law(fγ,rt(Z2)))

By Lemma 3,
Wp(Law(fγ,r(Z1)),Law(fγ,r(Z2))) ≤ γWp(Law(Z1),Law(Z2))

for each constant r ∈ RN . By Lemma 4, when rt ∼ R(rt|st, at), we have

Wp(Law(fγ,rt(Z1)),Law(fγ,rt(Z2))) ≤ γWp(Law(Z1),Law(Z2)).

Since for each (st+1, at+1),
Wp(µ1(st+1, at+1),µ2(st+1, at+1)) ≤ sup

s,a
Wp(µ1(s, a),µ2(s, a)),

by Lemma 4, when st+1 ∼ P (st+1|st, at), at+1 ∼ π(at+1|st+1), we have
Wp(Law(Z1),Law(Z2)) ≤ sup

s,a
Wp(µ1(s, a),µ2(s, a))

where Z1 ∼ µ1(st+1, at+1) and Z2 ∼ µ2(st+1, at+1).

Combining all the above derivations, we have
Wp(T πµ1(st, at), T πµ2(st, at)) = Wp(Law(fγ,rt(Z1)),Law(fγ,rt(Z2)))

≤ γWp(Law(Z1),Law(Z2))

≤ γ sup
s,a

Wp(µ1(s, a),µ2(s, a)),

and
d̄p(T πµ1, T πµ2) = sup

st,at

Wp(T πµ1(st, at), T πµ2(st, at))

≤ γ sup
s,a

Wp(µ1(s, a),µ2(s, a)) = γd̄p(µ1,µ2).

�

14

Lemma 5 µπ is the fixed-point of the operator T π .

Proof. By definition,

µπ(s, a) = Law(

∞∑
t=0

γtrt),

where s0 = s, a0 = a, rt ∼ R(·|st, at), st+1 ∼ P (·|st, at), at+1 ∼ π(·|st+1).

which is equivalent to

µπ(st, at) = Law(

∞∑
τ=t

γτ−trτ), (26)

where rτ ∼ R(·|sτ , aτ), sτ+1 ∼ P (·|sτ , aτ), aτ+1 ∼ π(·|sτ+1) for all τ ≥ t.
By Lemma 2, we have

T πµπ(st, at) = Law(γZ + rt)

where st+1 ∼ P (st+1|st, at), at+1 ∼ π(at+1|st+1), rt ∼ R(rt|st, at), and Z ∼ µπ(st+1, at+1).

Substituting µπ(st+1, at+1) by equation (26), we have

T πµπ(st, at) = Law(γ

∞∑
τ=t+1

γτ−(t+1)rτ + rt) = Law(

∞∑
τ=t

γτ−trτ)

where rτ ∼ R(·|sτ , aτ), sτ+1 ∼ P (·|sτ , aτ), aτ+1 ∼ π(·|sτ+1) for all τ ≥ t.
We then proved that T πµπ = µπ . �

Corollary 1 If µi+1 = T πµi, then as i→∞, µi → µπ .

Proof. Since T π is a contraction in d̄p, by Banach’s fixed point theorem, there is one and only one
fixed point of T π , and as i→∞, µi converges to this fixed point. By Lemma 5, µπ is the only fixed
point of T π , and as i→∞, µi → µπ . �

Lemma 6 We have
T µ(st, at) = Law(fγ,rt(Z)), (27)

where rt ∼ R(rt|st, at), st+1 ∼ P (st+1|st, at), a′ = arg maxa EZ∼µ(st+1,a)

∑N
n=1 Zn, and

Z ∼ µ(st+1, a
′).

Proof. For all Borel sets A, we have

P (fγ,rt(Z) ∈ A)

=

∫
RN

P (fγ,rt(Z) ∈ A)R(drt|st, at)

=

∫
S

∫
RN

P (fγ,rt(Z(st+1, a
′)) ∈ A)R(drt|st, at)P (dst+1|st, at)

where a′ = arg maxa EZ∼µ(st+1,a)

∑N
n=1 Zn.

By Lemma 1,
Law(fγ,rt(Z(st+1, a

′))) = fγ,rt#µ(st+1, a
′),

it follows that

P (fγ,rt(Z) ∈ A) =

∫
S

∫
RN

fγ,rt#µ(st+1, a
′)(A)R(drt|st, at)P (dst+1|st, at)

for all Borel sets A, and

Law(fγ,rt(Z)) =

∫
S

∫
RN

fγ,rt#µ(st+1, a
′)R(drt|st, at)P (dst+1|st, at) = T µ(st, at)

�

15

Theorem 2 For two joint distributions µ1 and µ2, we have

||(E∑)(T µ1)− (E∑)(T µ2)||∞ ≤ γ||(E∑)µ1 − (E∑)µ2||, (28)

Proof. We first prove that
(E∑)(T µ) = TE(E∑)µ (29)

where TE is the Bellman optimality operator over scalar values.

