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Abstract

What do different contrastive learning (CL) losses
actually optimize for? Although multiple CL
methods have demonstrated remarkable represen-
tation learning capabilities, the differences in their
inner workings remain largely opaque. In this
work, we analyse several CL families and prove
that, under certain conditions, they admit the same
minimisers when optimizing either their batch-
level objectives or their expectations asymptoti-
cally. In both cases, an intimate connection with
the hyperspherical energy minimisation (HEM)
problem resurfaces. Drawing inspiration from
this, we introduce a novel CL objective, coined
Decoupled Hyperspherical Energy Loss (DHEL).
DHEL simplifies the problem by decoupling the
target hyperspherical energy from the alignment
of positive examples while preserving the same
theoretical guarantees. Going one step further, we
show the same results hold for another relevant CL
family, namely kernel contrastive learning (KCL),
with the additional advantage of the expected loss
being independent of batch size, thus identifying
the minimisers in the non-asymptotic regime. Em-
pirical results demonstrate improved downstream
performance and robustness across combinations
of different batch sizes and hyperparameters and
reduced dimensionality collapse, on several com-
puter vision datasets.
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*Equal contribution 1Department of Informatics and Telecom-
munications, National and Kapodistrian University of Athens
2Archimedes AI/Athena Research Center 3NCSR ”Demokritos”
4The Cyprus Institute. Correspondence to: Panagiotis Koromilas
<pakoromilas@di.uoa.gr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Contrastive learning has revolutionised self-supervised
learning of representations from unlabelled data. Nonethe-
less, optimising contrastive losses exhibits significant
challenges in practice. These include the need for large
batches of negative samples leading to memory issues (He
et al., 2020b; Tian et al., 2020a; Chen et al., 2020), high
sensitivity to the temperature hyperparameter affecting
model performance (Wang & Liu, 2021; Zhang et al.,
2021), the propensity for dimensionality collapse in learned
representations (Hua et al., 2021; Jing et al., 2022), and a
reliance on sophisticated hard-negative sampling strategies
(Robinson et al., 2021).

Although there are approaches to understand and address
some of the challenges above in isolation, theoretical anal-
yses of CL often use loss functions and assumptions that
diverge from those effective in practice (e.g., SimCLR) or
depend on conditions often unrealistic in real-world settings,
e.g. infinite batch sizes, conditional independence, or sim-
plified network architectures (Saunshi et al., 2019; Wang &
Isola, 2020; Jing et al., 2022; Balestriero & LeCun, 2022; Ji
et al., 2023).

This work poses a first step towards bridging the gap be-
tween different variants of the classical InfoNCE loss (Oord
et al., 2018). That is, we examine their optimal solutions
within two regimes: the finite regime concerning losses eval-
uated on a sampled mini-batch, and the asymptotic regime
of their expectation (i.e. in the limit of infinite batch size).
In the finite case, under a batch size condition, we show
multiple InfoNCE variants share the same unique optimal
solution attained when (i) positive pairs align perfectly and
(ii) representations form a regular simplex inscribed in the
sphere, with all pairwise distances equal. Additionally, we
show that they have the same asymptotic behaviour, and in
turn, the same minimisers: those identified in (Wang & Isola,
2020), i.e. (i) perfect alignment and (ii) uniform distribution
on the unit sphere. Interestingly, in both cases, outcome (ii)
coincides with the notion of minimal hyperspherical energy.

However, despite commonalities in optima, many variants
exhibit notable performance discrepancies. This suggests
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that optima are difficult to attain in practice. To facilitate op-
timisation, we introduce a new variant coined as Decoupled
Hypershperical Energy Loss that fully decouples the two
terms reflecting desired properties to optimise. Specifically,
we propose simply replacing the classical InfoNCE denomi-
nator—see Table 1, left—with a denominator involving only
negative samples, eliminating dependence on positive coun-
terparts per Eq. (5). The resulting alignment and uniformity
terms are independent and can in principle be optimised
separately, contrary to existing variants where it is unclear
if possible since the terms are coupled.

Moving one step further in the direction of Hyperspherical
Energy Minimisation (HEM) in CL, we examine the op-
tima of another family of CL losses, i.e. Kernel Contrastive
Learning (KCL). Kernels first appeared in the CL literature
in (Li et al., 2021), where the authors introduce a new CL
objective based on kernel dependence maximisation and
establish a connection with InfoNCE minimisation. In this
work, we investigate a general family similar to the one of
(Li et al., 2021), and discover that under certain conditions,
mini-batch KCL loss, as well as its expectation, have the
same optima as all the analysed InfoNCE variants. Impor-
tantly, KCL enjoys several interesting properties: (1) the
expected loss is independent of the number of negative sam-
ples, and (2) we can identify its minima non-asymptotically.

We conducted empirical tests on DHEL and KCL using
different kernel functions meeting necessary conditions. Re-
sults show both methods (i) maintain superior performance
across various and small batch sizes, (ii) are robust to tem-
perature hyperparameter changes, and (iii) utilise more di-
mensions effectively, addressing the dimensionality collapse
issue.

Our contributions can be summarized as follows:

• We prove that different general CL loss families share
the same unique optimal solution in the single mini-
batch regime when the batch size is no larger than the
ambient dimension + 1, as well as in the asymptotic
expected case.

• We introduce a novel CL loss family that decouples
positive from negative samples in the uniformity term,
preserves the desired properties and achieves consider-
able empirical improvements across various metrics.

• We establish a connection between Kernel Contrastive
Learning and Hyperspherical Energy Minimisation,
highlight its theoretical advantages and empirically
validate that KCL can be used in place of InfoNCE
variants.

2. Related Work
Contrastive Learning. Contrastive learning was formally
introduced by (Chopra et al., 2005) and was later generalised

to the (N+1) tuple loss (Sohn, 2016) before the popular In-
foNCE loss was introduced in contrastive predictive coding
(Oord et al., 2018). InfoNCE combined with a range of en-
gineering tricks (sampled augmentations, large batch sizes,
etc) is the workhorse of modern CL methods (Chen et al.,
2020; Dwibedi et al., 2021; Yeh et al., 2022).

However, a range of limitations have been identified. Down-
stream performance is sensitive to the temperature hyperpa-
rameter, necessitating extensive tuning (Wang & Liu, 2021;
Zhang et al., 2021). Empirical evidence shows that per-
formance improves with an increased number of negative
samples, leading to the requirement for large batch sizes and
the incorporation of hard-negative sampling (Chen et al.,
2020; Tian et al., 2020b; He et al., 2020a; Robinson et al.,
2021). Additionally, there is a tendency for learned repre-
sentations to use only a fraction of dimensions, not fully
exploiting the capacity of the representation space (Hua
et al., 2021; Jing et al., 2022).

Kernels in CL. Kernels have been used in a CL for dif-
ferent purposes, including incorporating prior knowledge,
conditional sampling of positives and analysing the induced
representation space kernels when optimising SLL objec-
tives (Dufumier et al., 2023; Kiani et al., 2022; Tsai et al.;
Johnson et al., 2023; Waida et al., 2023). Most relevant to
our work is the loss of (Li et al., 2021) (a regularised ver-
sion of the Hilbert-Schmidt Independence Criterion - HSIC
(Gretton et al., 2005) - which reducess to a two-term KCL
loss under certain conditions) which motivated the theoret-
ical study of the CL generalisation error on downstream
tasks through the lens of kernels (Waida et al., 2023).

Optima of CL Objectives. It is well known that the
CL objective is asymptotically minimised for encoders
that produce perfectly aligned and uniformly distributed
representations (Wang & Isola, 2020). This is in line with
continuous HEM which is also achieved by the uniform
distribution (Liu et al., 2022). Sreenivasan et al. (2023)
showed that in the mini-batch regime, the optimal solution
of InfoNCE is achieved when positive representations are
perfectly aligned and negatives are placed on a regular
simplex (equivalent to an equiangular tight frame - ETF
(Benedetto & Fickus, 2003)), which connects the solution
to discrete HEM and is a special case of our Theorem 4.1.
Graf et al. (2021) show that the Supervised CL loss is also
minimised when each class embeddings collapse to the
vertices of an ETF. Projections, a concept that is included
in the contrastive learning pipeline, is also shown to help
better minimise the energy (Lin et al., 2020).

Neural Collapse & Hyperspherical Energy Minimisa-
tion. Neural Collapse, where intra-class embeddings have
zero variability and class means align with classifier weights
in a simplex ETF during overtraining, was first identified
in (Papyan et al., 2020) and explored under various training
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conditions (e.g., MSE, Cross Entropy, data imbalance) in
(Han et al., 2021; Thrampoulidis et al., 2022; Zhu et al.,
2021; Lu & Steinerberger, 2022; Zhou et al., 2022). Liu et al.
(2023) generalised the notion of Neural Collapse by show-
ing that the class means converge to the uniform distribution
in the asymptotic case, thus further enhancing the con-
nection between optimization of supervised deep learning
methods and the energy minimisation problem. Moreover,
energy minimisation has been effective in NN regularisation,
promoting neuron diversity on a hypersphere to avoid
correlated neurons (Liu et al., 2018; 2021; Lin et al., 2020).

The above are strikingly similar to the minima of mini-
batch CL objectives with the unifying umbrella being the
minimisation of hyperspherical energy, a problem deeply
studied (see (Borodachov et al., 2019)). Notably, solutions
have been identified for specific scenarios, in the discrete
context, such as when the number of points M is less than
or equal to the ambient dimension d+1, and for M = 2d, as
well as continuous (Liu et al., 2022). We will discuss these
cases several times throughout the paper.

3. Preliminaries and Notation
Contrastive Learning setup. Self-supervised contrastive
learning (SSCL) is a paradigm aiming to learn data repre-
sentations without having access to labels, but based solely
on prior knowledge about similarities between inputs, or
more strictly speaking, about downstream task invariances.

Formally, let X be a (measurable) space, i.e. the input space
where our data reside and another (measurable) space Z ,
the embedding space. Let fθ : X → Z be an encoder
(e.g. a neural network) parametrised by a set of parameters
θ ∈ Θ mapping datapoints to representations. In our setup
Z = Sd−1 = {|u| ∈ Rd | ∥u∥ = 1} the unit sphere. We
will be using the symbols x,y for input datapoints and u,v
for representations.

Additionally, denote the (unknown) underlying data dis-
tribution with p (on X ). Further, consider a distribution
of positive pairs with p+ (on X × X and marginals equal
to p), which incorporates all the data symmetries, i.e. its
support are all pairs of data that are considered equivalent
w.r.t. downstream tasks. We will denote the pushforward
measures induced by f with f#p and (with slight abuse of
notation) f#p+ where f is applied element-wise to x and
y.

Denote with X = [x1; . . . ;xM ] ∈ XM a collection of M
input datapoints and with U = [u1; . . . ;uM ] ∈ Rd×M , a
collection of M representations. We will be also using the
following shorthand fθ(X) = [fθ(x1); . . . ; fθ(xM )] = U.
Also, when we sample (X,Y) ∼ pM+ we will occasionally
write X̂ ∼ pM+ instead, with x̂i = xi iff i ∈ {1, . . . ,M}
and x̂i = yi−M iff i ∈ {M + 1, 2M} (smilarly for

(U,V) ∼ f#p+ and Û). In SSCL, the encoder is trained by
optimising an objective that encourages the representations
of positive pairs to be close in Z and those of negatives to be
further. In practice, this is performed by iteratively obtaining
a sample (X,Y) of M positives from p+ and computing a
mini-batch loss denoted with LCL(fθ(X), fθ(Y)), the gra-
dients of which are used to update the parameters θ. This
common process can be perceived as aiming to optimise an
expected loss E

(X,Y)
i.i.d∼pM

pos

[LCL(fθ(X), fθ(Y))] with gradi-

ent descent by estimating the gradients with Monte Carlo (in
this case a single sample is used). For reasons that will be-
come clear later, our interest will revolve around these two
viewpoints of the loss, along with a third one, i.e. the asymp-
totic expected loss lim

M→∞
E

(X,Y)
i.i.d∼pM

pos

[LCL(fθ(X), fθ(Y))].

4. Reconciling Contrastive Loss Variants
Mini-batch optimisation. We will start our investigation of
the minima of different CL variants from mini-batch losses,
whose gradients are used to update the parameters of the
encoder. We initially focus on the following two formulas
of single sample (mini-batch) contrastive losses:

La(U,V;ϕ, ψ) =
1

M

M∑
i=1

ψ

 M∑
j=1,j ̸=i

ϕ
(
(vj − vi)

⊤
ui

) ,

Lb(U,V;ϕ, ψ) =
1

M

M∑
i=1

ψ

 2M∑
j=1,

j ̸=i,i+M

ϕ
(
(ûj − vj)

⊤
ui

) ,

(1)

where ψ, ϕ : R → R. These generalise many practical vari-
ants such as the original InfoNCE (Gutmann & Hyvärinen,
2010; Oord et al., 2018; Wu et al., 2018; Sohn, 2016; Chen
et al., 2020) (La), SimCLR (or NT-Xent loss) (Chen et al.,
2020) and DCL (Yeh et al., 2022) (Lb). The two variants
differ in the datapoints that are used to compute the denom-
inator that normalises the similarity between the pair of
positive datapoints (ui,vi); the former considers half of the
datapoints in the batch, while the latter all of them, except
ui itself. Its positive counterpart vi may or may not be
considered. The exact formulas for each particular method
can be found in Table 1 and Appendix B.1, Eq. (10).

Frequently, a symmetric version of the
losses in Eq. (1) is used, defined as
LCL-sym(U,V) = 1

2 (LCL(U,V) + LCL(V,U)), where
we omitted ϕ and ψ for brevity. In a very recent work
Sreenivasan et al. (2023) studied the optima of InfoNCE for
the M ≤ d + 1 case. Here, we generalise their results for
all the losses of Eq. (1) - proof in Appendix B.1. Formally:
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Theorem 4.1. Consider the following optimisation prob-
lem:

argmin
U,V∈(Sd−1)M

LCL-sym(U,V), (2)

where U,V are tuples ofM vectors on the unit d−1-sphere
and LCL-sym is the symmetric version of any of the loss func-
tions La(·, ·;ϕ, ψ), Lb(·, ·;ϕ, ψ) as defined in Eq. (1). Fur-
ther, suppose the following conditions: (1) ϕ : R → R
is increasing & convex, (2) ψ : R → R is increasing
& ψ̃(x;α) = ψ (αϕ (x)) is convex for α > 0 and (3)
1 < M ≤ d+ 1. Then, the problem of Eq. (2) obtains its
optimal value when (U,V) = (U∗,V∗) with:

U∗ = V∗ and U∗ : regular M − 1 simplex. (3)

Additionally, (4) if ψ, ϕ are strictly increasing and ψ̃ is
strictly convex then all the (U∗,V∗) that satisfy Eq. (3) are
the unique optima.

Corollary 4.2. The mini-batch CL loss functions LInfoNCE,
LSimCLR, LDCL have the same unique minima on the unit
sphere when 1 < M ≤ d+ 1, i.e. all the optimal solutions
of Eq. (2) will satisfy the properties of Eq. (3).

Despite the multitude of variations of InfoNCE that have
been proposed, Theorem 4.1 asserts that having the same
optimal solution is conditioned solely on the monotonicity
and convexity of the functions ϕ and ψ̃. This result might
be counterintuitive given that La and Lb allow for different
couplings of the representations ui and vi. Additionally,
it provides a first step towards clarifying the CL landscape
and gives a general strategy for designing losses without
compromising the optimality of the above solutions.

The discovered minima are themselves typically considered
desirable in the representation learning literature (Papyan
et al., 2020; Kothapalli, 2023; Wang & Isola, 2020) since
the L.H.S. of Eq. (3) implies perfect alignment, i.e. pairs of
equivalent points according to p+ are mapped to the same
representation, and the R.H.S. implies perfect uniformity,
i.e. maximum spreading of the points in the unit sphere, a
property that usually simplifies the downstream function
to-be-learned. Finally, it is well known (Borodachov et al.,
2019; Liu et al., 2022) that the regular M − 1 simplex is
a (unique minimiser) of the Hypershperical Energy for a
wide variety of kernels, which illustrates the connection
between mini-batch CL, neural collapse and hyperspherical
energy minimisation. Note that such a connection has been
previously pinpointed by Wang & Isola (2020), but only
for the asymptotic behaviour of the expected mini-batch CL
loss, as we discuss below.

Asymptotic behaviour of the expectation. Theorem 4.1
gives us a qualitative understanding of the similarities
among CL variants and of the direction of the gradient at
each training iteration, but it does not reveal the bigger pic-
ture, i.e. the objective that we are actually trying to optimise.

For example, an obvious limitation of the optimum of Eq.
(3) is that we can have at most two perfectly aligned points
since adding one extra would compromise uniformity.

To understand the true objective, observe that the gradient
of the mini-batch loss is an unbiased estimate of the gra-
dient of the expected loss E [LCL(fθ(X), fθ(Y))] (due to
linearity of expectation and gradient) using a single sample.
In other words, the expected loss is the true loss that we are
optimising using gradient estimates. It is, therefore, more
appropriate to analyse the optima of the latter. However, as
we see in Table 1, the expected loss for three common CL
losses: InfoNCE, SimCLR and DCL, depends on the batch
size M even after normalising with an appropriate (missing
from the original objective) constant (proof in Lemma B.4
in the Appendix using simple derivations). Thus, we resort
to examining the asymptotic behaviour similarly to (Wang &
Isola, 2020). Using similar arguments, it is straightforward
to see that the asymptotic behaviour of the above variants is
the same (proof in Appendix B.2). Formally:

Proposition 4.3. The expectations of the following batch-
level contrastive loss functions: LInfoNCE(·, ·), LSimCLR(·, ·),
LDCL(·, ·) have the same asymptotic behaviour when sub-
tracting appropriate normalising constants (log(M −1) for
the first and log(2M−2) for two latter), i.e. whenM → ∞
they converge to the asymptotic formula of InfoNCE (Wang
& Isola, 2020):

E
(u,v)∼f#p+

[
−v⊤u/τ

]
+ E

u∼f#p

[
log E

u′∼f#p

[
eu

⊤u′/τ
]]
.

(4)

Therefore, the conclusions of Theorem 1 in (Wang & Isola,
2020) hold for all three variants; the first term is minimised
if there exists f such that all positive pairs are perfectly
aligned and the second is minimised if there exists f such
that f#p is the uniform distribution on the sphere U(Sd−1).

5. Decoupled Hypershperical Energy Loss
Expected loss: What happens when the batch size is fi-
nite? Closely examining the equations in Table 1, we can
see that the true objectives are a sum of a common align-
ment term and a uniformity one that varies. As previously
discussed we aim to achieve perfect alignment and perfect
uniformity. The latter does not depend on p+ (supposing
that p+ is such that perfectly optimising the alignment term
does not prohibit the ability to achieve perfect uniformity).
However, this does not straightforwardly seem to be the
case for InfoNCE, SimCLR and DCL, since in all cases we
observe a dependence of the uniformity term on p+ that van-
ishes only asymptotically. This imposes a coupling between
the two terms that can potentially hinder optimisation.
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Table 1: Comparison of InfoNCE variants.

Loss name InfoNCE SimCLR DCL

MB 1
M

M∑
i=1

log

1 +
M∑
j=1
j ̸=i

e(vj−vi)
⊤ui/τ

 1
M

M∑
i=1

log

1 +
2M∑
j=1

j ̸=i,M+i

e(ûj−vi)
⊤ui/τ

 1
M

M∑
i=1

log

 2M∑
j=1

j ̸=i,M+i

e(ûj−vi)
⊤ui/τ


EMB E

(u,v)∼f#p+

[
−v⊤u

]
+ E

(u,v)∼f#p+

V′ i.i.d∼ f#pM−1

[
log
(
ev

⊤u +
∑M−1

j=1 eu
⊤v′

j

)]
E

(u,v)∼f#p+

Û
i.i.d∼ f#p

M−1
+

[
log

(
ev

⊤u +
2M−2∑
j=1

eû
⊤
j u

)]
E

u∼f#p

Û
i.i.d∼ f#p

M−1
+

[
log

(
2M−2∑
j=1

eû
⊤
j u

)]

Asymptotic Normalising constant − log(M − 1) − log(2M − 2) − log(2M − 2)

Limit E
(u,v)∼f#p+

[
u⊤v

]
+ E

u∼f#p

[
log E

u′∼f#p

[
eu

⊤u′
]]

argmin MB (M ≤ d+ 1) M − 1 regular simplex
argmin EMB / Asymptotic Unknown / U(Sd−1)

Table 2: Comparison of DHEL and KCL variants.