We have

(E∑)(T µ)(st, at) = EZ∼µ(st+1,a′)

N∑
n=1

(fγ,rt(Z))n

where rt ∼ R(rt|st, at), st+1 ∼ P (st+1|st, at), and a′ = arg maxa EZ∼µ(st+1,a)

∑N
n=1 Zn.

It follows that

(E∑)(T µ)(st, at) =

N∑
n=1

(rt)n + γEZ∼µ(st+1,a′)

N∑
n=1

Zn

= rt + γmax
a′

EZ∼µ(st+1,a′)

N∑
n=1

Zn

= rt + γmax
a′

(E∑)µ(st+1, a
′)

= TE(E∑)µ(st, at)

Then we have

||(E∑)(T µ1)− (E∑)(T µ2)||∞ = ||TE(E∑)µ1 − TE(E∑)µ2||∞
≤ γ||(E∑)µ1 − (E∑)µ2||∞

�

Corollary 2 If µi+1 = T µi, then as i→∞, EZ∼µi(s,a)

∑N
n=1 Zn → Q∗(s, a) for all (s, a).

Proof. Since TE is a contraction on∞-norm and Q∗ is the fixed point of TE , by Banach’s fixed
point theorem, Q∗ is the only fixed point of TE , and T iE(E∑)µ0 → Q∗ as i→∞.

By equation (29), (E∑)µi = TE(E∑)µi−1 = · · · = T iE(E∑)µ0.

Therefore, as i→∞, (E∑)µi → Q∗, and EZ∼µi(s,a)

∑N
n=1 Zn → Q∗(s, a) for all (s, a). �

A.2 Environment Settings and Hyperparameter Settings

Atari environment settings. The environment settings for Atari environments are shown in
Table 1. We use six games on Atari: AirRaid, Asteroids, Pong, MsPacman, Gopher and UpNDown.
The reward functions for these environments are set as follows.

• For AirRaid, the agent gets multi-dimensional reward [100, 0, 0, 0], [0, 75, 0, 0], [0, 0, 50, 0],
[0, 0, 0, 25], [0, 0, 0, 0] respectively for the primitive reward 100, 75, 50, 25 and 0;

• For Pong, if the primitive reward for the agent is −1, the agent gets a multi-dimensional
reward [−1, 0]; if the primitive reward for the agent is 1, the agent gets a multi-dimensional
reward [0, 1]; otherwise, the agent gets a multi-dimensional reward [0, 0].

• For Asteroids, we denote the primitive reward as r, and denote the multi-dimensional reward
as [r1, r2, r3]. If (r− 20) mod 50 = 0, we let r1 = 20, otherwise r1 = 0. If (r− r1− 50)
mod 100 = 0, we let r2 = 50, otherwise r2 = 0. We let r3 = r − r1 − r2.

• For MsPacman, we denote the primitive reward as r, and denote the multi-dimensional
reward as [r1, r2, r3, r4]. If (r − 10) mod 50 = 0, we let r1 = 10, otherwise r1 = 0. If
(r − r1 − 50) mod 100 = 0, we let r2 = 50, otherwise r2 = 0. If (r − r1 − r2 − 100)
mod 200 = 0, we let r3 = 100, otherwise r3 = 0. We let r4 = r − r1 − r2 − r3.

16

• For Gopher, we denote the primitive reward as r, and denote the multi-dimensional reward as
[r1, r2]. If (r − 20) mod 100 = 0, we let r1 = 20, otherwise r1 = 0. We let r2 = r − r1.

• For UpNDown, we denote the primitive reward as r, and denote the multi-dimensional
reward as [r1, r2, r3]. If (r − 10) mod 100 = 0, we let r1 = 10, otherwise r1 = 0. If
(r− r1− 100) mod 200 = 0, we let r2 = 100, otherwise r2 = 0. We let r3 = r− r1− r2.

Maze environment settings. The environment settings for maze environments are shown in
Table 1. The observations for maze are 84× 84× 3 RGB images. The reward functions for three
maze environments are set as follows.

• For “maze-exclusive” and “maze-identical” environment, each position with a green square
awards the agent for r ∼ U(0.2, 0.6) in the first reward source; each position with a red
square awards the agent for r ∼ U(0.4, 0.9) in the second reward source.