Loss name DHEL KCL

MB 1
M

M∑
i=1

log

 M∑
j=1
j ̸=i

e(uj−vi)
⊤ui

 − 1
M

M∑
i=1

KA (ui,vi) +
γ

M(M−1)

M∑
i,j=1
j ̸=i

KU (ui,uj)

EMB E
(u,v)∼f#p+

[
−v⊤u

]
+ E

u∼f#p

U′ i.i.d∼ f#pM−1

[
log
(∑M−1

j=1 eu
⊤u′

j

)]
E

(u,v)∼f#p+

[−KA (u,v)] + γ E
u∼f#p

u′∼f#p

[KU (u,u
′)]

Asymptotic Normalising constant − log(M − 1) 0

Limit E
(u,v)∼f#p+

[
−v⊤u

]
+ E

u∼f#p

[
log E

u′∼f#p

[
eu

⊤u′
]]

E
(u,v)∼f#p+

[−KA (u,v)] + γ E
u∼f#p

u′∼f#p

[KU (u,u
′)]

argmin MB (M ≤ d+ 1) M − 1 regular simplex
argmin EMB / Asymptotic Unknown / U(Sd−1) U(Sd−1) / U(Sd−1)

Decoupling uniformity from alignment Motivated by
this observation, we make a simple modification on In-
foNCE and propose a new CL objective that allows for
an expected uniformity term that is only dependent on p:

LDHEL(U,V) =
1

M

M∑
i=1

− log

 eu
⊤
i vi/τ∑M

j=1
i̸=j

eu
⊤
i uj/τ

 , (5)

which is a special case of the generalised Decoupled Hyper-
shperical Energy Loss:

Lc(U,V) =
1

M

M∑
i=1

ψ

 M∑
j=1,
j ̸=i

ϕ
(
(uj − vi)

⊤
ui

) (6)

Key advantage of DHEL. The dependence of our unifor-
mity only on p can be also understood intuitively: DHEL
is based on the observation that for perfect uniformity, it
suffices to contrast a datapoint xi against a single positive
view of a negative xj . Adding more views, as in (Chen et al.,
2020; Yeh et al., 2022), does not only seem unnecessary
but might also have undesired repercussions since such a
uniformity term would aim to uniformly distribute all points
on the sphere, ignoring that half of them are positives of the
other half.1 Therefore, even though in theory the minima do
not seem to be affected, previous InfoNCE variants have two
competing terms, an issue that we overcome with DHEL.

1A formal analysis of the uniformity of the symmetric SimCLR

Theoretical properties of DHEL. First off, we also anal-
ysed DHEL w.r.t. its optima in the mini-batch and the
asymptotic expectation case. The following theorem shows
that under the same conditions, Theorem 4.1 and Proposi-
tion 4.3 continue to hold (proofs in Appendix B.1, B.2):

Theorem 5.1. Consider the optimisation problem of Eq. (2)
with LCL-sym(·, ·) being the symmetric version of the loss
function Lc. Further, suppose that conditions (1) and (2) of
Theorem 4.1 hold, e.g. as for our loss DHEL. Then, when
1 < M ≤ d+ 1, the mini-batch CL optimisation of Eq. (2)
obtains its optimal value (U∗,V∗) as in Eq. (3). Moreover,
the expectation of LDHEL(·, ·) asymptotically converges to
Eq. (4) when subtracting a normalising constant equal to
log(M−1). Therefore, the asymptotic expectation of DHEL
is minimised by any encoder f that is perfectly aligned
and distributes representations uniformly on the sphere, i.e.
f#p = U(Sd−1), if such an encoder exists.

6. Minima of Kernel Contrastive Learning
As discussed, for all CL variants considered, the uniform
distribution on the unit sphere is known to be a minimiser of
the true loss only asymptotically. Motivated by this, we seek
an alternative loss whose expectation will admit the same
minimiser in the non-asymptotic regime. To achieve this, we
first observe that the logarithm makes the characterisation of

loss, using a lower bound obtained with Jensen’s inequality, reveals
the hyperspherical energy of a linear kernel, which is minimised
when all points are uniformly distributed when 1 < M ≤ d+ 1.
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the optima difficult.2 Removing the logarithm and dividing
by an appropriate normalisation constant indeed provides
us with a batch-level loss whose expectation is independent
of the batch size:

E
(u,v)∼f#p+

[
−v⊤u/τ

]
+ E

u∼f#p

u′∼f#p

[
eu

⊤u′
j/τ
]
. (7)

But are the desired minima preserved by this objective? To
answer this question, we observe that the second term is
equivalent to minimising the energy potential of the gaus-
sian kernel. This is a well-studied problem (Borodachov
et al., 2019), discussed also in (Wang & Isola, 2020) and
is known that the minimiser is once again the uniform dis-
tribution on the sphere. Drawing inspiration from this, we
examine a more general case, that of Kernel Contrastive
Learning (Li et al., 2021; Waida et al., 2023); the mini-batch
objective is as follows:

LKCL(U,V) = −

M∑
i=1

KA (ui,vi)

M
+ γ

M∑
i,j=1
j ̸=i

KU (ui,uj)

M(M − 1)
,

(8)
where both kernels are of the formK(x,y) = κ(∥x− y∥2),
with κ : (0, 4] → R and the limit lim

x→0+
κ(x) exists and is

bounded, and γ > 0 is a weighting coefficient. Using known
results for the hyperspherical energy minimisation problem,
in the following theorem we provide the conditions that
guarantee the preservation of the already discussed minima:

Theorem 6.1. Consider the optimisation problem of Eq. (2)
with LCL-sym(·, ·) being the symmetric version of the loss
function LKCL. Further, suppose the following conditions:
(1) the function kA corresponding to kernel KA is decreas-
ing, (2) kU , the function corresponding toKU is decreasing
and convex and (3) 1 < M ≤ d+ 1. Then, the problem of
Eq. (2) obtains its optimal value when (U,V) = (U∗,V∗)
as in Eq. (3). Additionally, (4) if κA is strictly decreasing
and κU is strictly decreasing and strictly convex then all
the (U∗,V∗) that satisfy Eq. (3) are the unique optima.

In appendix B.3 we extend the above theorem for the
case M = 2d, where using known results from the HEM
literature, we show that a minimiser of LKCL-sym is the
cross-polytope. Moreover, the following proposition states
that the expectation is always independent of the batch size,
thus we do not have to resort to asymptotic analyses and
provides the necessary conditions for the minimiser to be
the uniform distribution on the sphere.

2Using Jensen’s inequality we can attempt to minimise a lower
bound as in Theorem 4.1, but equality can hold only for DCL and
DHEL and only if for all u and any M negatives u′

j , the inner
products u⊤u′

j are equal ∀j. If the minimiser of the bound is the
uniform distribution this can only happen for d = 2 (Cho, 2009).

Proposition 6.2. The expectation of the batch-level kernel
contrastive loss functions LKCL(·, ·) is independent of the
size of the batch. Therefore, the batch-level loss is an
unbiased estimator of the (asymptotic) expected loss:

E
(u,v)∼f#p+

[−KA (u,v)] + γ E
u,∼f#p

u′∼f#p

[KU (u,u′)] . (9)

If (1) κA is (strictly) decreasing and if (2) ∃θ∗ such that
P(x,y)∼p+

[fθ(x) = fθ(y)] = 1, then the set of θ∗ for
which (2) holds are (unique) minimisers of the first term
of Eq. (9). Additionally, if (3) -κ′U (first derivative) is
strictly completely monotone in (0, 4], (4) the expectation
defined in the l.h.s. of Eq. (9) is finite and (5) ∃θ∗ such
that the pushforward measure f#p = U(Sd−1), then θ∗ is
a unique minimiser of the second term of Eq. (9). Finally,
if (6) ∃θ∗ such that conditions (2) and (3) can be satisfied
simultaneously, then θ∗ is a unique minimiser of Eq. (9).

Remark. In (Li et al., 2021) it is shown that in certain
cases (i.e. for a discrete distibution) a two-term kernel
contrastive loss as the one in Eq. (9) arises as proportional
to a kernel dependence measure they aim to maximise
(HSIC). However, in their paper a different loss is used in
practice; first, they use a biased estimator different from Eq.
(8) and second they add a regulariser. Additionally, they
identify a connection only with they asymptotic version of
InfoNCE and they do not study the minima of HSIC as we
do in Theorem 6.1 and Proposition 6.2.

7. Experimental Evaluation
In this section, we empirically verify our theoretical re-
sults. Our methods are compared to two popular tech-
niques in the literature: (i) SimCLR (Chen et al., 2020)
the most used implementation of contrastive pretaining that
also demonstrates consistency in terms of performance and
(ii) DCL (Yeh et al., 2022) the only method in the litera-
ture that demonstrates robust performance for various and
small batch sizes. We implement (iii) DHEL and (iv) two
KCL losses for the Gaussian and Logarithmic kernel
(see Appendix A).

Following common practices (Wang et al., 2021; Yeh et al.,
2022; Zhang et al., 2022; Wang & Isola, 2020), we conduct
experiments on four popular image classification datasets,
namely CIFAR10, CIFAR100, STL-10, and ImageNet-100.
To illustrate robustness, we validate the performance for a
range of each method’s hyperparameters and different batch
sizes. In addition, to understand the quality of the learned
representations, we demonstrate the behaviour of several
desired properties.

We choose ResNet50 as the encoder architecture for the
ImageNet-100 dataset and ResNet18 for the other datasets.
We train our models for 200 epochs on four batch sizes
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Figure 1: Median performance for different batch sizes. Errors against each methods hyperparameters are calculated using
the 25% and 75% quantiles. DHEL and KCL showcase improved both performance and robust against hyperparameters.

(32, 64, 128, 256) and optimise them using SGD. Down-
stream performance is measured using the classical linear
evaluation benchmarking technique: we train a linear layer
on the learned representations for 200 epochs. Following
(Wang et al., 2021), 11 temperatures (regarding the meth-
ods that use temperature as a hyperparameter) are tested,
while for kernel methods, along with their hyperparameter,
we additionally run experiments for different weighting co-
efficients γ. Further details on learning rates, schedulers,
augmentations etc. are provided in Appendix C.3.

7.1. Downstream performance and robustness

The error diagram in Figure 1 illustrates both performance
and robustness; for each method and batch size, we include
the median and 25% (lower error) and 75% (upper error)
quantiles calculated on the accuracy for different hyperpa-
rameters (the median was preferred to the mean due to the
presence of a few outliers across all methods).

Performance. First off, DHEL significantly outperforms
SimCLR across all datasets and batch sizes, with the upper
performance of the latter being smaller than that of the for-
mer. Second, the median of DHEL is always higher than
that of DCL, while their upper performance are compara-
tive (in CIFAR10 and STL10 DHEL’s upper performance
is always higher than DCL). Additionally, kernel methods
outperform both SimCLR and DCL competitors, while in
several cases, kernels improve further upon DHEL. Overall,
both DHEL and KCL methods showcase significant improve-
ments in median performance, with their upper quantiles
being, in most cases, comparable or better than DCL.

Performance w.r.t. batch size. DHEL and KCL largely
outperform competitors for small batch sizes in terms of
median performance. It is inferred that our methods enable
high downstream performance Contrastive Learning pre-
training for a small number of negative samples. Note that,
typically in the literature much larger batch sizes are used,
e.g. SimCLR needs batch sizes greater than 512 (Chen et al.,

2020; Yeh et al., 2022) and He et al. (2020a) use batch sizes
as large as 64K.

Robustness w.r.t. hyperparameters. In addition to the fact
that median accuracy of both DHEL and kernel methods
consistently outperform SimCLR and DCL, their perfor-
mance deviates in a much smaller range, thus empirically
proving robustness w.r.t temperature and γ for KCL. Impor-
tantly, observe that G-kernel and Log-kernel, in most cases
demonstrate small spread around the median, a property that
hints that are easier to optimise, in accordance to our result
that kernel mini-batch losses are unbiased estimators of an
objective minimised by perfect alignment & perfect HE.

7.2. Ablation studies

In the following section, we ablate the aforementioned
methods w.r.t. various metrics: (1) Alignment: An estimate
of the expected distance between the representations of a
positive pair. (2) Uniformity: The logarithm of an estimate
of the expected pairwise Gaussian energy potential of the
distribution of the learned representations (3) Rank: The
rank of a matrix of representations sampled from p; reflects
the number of dimensions utilised and thus the ability to
linearly separate our data (Cover, 1965; Garrido et al.,
2023). (4) Effective rank: A smooth rank approximation
(Roy & Vetterli, 2007; Garrido et al., 2023), that is less
prone to numerical errors; has been found in practice to
correlate well with downstream performance. Please refer
to Appendix C for more details.

Novel metric: Wasserstein distance between similarity
distributions. We introduce (5) a novel metric. The
motivation is the fact that, although the uniformity metric
is minimised when the representations are uniformly
distributed on the unit sphere, it relies on a specific kernel
(gaussian) and requires selecting a parameter t. Here we
propose instead a metric that measures the distance between
the ideal inner product (or equivalently L2 distance) distribu-
tion and the one that our algorithm yields. In particular, we
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Figure 2: Mean value of properties vs temperature calculated on CIFAR10 (top) & CIFAR100 (bottom) dataset

estimate the 1-Wasserstein distance W1(qsim, psim) where
psim is the p.d.f of the inner products when u,u′ ∼ U(Sd−1)
and qsim is the corresponding one when u,u′ ∼ f#p.
According to (Cho, 2009) the former has a closed-form
expression that we can use to obtain samples and estimate
the distance from data. Importantly, in Appendix C,
we show that the uniformity metric underestimates the
closeness of qsim to the ideal distribution of similarities,
and therefore our metric paints a more complete picture of
the learned distribution of representations. In Figure 2 we
demonstrate the mean across batch sizes (and γ for g-kernel)
for 3 representative properties (alignment, Wasserstein
distance & rank) and performance for different temperatures
(including all methods that use this hyperparameter and are
comparable) in the CIFAR10 and CIFAR100 datasets. The
traditional uniformity metric as well as the effective rank
are presented in the Appendix C.4.

Dimensionality collapse. With the maximum number of
available dimensions being 128, DHEL consistently utilises
a greater number of dimensions, e.g.in CIFAR100 uses
more than double the dimensions as compared to competi-
tors. Additionally, gaussian-KCL demonstrates once again
its stability, without compromising the rank, albeit not
reaching the highest values of DHEL. Uniformity. DHEL
manages to learn representations that are consistently more
uniformly distributed across temperature values. It is also
verified that in the low-temperature regime, all methods
learn uniformly distributed features, a behaviour that is
known as the uniformity-tolerance dilemma (Wang & Liu,
2021). Alignment. SimCLR and DCL learn more aligned
representations, which along with the aforementioned

findings seem to imply that uniformity is preferential
for DHEL (see also Section 8). It is still not clear why
this happens, but we may speculate that our modification
indeed facilitates optimisation of the second term, and
therefore a weighting coefficient might alleviate this modest
imbalance. Nevertheless, the current balancing seems to
benefit downstream performance more.

Performance. Downstream performance is decreased with
respect to temperature for all methods, except G-kernel, but
with DHEL enjoying a greater range of effective tempera-
tures and a smaller rate of decrease in accuracy. Once again,
observe the remarkable stability of the G-kernel across dif-
ferent hyperparameter values.

8. Discussion
Non-asymptotic optima. As demnonstrated in Table 1 and
Table 2 all examined loss variants share the same minimisers
in both the mini batch and the asymptotic scenarios. How-
ever, there’s a practical discrepancy: the optimal solutions
for the former case are attainable by optimizing each batch
separately, while the latter scenario is not feasible due to the
finite size of the dataset.

In the only practical scenario, where the non-asymptotic
expected loss is optimised, only the optimal solution of the
kernel based methods is known. This means that in prac-
tice contrastive methods may or may not have the same
optima. This, along the difference in the bias of the esti-
mator (Proposition 6.2), may explain the inconsistency in
both performance and properties between DHEL and KCL
methods. Of course, assuming that the target of Contrastive
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Learning is indeed perfect alignment and uniformity, then
the fact that KCL optimises for it in the non-asymptotic
regime is favourable.

Batch size dependence. Proposition 6.2 suggests that the
expectation of the mini-batch KCL loss is independent of
the batch size. In other words, different batch sizes yield
the same expected loss, contrary to the InfoNCE methods,
where essentially, when one changes the batch size, the
loss that is optimised changes as well. Does this mean that
KCL should have stable performance across batch sizes?
In practice one does actually compute an estimation of the
expected loss which is affected by the batch size, while the
same holds for the gradient of the expected loss. That is the
batch size affects the InfoNCE losses by changing both the
actual value of the expected loss and its estimate, while the
optimisation of kernel losses is affected only by the second.

Too small batch sizes might lead to suboptimal solutions
or slow optimisation, due to high-variance gradients. This
holds for all methods, regardless of the loss they are opti-
mising for, which might in part explain why all methods
tend to improve when increasing the batch size. However,
except for the gradient variance, one should also consider
the gradient bias. This is zero for KCL, but not zero for the
other methods (Chen et al., 2022).

Overall, when increasing the batch size over a threshold
below which the gradients are too noisy, KCL obtains better
gradient estimates than its counterparts, due to the zero
gradient bias. This probably explains why KCL achieves
better performance in absolute numbers. Further increasing
the batch size, improves the gradient estimates even more
for KCL, but also for the other methods since both their
gradient variance and their gradient bias are reduced, which
might explain why performance keeps improving across all
methods.

Optimisation vs downstream performance. Both In-
foNCE and kernel-based losses seek to optimise for uni-
formity and alignment. Our methods do not in all cases
achieve to better optimise for both these desired properties.
Instead they achieve a balance that better reflects on down-
stream performance. They also tend to favour uniformity
more (Figure 2) which is probably desired. Recent works
(Gupta et al., 2023; Xie et al., 2022) have argued that perfect
alignment might not be ideal for downstream performance,
since several downstream tasks might not actually be invari-
ant to the augmentations from which we obtain the positive
samples. For additional experimental results on this matter,
please refer to Figure 3.

Connection to supervised learning. When performing
supervised training beyond zero error the class means either
form a simplex ETF in the non-asymptotic case or follow
a uniform distribution asymptotically, with zero in-class

variability (Liu et al., 2023). Our analysis shows that the
same results hold for contrastive learning. However, in this
case, the results apply to individual data points rather than
classes. By considering contrastive learning as instance
discrimination (Wu et al., 2018) —where each data point
represents a unique class— we can identify connections
for both optimisation and the representation spaces learned
through self-supervised and supervised methods.

Limitations. Our analysis of InfoNCE loss variants focuses
on the mini-batch and asymptotic optima. However, it
does not address the non-asymptotic optima, which is
the scenario typically encountered in practice. Adding
that InfoNCE loss variants are fundamentally different
from most Machine Learning objectives, where there is no
influence of the batch size on the expected loss, the practical
behavior of such loss functions requires further research in
order to enhance our understanding of contrastive learning
optimisation. In contrast, our work does provide the
non-asymptotic optima of kernel methods. While these
methods serve as unbiased estimators of their expected
loss, examining the variance of these estimators can offer
valuable insights that can guide the design of methods that
are even more robust across different batch sizes.

The experiments in this work aimed to provide empirical re-
sults comparing InfoNCE and kernel-based methods across
various properties, including robustness to batch sizes and
hyperparameters, rank, uniformity, and alignment. However,
a more comprehensive evaluation is necessary to better un-
derstand the applicability of these methods. To thoroughly
assess the superiority of kernel methods, they need to be
tested on large-scale datasets and examined under practical
conditions such as large batch sizes, memory banks, and
momentum contrast (He et al., 2020b).

9. Conclusion
In this paper, we made a step towards bridging theory
and practice in CL by proving InfoNCE variants share
fundamental finite sample and asymptotic optimal solutions.
To better attain these optima exhibiting alignment and
uniformity, we proposed Decoupled Hyperspherical Energy
Loss. Furthermore, establishing kernel CL as equivalent to
hyperspherical energy minimization provides optimization
advantages. Both new methods empirically demonstrate
consistent improvements in downstream performance
across different hyperparameters and small batch sizes, as
well as mitigation of dimensionality collapse.

Impact Statement
This paper advances the understanding of contrastive
learning (CL) optimisation goals, aiming not just to boost
model performance but to clarify the underpinnings of
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CL losses and their relation to hyperspherical energy
minimization (HEM). While our focus is on theoretical
insights and introducing the novel Decoupled Hyper-
spherical Energy Loss (DHEL), this work also lays the
groundwork for developing state-of-the-art models with
improved robustness and reduced dimensionality collapse.
We acknowledge the potential dual-use of our findings
and advocate for responsible application and the develop-
ment of safeguards against misuse. To facilitate further
research, we make our code plublicly available at https:
//github.com/pakoromilas/DHEL-KCL.git.
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A. Additional Preliminaries and Notations
Detailed Formulas for InfoNCE Variants. It is not hard to see that all the losses considered in the main text are special
cases of the above two losses:

LInfoNCE(U,V) =
1

M

M∑
i=1

− log

(
eu

⊤
i vi/τ∑M

j=1 e
u⊤

i vj/τ

)
=

1

M

M∑
i=1

log

1 +

M∑
j=1,j ̸=i

e(vj−vi)
⊤ui/τ


LDHEL(U,V) =

1

M

M∑
i=1

− log

 eu
⊤
i vi/τ∑M

j=1
i̸=j

eu
⊤
i uj/τ

 =
1

M

M∑
i=1

log

 M∑
j=1,j ̸=i

e(uj−vi)
⊤ui/τ


LSimCLR(U,V) =

−1

M

M∑
i=1

log

 eu
⊤
i vi/τ∑M

j=1 e
u⊤

i vj/τ +
∑M

j=1
i̸=j

eu
⊤
i uj/τ


=

1

M

M∑
i=1

log

1 +

M∑
j=1,j ̸=i

(
e(vj−vi)

⊤ui/τ + e(uj−vi)
⊤ui/τ

)
LDCL(U,V) =

−1

M

M∑
i=1

log

 eu
⊤
i vi/τ∑M

j=1
j ̸=i

eu
⊤
i vj/τ +

∑M
j=1
i̸=j

eu
⊤
i uj/τ


=

1

M

M∑
i=1

log

 M∑
j=1,j ̸=i

(
e(vj−vi)

⊤ui/τ + e(uj−vi)
⊤ui/τ

)
Therefore,

LInfoNCE(U,V) = La (U,V; exp(x/τ); log(1 + x))

LDHEL(U,V) = Lc (U,V; exp(x/τ); log(x))

LSimCLR(U,V) = Lb (U,V; exp(x/τ); log(1 + x))

LDCL(U,V) = Lb (U,V; exp(x/τ); log(x))

(10)

Kernels. Notable examples of kernels that obey the conditions that we encounter in this paper are the following:

• Linear: K lin
t (x,y) = −t∥x− y∥2= κlin

t (∥x− y∥2), where κlin
t (x) = −tx.