• For “maze-multireward” environment, the orange square awards the agent for r ∼
U(0.2, 0.4) in the first reward source; the blue square awards the agent for r ∼ U(0.8, 1.0)
in the second reward source; the green square awards the agent for r ∼ U(0.3, 0.5) in the
third reward source; the red square awards the agent for r ∼ U(0.5, 0.7) in the fourth reward
source.

Environment settings Values for Maze Values for Atari

Stack size 1 4
Frame skip 1 4
One-frame observation shape (84, 84, 3) (84, 84)
Agent’s observation shape (84, 84, 3) (84, 84, 4)
γ 0.99 0.99
Reward clipping — true
Terminate on Life Loss — true
Sticky Actions false false

Table 1: Environment settings for maze and Atari.

MD3QN settings. The hyper parameter settings for MD3QN is provided in Table 2. For the maze
environment, we set the bandwidths to be [0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.48, 0.64, 0.80, 0.96];
for Atari environment, we use the same bandwidth settings as MMDQN.

Hyper-parameters Values for MD3QN

Learning Rate 5e-5
Optimizer Adam
Squared bandwidth [2−8, 2−7, 2−6, · · · , 28]
Network architecture Refer to section 3.4
Number of particles (M) 200
ε-train Linear decay from 1 to 0.01
ε-evaluation 0.001
decay period for ε 1M frames

Table 2: Hyper-parameter settings for MD3QN

A.3 Additional Experimental Results

A.3.1 Joint Distribution Modeling on Maze Environment

Under the maze environment and policy evaluation setting, we visualize the joint distribution through-
out the training process for the experiment in section 5.1, and the result is shown in Figure 4.

17

(a)

(b)

(c)

Figure 4: Visualization of the modeled joint distribution throughout the training process under three
maze environments. The y-axis represents the MMD metric between the modeled joint distribution
(blue dots) and the true distribution µπ (red dots), which we use only for evaluation purpose.

18

0.0 0.5 1.0 1.5 2.0

R0

0.0

0.5

1.0

1.5

2.0

R 2

AirRaid

0.0 0.1 0.2 0.3 0.4

R0

0.0

0.2

0.4

0.6

0.8

R 2

Asteroids

1 2 3 4 5 6 7

R0

0.2

0.0

0.2

0.4

0.6

R 1

Gopher

5 10 15 20 25

R0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

R 1

MsPacman

0.3 0.2 0.1 0.0

R0

0.1

0.2

0.3

0.4

0.5

0.6

R 1

Pong

0 1 2 3 4 5

R0

0.0

0.5

1.0

1.5

2.0

R 2

UpNDown

Figure 5: Samples of joint distribution by MD3QN on six Atari games. For each game, we show the
joint distribution for two dimensions of reward for visualization purpose.

A.3.2 Joint Distribution Modeling on Atari Games

For the case studies for the modeled joint distributional by MD3QN on Atari games, we provide
the results in Figure 5. Overall, both the reward correlation and the reward scale are reasonably
captured by MD3QN. In the aspect of reward correlation, Gopher’s two sources of reward are
positively correlated, since the agent needs to remove holes on the ground in order to kill the monster;
UpNDown’s two sources of reward are also positively correlated, since the reward for being alive and
the reward for killing enemy cars have positive correlation. In the aspect of reward scale, the samples
generated by MD3QN align with the scale of the true return distribution in all dimensions.

A.3.3 Downstream task for MD3QN: RL with multiple constraints

We add another experiment to show the necessity of modeling the joint distribution, and explain why
only modeling marginal distributions may fail in some settings (e.g., in environments with multiple
correlated constraints) from theory and experiment results.

There are a number of real-world scenarios where multiple constraints should be met simultaneously.
For instance, in autonomous driving, we need to balance the safety (distance from other cars), the
speed, the comfort (the acceleration, etc.), and many other factors to make sure the car functions
normally. Those statistics can be viewed as sub-rewards in our settings. For instance, we would like
to make the agent be aware of the joint distributions of distance from other cars and the speed, and
add a constraint on this distribution (e.g., d > 1m, v < 50km/h).

From the theoretical perspective, only the algorithm which is capable of modeling the joint distribution
can find this optimal solution. If the algorithm can only model the marginal distributions, we can
correctly compute the probability of simultaneously meeting multiple constraints only if they are
independent. However, this is not common in real-world scenarios.

We use the same Maze environment as in our paper and modify the layout as a simplified analogue
(see Figure 6(b)). We set multiple constraints on the total return (in our experiment, we have three

19

(a) (b)

Figure 6: (a): maze environment with multiple constraints. (b): probability of the agent to satisfy all
constraints during evalution throughout the training process.

constraints: for the initial state, total red return > 0.6, total green return > 0.6, and total blue return
> 0.6, where the agent gets a 1.0 reward of the specific color after collecting a specific colored block),
and the goal is to find a policy which has the highest probability to satisfy all constraints.