• Gaussian: Kgauss
t (x,y) = e−t∥x−y∥2

= κgauss
t (∥x− y∥2), where κgauss

t (x; t) = e−tx.

• Riesz: K riesz
s (x,y) = sign(s)∥x− y∥−s= κriesz

s (∥x− y∥2), where κriesz
s (x) = sign(s)x−s/2.

• Inverse Multiquadric (IMQ): Kimq
c (x,y) = − 1

2 log
(
s∥x− y∥2 + β

)
= κlog

s,β(∥x − y∥2), where κlog
s,β(x) =

− 1
2 log (sx+ β).

• Logarithmic: K log
s,β(x,y) = − 1

2 log
(
s∥x− y∥2 + β

)
= κlog

s,β(∥x− y∥2), where κlog
s,β(x) = − 1

2 log (sx+ β).

The properties of kernel functions that arise in the theoretical results are the below: (1) (strict) monotonicity, (2) (strict)
convexity, (3) (strict) absolute monotonicity, i.e. derivatives of all orders f (n) exist and are non-negative (positive in the
strict case) everywhere)and (4) complete monotonicity, i.e. derivatives of all orders exist and (−1)nf (n) ≥ 0 everywhere
(> 0 for the strict case).

With elementary derivations, it is easy to see the following for t > 0, κlin
t and κgauss

t are strictly decreasing and convex, while
the latter is also strictly convex. For s > −2, κriesz

s is strictly decreasing and strictly convex, while the same holds for κlog
s,β

when s, β > 0. Additionally, for t > 0, κlin
t is completely monotone, κgauss

t is strictly completely monotone, while the same
holds for their negative first derivatives −(κlin

t )(1),−(κgauss
t )(1). κriesz

s is strictly completely monotone for s > 0, while its
negative first derivative is strictly completely monotone for s > −2. κlog

s,β is strictly completely monotone for s, β > 0,
while the same holds for its negative first derivative.
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B. Deferred Proofs
B.1. Minima of Mini-Batch Contrastive Losses

Now we can proceed in proving our first theorem which encapsulates Theorems 4.1 and 5.1 of the main paper.
Theorem B.1. Consider the following optimisation problem:

argmin
U,V∈(Sd−1)M

LCL-sym(U,V), (11)

with LCL-sym(U,V) = 1
2 (LCL(U,V) + LCL(V,U)), where Sd−1 = {u ∈ Rd | ∥u∥2 = 1} a unit sphere

of d dimensions, U,V are tuples of M vectors on the unit sphere and LCL(·, ·) is any of the loss functions
{La(·, ·;ϕ, ψ), Lb(·, ·;ϕ, ψ), Lc(·, ·;ϕ, ψ), } as defined in Eq. (1) and (6). Further, suppose the following conditions:
(1) ϕ : R → R is increasing & convex, (2) ψ : R → R is increasing & ψ̃(x;α) = ψ (αϕ (x)) is convex for α > 0 and (3)
1 < M ≤ d+ 1. Then, the optimisation problem of Eq. (2) obtains its optimal value (U∗,V∗) when:

U∗ = V∗ and U∗ = [u∗
1, . . . ,u

∗
M ] form a regular M − 1 simplex centered at the origin. (12)

Additionally, (4) if ψ, ϕ are strictly increasing and ψ̃ is strictly convex then all the (U∗,V∗) that satisfy Eq. (12) are the
unique optima.

Proof. Let us start from La. Our proof will follow similar steps as in (Sreenivasan et al., 2023) but in a more general fashion.

Part I: La.

First, we will use the convexity of ϕ to lower bound the inner sum.

M∑
j=1,j ̸=i

ϕ
(
(vj − vi)

⊤
ui

) (a)

≥ (M − 1)ϕ

 1

M − 1

M∑
j=1,j ̸=i

(
v⊤
j ui − v⊤

i ui

)
= (M − 1)ϕ

(
v⊤ui − v⊤

i ui − (M − 1)(v⊤
i ui)

M − 1

)
= (M − 1)ϕ

(
v⊤ui −Mv⊤

i ui

M − 1

)
,

where (a) follows from Jensen’s inequality (Condition (1)) and v =
∑M

j=1 vj . Then, we will use the convexity of ψ̃
(Condition (2)) to bound the outer sum.

La(U,V;ϕ, ψ)
(b)

≥ 1

M

M∑
i=1

ψ

(
(M − 1)ϕ

(
v⊤ui −Mv⊤

i ui

M − 1

))

=
1

M

M∑
i=1

ψ̃

(
v⊤ui −Mv⊤

i ui

M − 1
;M − 1

)
(c)

≥ ψ̃

(
1

M

M∑
i=1

(
v⊤ui −Mv⊤

i ui

M − 1

)
;M − 1

)

= ψ

(
(M − 1)ϕ

(
1

M

M∑
i=1

(
v⊤ui −Mv⊤

i ui

M − 1

)))

= ψ

(
(M − 1)ϕ

(
1

M(M − 1)

(
v⊤u−M

M∑
i=1

v⊤
i ui

)))

= ψ

(
(M − 1)ϕ

(
1

M

M∑
i=1

(
v⊤ui −Mv⊤

i ui

M − 1

)))
(d)

≥ ψ

(
(M − 1)ϕ

(
1

M(M − 1)

(
v∗⊤u∗ −M

M∑
i=1

v∗⊤
i u∗

i

)))
,
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where u =
∑M

j=1 uj and u∗
i ,v

∗
i are the minima of the inner argument, (b) follows from the fact that ψ is increasing

(Condition (2)), (c) follows from the fact that M −1 > 0 and Jensen’s inequality (Condition (2)) and (d) from the fact that ψ
and ϕ are increasing (Conditions (1) and (2)) and M − 1 > 0. Thus, it suffices to solve the following optimisation problem:

argmin
U,V∈(Sd−1)M

1

M(M − 1)

(
v⊤u−M

M∑
i=1

v⊤
i ui

)
⇔ argmax

U,V∈(Sd−1)M
M

M∑
i=1

v⊤
i ui −

(
M∑
i=1

vi

)⊤( M∑
i=1

ui

)
or equivalently, as shown in Eq. (12) in the Appendix of (Sreenivasan et al., 2023),

argmax
U,V∈(Sd−1)M

v⊤
stack

((
MIM − 1M1⊤

M

)
⊗ Id

)
ustack , (13)

where vstack =
[
v⊤
1 , . . . ,v

⊤
M

]⊤ ∈ RMd×1, ustack =
[
u⊤
1 , . . . ,u

⊤
M

]⊤ ∈ RMd×1, IM ∈ RM×M the identity matrix,
1M ∈ RM×1 a vector whose elements are all equal to 1 and ⊗ denotes the Kronecker product. The optimisation problem
of Eq. (13) has been studied in (Lu & Steinerberger, 2022) and (Sreenivasan et al., 2023). We repeat the result here for
completeness.

It is shown that the eigenvalues of
(
MIM − 1M1⊤

M

)
are equal to M with multiplicity M − 1 and 0 with multiplicity 1,

with corresponding eigenvectors p ∈ RM such that p⊤1M = 0 and p = k1M respectively. Therefore, since the set of
eigenvalues of the Kronecker product of two matrices contains all the possible pair-wise products of the eigenvalues of the
individual matrices, the eigenvalues of

(
MIM − 1M1⊤

M

)
⊗ Id are M with multiplicity M(M − 1) and 0 with multiplicity

M . Since the matrix of interest is symmetric, its singular values coincide with the absolute of its eigenvalues, and therefore
∥
(
MIM − 1M1⊤

M

)
⊗ Id∥2 =M . Concluding:

v⊤
stack

((
MIM − 1M1⊤

M

)
⊗ Id

)
ustack

(e)

≤ ∥vstack ∥2∥
((
MIM − 1M1⊤

M

)
⊗ Id

)
ustack ∥2

(f)

≤ ∥vstack ∥2∥
(
MIM − 1M1⊤

M

)
⊗ Id∥2∥ustack ∥2

= (
√
M)M

√
M =M2, (14)

where (e) follows from the Cauchy–Schwarz inequality, (f) from the definition of the spectral norm and the last equality
from the fact that ∥ui∥ = ∥vi∥ = 1,∀i ∈ [M ]. Now, moving backwards for every inequality (a)-(e) we have that:

• (f) holds with equality iff ustack is an eigenvector corresponding to the maximum eigenvalue, i.e.((
MIM − 1M1⊤

M

)
⊗ Id

)
ustack = Mustack. But using a common property of the Kronecker product and the

fact that vec(U) = ustack, it follows that
((
MIM − 1M1⊤

M

)
⊗ Id

)
ustack = vec

(
IdU

(
MIM − 1M1⊤

M

)⊤)
=

vec
(
[u1 . . .uM ]

(
MIM − 1M1⊤

M

)⊤)
and thus:

vec
(
[u1 . . .uM ]

(
MIM − 1M1⊤

M

)⊤)
=Mustack ⇔ [u

(ℓ)
1 . . .u

(ℓ)
M ]
(
MIM − 1M1⊤

M

)⊤
=M [u

(ℓ)
1 . . .u

(ℓ)
M ]

⇔
(
MIM − 1M1⊤

M

)
[u

(ℓ)
1 , . . . .uℓ

M ]⊤ =M [u
(ℓ)
1 , . . . ,u

(ℓ)
M ]⊤

⇔ [u
(ℓ)
1 , . . . ,u

(ℓ)
M ]1M = 0,∀ℓ ∈ [d]

⇔
M∑
i=1

u∗
i = u∗ = 0. (15)

• (e) holds with equality iff vstack = kustack for any k > 0. But since ∥vstack∥ = ∥ustack∥ =
√
M , then it must be that

k = 1 and therefore:
v∗
i = u∗

i , ∀i ∈ [M ]. (16)

• (d) holds with equality only if ui = u∗
i and vi = v∗

i when ϕ, ψ are strictly increasing (Condition (4)). If the latter
doesn’t hold, then we might obtain the optimum for other input values besides the ones that were found in the previous
two conditions.
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• (c) holds with equality iff v⊤ui−Mv⊤
i ui

M−1 = c1 constant ∀i ∈ [M ] or if ψ̃ is linear. The former is already satisfied by the
conditions (15), (16) and c1 = − M

M−1 . Thus, no extra condition arises here.

• (b) holds with equality only if ui,vi minimise the arguments of ψ (which happens when the conditions of (a) are
satisfied) when ψ is strictly increasing (Condition (4)). Again, if the latter doesn’t hold, we might obtain the optimum
for other input values besides those found by the rest of the conditions.