We use the joint distribution by MD3QN to achieve this: specifically, given the modeled joint
distribution µ(s, a), the agent can compute the probability to satisfy all the constraints in the
joint distribution and take action by arg maxa PZ∼µ(s,a)(Z satisfy all three constraints). We also
modify the joint distributional Bellman optimality operator to maximize the probability to satisfy all
constraints.

For baseline methods, we extend the MMDQN by multiple heads µ1:N to reflect N sources
of rewards. This method is different from our algorithm in that only the marginal distribu-
tion of each dimension is learned. We test two ways to approximately compute the probabil-
ity to satisfy all constraints by marginal distributions: the “Marginal_SUM” baseline maximizes∑N
i=1 PZi∼µi(s,a)(Zi satisfy i-th constraint), the sum of probabilities for each reward to satisfy con-

straint, while the “Marginal_PROD” baseline maximizes ΠN
i=1PZi∼µi(s,a)(Zi satisfy i-th constraint),

the product of probabilities for each reward to satisfy constraint.

The results is shown in Figure 6(a). It can be seen that maximizing the probability based on joint
distribution can significantly outperform two baseline methods which both use marginal distribution
information.

A.3.4 Effect of Network Architectures on Joint Distribution Modeling

We study the impact of the choice of network architecture to the accuracy of joint return distribution
modeling in MD3QN, and illustrate why we use the network architecture in section 3.4.

We test the performance of several network architectures on policy evaluation setting at the beginning
before fixing the architecture:

1. The architecture used in the current paper. To be specific, we replace the final layer of DQN
to output some deterministic samples of N-dimensional return for each action (see section
3.4).

2. An IQN like architecture to model the joint distribution which multiplies the state features
with the cosine embedding of a uniform noise signal, and outputs the multi-dimensional
return samples.

3. A network architecture that concatenates a noise to the state feature, and outputs the
deterministic samples.

20

Figure 7: Results for joint return distribution modeling under three network architectures. The
experiment settings are the same as in Section 5.1.

We perform the same experiment as in Section 5.1 and Figure 2 in our paper (under maze environments
and policy evaluation setting) to test how MD3QN models the joint distribution under these three
network architectures. The results is shown in Figure 7.

For the first architecture, the MMD between prediction and ground truth distribution is 0.026, while
for the second architecture, MMD is 1.541, and for the third architecture, MMD is 0.204. It can be
concluded that the first one is the best in terms of modeling the joint distribution, and we adopt this
architecture in our paper.

A.3.5 Effect of Bandwidth Selection on Joint Distribution Modeling

We study the impact of the choice of bandwidth selection to the accuracy of joint return distribution
modeling in MD3QN, and illustrate how we select the bandwidth for our experiments.

We tested 3 sets of squared kernel bandwidths on policy evaluation setting:

• Squared bandwidths W1 = [2−8, 2−7, 2−6, · · · , 28]

• Squared bandwidths W2 = [0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.48, 0.64, 0.80, 0.96,
2.0, 5.0, 10.0, 20.0, 50.0, 100.0]

• Squared bandwidths W3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

For any set of squared bandwidthsW = [w1, w2, · · · , wM], the kernel function is given by k(x, x′) =∑M
i=1 exp(− 1

wi
‖x− x′‖22), which is used to define the MMD metric.

We perform the same experiment as in Section 5.1 and Figure 2 in our paper (under maze environments
and policy evaluation setting) to find how accurately MD3QN models the joint distribution under
different bandwidth settings. The result can is shown in Figure 8. For squared bandwidths W1, the
MMD metric between prediction and ground truth distribution is 0.026, for W2, MMD = 0.036, and
for W3, MMD = 1.348. We find that W1 and W2 can capture the joint distribution better than W3,
and W1 is slightly better than W2. Finally, we use squared bandwidth W1 in our experiments.

In general, we conclude that the kernel bandwidths should cover a wide range, which helps MD3QN
to precisely capture the true joint distribution.

21

Figure 8: Results for joint return distribution modeling under three sets of bandwidths. The experiment
settings are the same as in Section 5.1.

22

	Appendix
	Proofs
	Environment Settings and Hyperparameter Settings
	Additional Experimental Results
	Joint Distribution Modeling on Maze Environment
	Joint Distribution Modeling on Atari Games
	Downstream task for MD3QN: RL with multiple constraints
	Effect of Network Architectures on Joint Distribution Modeling
	Effect of Bandwidth Selection on Joint Distribution Modeling