• (a) holds with equality if (vj − vi)
⊤ui = c̃2 constant ∀i, j ∈ [M ]. If ϕ is strictly convex (Condition (4)), then this

will be the only condition allowing equality to hold. Given condition (16), the former implies that u⊤
j ui = 1+ c̃2 = c2

and since from condition (15) we have that u = 0, then:

0 = u⊤u =

(
M∑
i=1

u⊤
i

)(
M∑
i=1

ui

)
=

M∑
i=1

u⊤
i ui +

M∑
i,j=1
j ̸=i

u⊤
i uj ⇔ 0 =M +M(M − 1)c2

⇔ uiuj = − 1

M − 1
∀i ̸= j ∈ [M ]. (17)

Conditions (15), (16), (17) prove that any point configuration that satisfies Eq. (3) is an optimum of Eq. (2) for the La loss
and with the additional conditions of strict monotonicity of ϕ, ψ and strict convexity of ϕ we also obtain that these point
configurations are the unique optima.

It remains to show that these optima can be indeed attained. In particular, Eq. (15) and Eq. (16) are easy to attain for any
twin (identical) point configurations that are centred at the origin. Eq. (17), or more precisely the fact that all angles are
equal, is exactly the definition of a regular M − 1-dimensional simplex inscribed in the sphere. However, for the regular
M − 1-dimensional simplex to exist the ambient dimension must be at least as large as M − 1, i.e.d ≥ M − 1, which
justifies Condition (3).

Part II: Lb. Using a similar rationale for Lb we obtain:

M∑
j=1,j ̸=i

(
ϕ
(
(vj − vi)

⊤
ui

)
+ ϕ

(
(uj − vi)

⊤
ui

)) (a′)

≥ 2(M − 1)ϕ

(
v⊤ui − (2M − 1)v⊤

i ui + u⊤ui − 1

2(M − 1)

)
,

and subsequently:

Lb(U,V)
(b′)

≥ 1

M

M∑
i=1

ψ

(
2(M − 1)ϕ

(
v⊤ui − (2M − 1)v⊤

i ui + u⊤ui − 1

2(M − 1)

))

=
1

M

M∑
i=1

ψ̃

(
v⊤ui − (2M − 1)v⊤

i ui + u⊤ui − 1

2(M − 1)
; 2(M − 1)

)
(c′)

≥ ψ

(
2(M − 1)ϕ

(
1

M

M∑
i=1

(
v⊤ui − (2M − 1)v⊤

i ui + u⊤ui − 1

2(M − 1)

)))

= ψ

(
2(M − 1)ϕ

(
1

2M(M − 1)

(
v⊤u− (2M − 1)

M∑
i=1

(
v⊤
i ui

)
+ u⊤u−M

)))
(d′)

≥ ψ

(
2(M − 1)ϕ

(
1

2M(M − 1)

(
v∗⊤u∗ − (2M − 1)

M∑
i=1

(
v∗⊤
i u∗

i

)
+ u∗⊤u∗ −M

)))
,

where once again (a′) follows from Jensen’s inequality, (b′) follows from the fact that ψ is increasing, (c′) follows from
Jensen’s inequality and the fact that M − 1 > 0, 2(M − 1) > 0 and (d’) from the fact that ψ and ϕ are increasing and
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M − 1 > 0, 2M(M − 1) > 0. Again it suffices to solve the following optimisation problem.

argmin
U,V∈(Sd−1)M

1

2M(M − 1)

(
v⊤u− (2M − 1)

M∑
i=1

v⊤
i ui + u⊤u−M

)

= argmax
U,V∈(Sd−1)M

(2M − 1)

M∑
i=1

v⊤
i ui − (v⊤ + u⊤)u

= argmax
U,V∈(Sd−1)M

(2M − 1)

M∑
i=1

v⊤
i ui − (v⊤ + u⊤)u+ (2M − 1)

M∑
i=1

u⊤
i ui −M(2M − 1)

= argmax
U,V∈(Sd−1)M

(2M − 1)

M∑
i=1

(v⊤
i + u⊤

i )ui − (v⊤ + u⊤)u

= argmax
U,V∈(Sd−1)M

(vstack + ustack )
⊤ (((2M − 1)IM − 1M1⊤

M

)
⊗ Id

)
ustack . (18)

Similarly with (Lu & Steinerberger, 2022), we will find the eigendecomposition of (2M − 1)IM − 1M1⊤
M . Select p ∈ RM

with p⊤1M = 0. Then,
(
(2M − 1)IM − 1M1⊤

M

)
p = (2M−1)p−1M1⊤

Mp = (2M−1)p and so we proved that (2M−1)
is an eigenvalue for all the vectors with p⊤1M = 0, i.e. with multiplicityM−1. Additionally, select p ∈ RM with p = k1M .
Then,

(
(2M − 1)IM − 1M1⊤

M

)
p = (2M − 1)p− 1M1⊤

Mp = k(2M − 1)1M − kM1M = k(M − 1)1M = (M − 1)p
and so we proved that (M − 1) is an eigenvalue for all the vectors with p = k1M , i.e. with multiplicity 1. Thus, as in Part I,
∥
(
(2M − 1)IM − 1M1⊤

M

)
⊗ Id∥2 = 2M − 1. Concluding:

(u⊤
stack + v⊤

stack )
((
(2M − 1)IM − 1M1⊤

M

)
⊗ Id

)
ustack

(e′)

≤ ∥ustack + vstack ∥2∥
((
(2M − 1)IM − 1M1⊤

M

)
⊗ Id

)
ustack ∥2

(f ′)

≤ ∥ustack + vstack ∥2∥
(
(2M − 1)IM − 1M1⊤

M

)
⊗ Id∥2∥ustack ∥2

(g′)

≤ (∥ustack ∥2 + ∥vstack ∥2) ∥
(
(2M − 1)IM − 1M1⊤

M

)
⊗ Id∥2∥ustack ∥2

= (2
√
M)(2M − 1)

√
M = 2(2M − 1)M2, (19)

where again (e’) follows from the Cauchy–Schwarz inequality, (f’) from the definition of the spectral norm and (g’) from the
triangle inequality. Now, moving backwards for every inequality (a’)-(g’) as in Part I3 we will obtain the same conditions as
in Part I which will prove the desideratum for Lb.

Part III: Lc. Following the exact same steps as before we obtain: First for the inner summands,

M∑
j=1,j ̸=i

ϕ
(
(uj − vi)

⊤
ui

) (a′′)

≥ (M − 1)ϕ

(∑M
j=1,j ̸=i u

⊤
j ui − (M − 1)v⊤

i ui

M − 1

)

= (M − 1)ϕ

(
u⊤ui − (M − 1)v⊤

i ui − 1

M − 1

)
,

3(g’) holds with equality for the same conditions as with (f’)
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then for the total loss:

Lc(U,V)
(b′′)

≥ 1

M

M∑
i=1

ψ

(
(M − 1)ϕ

(
u⊤ui − (M − 1)v⊤

i ui − 1

M − 1

))

=
1

M

M∑
i=1

ψ̃

(
u⊤ui − (M − 1)v⊤

i ui − 1

M − 1
;M − 1

)
(c′′)

≥ ψ

(
(M − 1)ϕ

(
1

M

M∑
i=1

(
u⊤ui − (M − 1)v⊤

i ui − 1

M − 1

)))

= ψ

(
(M − 1)ϕ

(
1

M(M − 1)

(
u⊤u− (M − 1)

M∑
i=1

(
v⊤
i ui

)
−M

)))
(d′′)

≥ ψ

(
(M − 1)ϕ

(
1

M(M − 1)

(
u∗⊤u∗ − (M − 1)

M∑
i=1

(
v∗⊤
i u∗

i

)
−M

)))
,

and finally for the inner argument optimisation problem:

argmin
U,V∈(Sd−1)M

1

M(M − 1)

(
u⊤u− (M − 1)

M∑
i=1

v⊤
i ui −M

)
= argmax

U,V∈(Sd−1)M
(M − 1)

M∑
i=1

v⊤
i ui − ∥u∥2. (20)

The last part of the proof here is slightly different. In particular, the two terms in the above equation can be maximised
independently. For the first term, we have that each summand in the sum can be optimised independently and that:

v⊤
i ui

(e′′)

≤ ∥vi∥∥ui∥ = 1, (21)

where again we used Cauchy–Schwarz. Now (e”) holds with equality, as before, iff vi = ui. For the second term, we need
to minimise ∥u∥2, which evidently happens iff u = 0. Therefore, we arrived at the same conditions as in Part I and Part II,
while the rest of the equalities in (a”)-(d”) while be satisfied as before. This concludes the proof.

The below corollary follows directly from Theorem B.1.

Corollary B.2. Consider the following optimisation problem:

argmin
θ∈Θ

LCL-sym (fθ(X), fθ(Y)) , (22)

where fθ : X → Sd−1 is an encoder function parametrised by a tuple of parameters θ and LCL-sym is a contrastive loss
function defined as in Theorem B.1. Suppose that the conditions (1)-(3) set in Theorem B.1 hold. Further, suppose that (5)
∃θ∗ ∈ Θ such that fθ achieves simultaneously perfect alignment and perfect uniformity, i.e. that:

fθ∗(X) = fθ∗(Y) and fθ∗(X) form a regular M − 1 simplex. (23)

Then, the optimisation problem of Eq. (22) obtains its optimal value for all θ∗ that satisfy Eq. (23). Additionally, if the
condition (4) set in Theorem B.6 holds, then all the θ∗ that satisfy Eq. (23) are the unique optima.

Corollary B.3. The following mini-batch CL loss functions: LInfoNCE(·, ·), LDHEL(·, ·), LSimCLR(·, ·), LDCL(·, ·) have the
same unique minima on the unit sphere when 1 < M ≤ d+ 1, i.e. all the optimal solutions of Eq. (11) will satisfy the
properties of Eq. (12).

Proof. Recall from Eq. (10) that the above losses are special cases of La, Lb, Lc with ϕ(x) = exp(x/τ), and ψ(x) = log(x)
or ψ(x) = log(1+x). We know that for τ > 0, exp(x/τ) is strictly increasing and strictly convex, while log(1+α exp(x/τ))
and log(α exp(x/τ)) = logα+ x/τ are strictly increasing and convex for α, τ > 0. Therefore, all Conditions (1)-(4) of
Theorem 4.1 are satisfied.
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B.2. Expected (True) Contrastive Losses and Asymptotic Behaviour

Lemma B.4. The expectations of the following mini-batch contrastive loss functions: LInfoNCE, LSimCLR, LDCL, LDHEL are
the ones given in Tables 1 and 2.

Proof. It is straightforward to see that the expectations of the mini-batch losses are as follows:

E
(X,Y)

i.i.d∼pM
+

[La(fθ(X), fθ(Y))] = E
(X,Y)

i.i.d∼pM
+

 1

M

M∑
i=1

ψ

 M∑
j=1,j ̸=i

ϕ
(
(fθ (yj)− fθ (yi))

⊤
fθ (xi)

)
=

1

M

M∑
i=1

E
(X,Y)

i.i.d∼pM
+

ψ
 M∑

j=1,j ̸=i

ϕ
(
(fθ (yj)− fθ (yi))

⊤
fθ (xi)

)
=

1

M

M∑
i=1

E
(xi,yi)∼p+

{yj}
M−1
j=1

i.i.d∼ p

ψ
 M∑

j=1,j ̸=i

ϕ
(
(fθ (yj)− fθ (yi))

⊤
fθ (xi)

)

= E
(x,y)∼p+

{yj}
M−1
j=1

i.i.d∼ p

ψ
M−1∑

j=1

ϕ
(
(fθ (yj)− fθ (y))

⊤
fθ (x)

) (24)

E
(X,Y)

i.i.d∼pM
+

[Lb(fθ(X), fθ(Y))] = E
(x,y)∼p+

{(xj ,yj)}
M−1
j=1

i.i.d∼ p+

[
ψ

(
M−1∑
j=1

ϕ
(
(fθ (yj)− fθ (y))

⊤
fθ (x)

)

+ ϕ
(
(fθ (xj)− fθ (y))

⊤
fθ (x)

))]
(25)

E
(X,Y)

i.i.d∼pM
+

[Lc(fθ(X), fθ(Y))] = E
(x,y)∼p+

{xj}
M−1
j=1

i.i.d∼ p

ψ
M−1∑

j=1

ϕ
(
(fθ (xj)− fθ (y))

⊤
fθ (x)

) (26)

Expanding Eq. (24), (25) (twice) and (26) for LInfoNCE, LSimCLR, LDCL, LDHEL respectively, we obtain:

E
(X,Y)

i.i.d∼pM
+

[LInfoNCE(fθ(X), fθ(Y))] = E
(u,v)∼fθ#p+

[
−v⊤u/τ

]
+ E

(u,v)∼fθ#p+

V′ i.i.d∼ fθ#pM−1

log
ev⊤u/τ +

M−1∑
j=1

eu
⊤v′

j/τ


E

(X,Y)
i.i.d∼pM

+

[LSimCLR(fθ(X), fθ(Y))] = E
(u,v)∼fθ#p+

[
−v⊤u/τ

]
+ E

(u,v)∼fθ#p+

Û
i.i.d∼ fθ#p

M−1
+

log
ev⊤u/τ +

2M−2∑
j=1

eû
⊤
j u



E
(X,Y)

i.i.d∼pM
+

[LDCL(fθ(X), fθ(Y))] = E
(u,v)∼fθ#p+

[
−v⊤u/τ

]
+ E

u∼fθ#p

Û
i.i.d∼ fθ#p

M−1
+

log
2M−2∑

j=1

eû
⊤
j u/τ



E
(X,Y)

i.i.d∼pM
+

[LDHEL(fθ(X), fθ(Y))] = E
(u,v)∼fθ#p+

[
−v⊤u/τ

]
+ E

u∼fθ#p

U′ i.i.d∼ fθ#pM−1

log
M−1∑

j=1

eu
⊤u′

j/τ


(27)

Proposition B.5. The expectations of the following batch-level contrastive loss functions: LInfoNCE(·, ·), LDHEL(·, ·),
LSimCLR(·, ·), LDCL(·, ·) have the same asymptotic behaviour when normalised by appropriate normalising constants, i.e.
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when M → ∞ we have that:

lim
M→∞

E
(X,Y)

i.i.d∼pM
+

[LInfoNCE(fθ(X), fθ(Y))]− log(M − 1) = lim
M→∞

E
(X,Y)

i.i.d∼pM
+

[LSimCLR(fθ(X), fθ(Y))]− log(2M − 2)

= lim
M→∞

E
(X,Y)

i.i.d∼pM
+

[LDCL(fθ(X), fθ(Y))]− log(2M − 2)

= E
(X,Y)

i.i.d∼pM
+

[LDHEL(fθ(X), fθ(Y))]− log(M − 1)

= E
(x′,y′)∼p+

[
−fθ (y′)

⊤
fθ (x

′)
]

+ E
x′∼p

[
log E

x∼p

(
efθ(x)

⊤fθ(x′)
)]

(28)

Proof. For a fixed x′, since lim
M→∞

1
M−1e

fθ(y′)
⊤
fθ(x′) lim

M→∞
1

2M−2e
fθ(y′)

⊤
fθ(x′) = 0, because efθ(y

′)
⊤
fθ(x′) is bounded

and since

E
X∼pM−1

 1

M − 1

M−1∑
j=1

efθ(yj)
⊤fθ(x′)

 = E
X∼pM−1

 1

M − 1

M−1∑
j=1

efθ(xj)
⊤fθ(x′)


= E

X̂∼pM−1
+

 1

2M − 2

2M−2∑
j=1

efθ(x̂j)
⊤fθ(x′)

 = E
x∼p

[
efθ(x)

⊤fθ(x′)
]
,

then with probability 1 over the respective sample spaces, due to the strong law of large numbers, it holds that:

lim
M→∞

1

M
efθ(y

′)
⊤
fθ(x′) +

1

M

M−1∑
j=1

efθ(yj)
⊤fθ(x′) = lim

M→∞

1

2M − 2
efθ(y

′)
⊤
fθ(x′) +

1

2M − 2

2M−2∑
j=1

efθ(x̂j)
⊤fθ(x′)

= lim
M→∞

1

2M − 2

2M−2∑
j=1

efθ(x̂j)
⊤fθ(x′)

= lim
M→∞

1

M − 1

M−1∑
j=1

efθ(xj)
⊤fθ(x′) = E

x∼p

[
efθ(x)

⊤fθ(x′)
]
.

Now the desideratum follows directly using the same steps as in the proof of Theorem 1 in (Wang & Isola, 2020). Briefly,
the same limit holds for the log (continuous function) of the above quantities due to the Continuous Mapping Theorem,
and therefore when taking the limit of each loss variant (after first subtracting the right normalisation constant M − 1 or
2M − 2), since the quantities inside the expectation are bounded, we can invoke the Dominated Convergence Theorem and
switch the limit with the expectation, thus arriving at the desideratum.

B.3. Minima of Mini-Batch Kernel Contrastive Losses

Theorem B.6. Consider the following optimisation problem:

argmin
U,V∈(Sd−1)M

LKCL-sym(U,V), (29)

with LKCL-sym(U,V) = 1
2 (LKCL(U,V) + LKCL(V,U)), where Sd−1 = {u ∈ Rd | ∥u∥2 = 1} a unit sphere of d

dimensions, U,V are tuples of M vectors on the unit sphere and LKCL(·, ·) is a kernel loss function of the form:

LKCL(U,V) = − 1

M

M∑
i=1

KA(ui,vi) + γ
1

M(M − 1)

M∑
i,j=1
i̸=j

KU (ui,uj), (30)
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where KA(x,y) = κA(∥x− y∥2) and KU (x,y) = κU (∥x− y∥2) with κA, κU : (0, 4] → R, the limits lim
x→0+

κA(x),

lim
x→0+

κU (x) exist and are bounded in both cases and γ > 0. Further, for case (a) 1 < M ≤ d+ 1, suppose the following

conditions: (1) kA is decreasing and (2) kU is decreasing and convex. Then, the optimisation problem of Eq. (2) obtains its
optimal value (U∗,V∗) when:

U∗ = V∗ and U∗ = [u∗
1, . . . ,u

∗
M ] form a regular M − 1 simplex centered at the origin. (31)

Additionally, (3) if κA is strictly decreasing and κU is strictly decreasing and strictly convex then all the (U∗,V∗) that
satisfy Eq. (3) are the unique optima. For case (b) M = 2d, suppose again that kA is decreasing and that (4) kU is
completely monotone. Then Eq. (2) obtains its optimal value when:

U∗ = V∗ and U∗ = [u∗
1, . . . ,u

∗
M ] form a cross-polytope. (32)

Proof. Our strategy in this proof will be to analyse the two terms independently and show that it is possible to simultaneously
attain their minima, i.e. for the same input arguments. Let us start with the first term.

Part I: Alignment term − 1
M

∑M
i=1KA(ui,vi).

Observe that in this term, the summands are independent of each other, so we can optimise each of them independently. Let
(u∗

i ,v
∗
i ) be a minimiser for −KA(ui,vi) = −κA(∥ui − vi∥2). Therefore,

−κA(∥ui − vi∥2) ≥ −κA(∥u∗
i − v∗

i ∥2) ⇔ κA(∥ui − vi∥2)≤κA(∥u∗
i − v∗

i ∥2)
(a)⇔ ∥ui − vi∥2 ≥ ∥u∗

i − v∗
i ∥2,

where (a) follows from the fact that κA is decreasing, and thus:

argmin
ui,vi∈Sd−1

−KA(ui,vi) ⊇ argmin
ui,vi∈Sd−1

∥ui − vi∥2 = {(u∗
i ,v

∗
i ) | u∗

i = v∗
i }.

So, since the above holds ∀i ∈ {1, . . . ,M} we obtain −KA(ui,vi) ≥ −KA(u
∗
i ,v

∗
i ) ⇔ − 1

M

∑M
i=1KA(ui,vi) ≥

− 1
M

∑M
i=1KA(u

∗
i ,v

∗
i ), ∀U,V ∈ (Sd−1)M and thus:

argmin
U,V∈(Sd−1)M

− 1

M

M∑
i=1

KA(ui,vi) ⊇ {(U∗,V∗) | u∗
i = v∗

i ,∀i ∈ {1, . . . ,M}}.

Part II: Uniformity term γ
M(M−1)

∑M
i,j=1
i̸=j

KU (ui,uj).

First, observe that optimising the second term depends only on U. Further, note that finding its minimiser is a classical
hyperspherical energy minimisation problem, which is straightforward when κU is convex and decreasing and 1 < M ≤ d+1.
We can invoke Theorem 1 from (Liu et al., 2023), which asserts that if the aforementioned conditions hold, then:

argmin
U,V∈(Sd−1)M

γ

M(M − 1)

M∑
i,j=1
i̸=j

KU (ui,uj) ⊇ {(U∗,V∗) | U∗: regular M − 1 simplex on Sd−1 centered at the origin}.

Similarly, for the case M = 2d, we can invoke Theorem 5.7.2 (Borodachov et al., 2019) or Theorem 2 (Liu et al., 2023),
which imply that:

argmin
U,V∈(Sd−1)M

γ

M(M − 1)

M∑
i,j=1
i̸=j

KU (ui,uj) ⊇ {(U∗,V∗) | U∗: cross-polytope},

when the function k̃U (x) = kU (2− 2x), i.e. the corresponding function expressing the kernel w.r.t. the inner product, is
absolutely monotone in [−1, 1). But (Borodachov et al., 2019) show that this equivalent to kU being completely monotone
in (0, 4] (Condition (4)).

21



Bridging Mini-Batch and Asymptotic Analysis in Contrastive Learning: From InfoNCE to Kernel-Based Losses

In the intersection of the two sets of minimisers, both terms will be minimised, i.e. − 1
M

∑M
i=1KA(ui,vi) ≥

− 1
M

∑M
i=1KA(u

∗
i ,v

∗
i ) and γ

M(M−1)

∑M
i,j=1
i̸=j

KU (ui,uj) ≥ γ
M(M−1)

∑M
i,j=1
i̸=j

KU (u
∗
i ,u

∗
j ), ∀U,V ∈ (Sd−1)M . There-

fore, the intersection is a minimiser of the total objective:

{(U∗,V∗) | U∗ = V∗: regular M − 1 simplex on Sd−1 centered at the origin} ⊆ argmin
U,V∈(Sd−1)M

LKCL(U,V),

and similarly for the cross-polytope. It is easy to see that the same set will be a minimiser of LKCL(V,U) and thus it is also
a minimiser of LKCL-sym(V,U).

Finally, if κA is strictly decreasing, then (a) holds with equality only when ui = vi, while if κU is strictly convex and
strictly decreasing then, again by Theorem 1 in (Liu et al., 2022), we know that the regular M − 1 simplex is the only
minimiser of the second term, and thus Eq. (3) is the unique minimiser of the kernel contrastive loss for 1 < M ≤ d+ 1.

B.4. Expected (True) Kernel Contrastive Losses

Proposition B.7. The expectation of the mini-batch kernel contrastive loss functions LKCL(·, ·) is independent of the size
of the batch and therefore equal to the asymptotic expected loss. In other words, mini-batch kernel loss is an unbiased
estimator of the asymptotic expected loss and in particular, we have that:

E
(X,Y)∼pM

+

[LKCL-sym (fθ (X) , fθ (Y))] = − E
(x,y)∼p+

[KA (fθ (x) , fθ (y))] + γ E
x,∼p
x′∼p

[KU (fθ (x) , fθ (x
′))] . (33)

If (1) κA is (strictly) decreasing and if (2) ∃θ∗ such that P(x,y)∼p+
[fθ(x) = fθ(y)] = 1, then the set of θ∗ for which (2)

holds are (unique) minimisers of the first term of Eq. (9). Additionally, if (3) -κ(1)U (first derivative) is strictly completely
monotone in (0, 4], (4) the expectation defined in the l.h.s. of Eq. (9) is finite and (5) ∃θ∗ such that the pushforward measure
fθ#p = U(Sd−1), then θ∗ is a unique minimiser of the second term of Eq. (9). Finally, if (6) ∃θ∗ such that conditions (2)
and (3) can be satisfied simultaneously, then θ∗ is a unique minimiser of Eq. (9).

Proof. The first part of the proposition is obvious since:

E
(X,Y)∼pM

+

[LKCL (fθ (X) , fθ (Y))] = E
(X,Y)∼pM

+

[
− 1

M

M∑
i=1

KA(fθ(xi), fθ(yi))

+
γ

M(M − 1)

M∑
i,j=1
i̸=j

KU (fθ(xi), fθ(yj))

]

= E
(X,Y)∼pM

+

[
− 1

M

M∑
i=1

KA(fθ(xi), fθ(yi))

]

+ E
(X,Y)∼pM

+

 γ

M(M − 1)

M∑
i,j=1
i̸=j

KU (fθ(xi), fθ(yj))


= − 1

M

M∑
i=1

E
(xi,yi)∼p+

[KA(fθ(x), fθ(y))]

+
γ

M(M − 1)

M∑
i,j=1
i̸=j

E
xi∼p
xj∼p

[KU (fθ(xi), fθ(xj))]

= − E
(x,y)∼p+

[KA(fθ(x), fθ(y))] + γ E
x∼p
x′∼p

[KU (fθ(x), fθ(x
′))]
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Regarding the minimiser of the alignment term, we have that for every (x,y):

∥fθ(x)− fθ(y)∥2 ≥ 0 =⇔ −κA
(
∥fθ(x)− fθ(y)∥2

)
≥ −κA(0),

since κA is decreasing. It follows that −κA(0) ≤ E
(x,y)∼p+

[KA (fθ (x) , fθ (y))]. But, we know that ∥fθ∗(x)−fθ∗(y)∥2 =

0 almost surely and thus also KA (fθ∗ (x) , fθ∗ (y)) = κA
(
∥fθ∗(x)− fθ∗(y)∥2

)
= κA(0) almost surely. Therefore,

− E
(x,y)∼p+

[KA (fθ∗ (x) , fθ∗ (y))] ≤ E
(x,y)∼p+

[KA (fθ (x) , fθ (y))], which proves that θ∗ is a minimiser. If κA is strictly

decreasing (Condition (1)), then equality holds only if the set (x,y) for which ∥fθ(x)− fθ(y)∥2 > 0 has measure zero
under p+, i.e. for θ = θ∗ (unique minimiser).

Regarding the minimiser of the uniformity term, we can invoke Theorem 6.2.1 from (Borodachov et al., 2019) (restated
as Lemma 2 in (Wang & Isola, 2020)), that under conditions (3) and (4) asserts that the unique measure µ ∈ M(Sd−1)
minimising E

u∼µ
v∼µ

[KU (u,v)] is the uniform measure on the sphere U(Sd−1). Then, condition (5) simply guarantees the

existence of a parameter θ so that this measure is attainable.

C. Experimental Details
In the following section, we provide a detailed description of the experimental setup.

C.1. Detailed Sampling Process.

The distributions of interest p, p+ throughout all the experiments are formed from the following two-step sampling
process. First, we sample a datapoint xinit ∈ X from an (unknown) initial distribution pinit on X (i.e. the one from
which we sample the datapoints in our dataset) and subsequently we independently sample a transformation operator
T : X → X from a (usually known) distribution pT on a space of available transformations T . Then, p is the distribution
of the datapoint T (xinit) and the p.d.f. is given by p(x) =

∫
T∈T pinit(x)pT (T )dT .4 Additionally, we sample positive

pairs by first sampling a datapoint xinit and then transforming it by two independently sampled operators T1, T2. We
define the distribution of positive pairs as the distribution of the tuples (T1 (xinit) , T2 (xinit)) and the p.d.f. is given by
p+(x,y) =

∫
T1,T2∈T ,xinit∈X

y=T2(xinit),x=T1(xinit)
pinit(xinit)pT (T1)pT (T2)dxinitdT1dT2. The transformation operators encode the symmetries

of the data, i.e. it is expected that the downstream tasks will be invariant to them.

In practice, batches of data are sampled from a fixed finite dataset of N > M samples D ∼ pNinit as follows: M samples
are obtained by sampling uniformly at random from the dataset, i.e. (xinit,i)

M
i=1 ∼ U(D) = p̃init and 2M transformations

T1,i, T2,i are independently sampled from pT , resulting in a batch of M positive pairs
(
(xi,yi)

)M
i=1

∼ pM+ , where
xi = T1,i(xinit,i), yi = T2,i(xinit,i).

C.2. Performance Metrics.

Below we provide more details on the metrics used in Figure 2, Section 7.2 of the main paper.

• Alignment. It estimates the expected L2 distance between a pair of positive samples:

Lalignment(f#p+) = E
(u,v)∼f#p+

[
∥u− v∥22

]
≈ 1

M

M∑
i=1

∥f(xi)− f(yi)∥22 = L̂alignment(f,X,Y) (34)

• Uniformity. The logarithm of an estimation of the expected pairwise Gaussian potential as in (Wang & Isola, 2020):

Euniformity(f#p; t) = E
u∼f#p

u′∼f#p

[
e−t∥u−u′∥2

2

]
≈ 1

M(M − 1)

M∑
i,j=1
j ̸=i

e−t∥f(xi)−f(xj)∥2
2 = Êuniformity(f,X; t)

Luniformity(f#p; t) = logEuniformity(f#p; t) ≈ L̂uniformity(f,X; t) = log Êuniformity(f,X; t),

(35)

4The transformations are usually parameterised by parameters residing in a measurable space. Here we slightly abuse notation and the
integration over T implies an integration over the transformation parameters.
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where the last approximation holds for large M (strong law of large numbers and continuous mapping theorem) and
t = 2 as in (Wang & Isola, 2020).

• Wasserstein distance between similarity distributions. Our novel metric estimates the 1-Wasserstein distance
W1(qsim, psim), where psim is the p.d.f of the inner products when u,u′ ∼ U(Sd−1) and qsim is the corresponding

one when u,u′ ∼ f#p. According to Cho (2009), psim is equal to Γ( d
2 )

Γ( d−1
2 )

√
π

(√
1− s2

)d−3
for s ∈ (−1, 1) and 0

elsewhere. We chose 1-Wasserstein distance because it can be easily calculated by the following formula

W1(qsim, psim) =

∫ +∞

−∞
|Fqsim(s)− Fpsim(s)|ds, (36)

where Fpsim , Fqsim are the c.d.fs corresponding to psim, qsim respectively. Therefore, one can estimate the lat-
ter from samples and approximate the integral numerically. In our implementation, we use the method
scipy.stats.wasserstein distance from the SciPy library (Virtanen et al., 2020), which implements
precisely the aforementioned process.

To understand the connection between this metric and the uniformity metric used in (Wang & Isola, 2020), we will use
an equivalent definition of 1-Wasserstein, using the Kantorovich-Rubinstein dual (see (Peyré et al., 2019) for more
details): W1(qsim, psim) =

1
K sup

∥g∥Lip≤K

E
s∼qsim

[g (s)] − E
s∼psim

[g (s)], where g continuous, g : S → R and ∥g∥Lip ≤ K

means that the Lipschitz constant of g is at most K. The domain S in our case is the interval [−1, 1] Now revisiting the
definition of the uniformity metric (ignoring the logarithm) we get:

Euniformity(f#p; t) = E
u∼f#p

u′∼f#p

[
e−t(2−2u⊤u′)

]
= E

u∼f#p

u′∼f#p

[
e−2t+2tu⊤u′

]
= E

s∼qsim

[
e−2t+2ts

]
= E

s∼qsim
[g1(s; t)] ,

where g1(s; t) = e−2t+2ts and its Lipschitz constant in [−1, 1] is at most equal to the maximum value of its derivative,
i.e. Lip(g1(·; t)) = 2te−2t+2t = 2t. Therefore:

Euniformity(f#p; t)− Euniformity(U(Sd−1); t) = E
s∼qsim

[g1(s; t)]− E
s∼psim

[g1(s; t)]

≤ sup
∥g∥L≤2t

E
s∼qsim

[g (s)]− E
s∼qsim

[g (s)] = 2tW1(qsim, psim) ⇔

Luniformity(f#p; t) ≤ log
(
2tW1(qsim, psim) + Euniformity

(
U
(
Sd−1

)
; t
))
. (37)

Given that Euniformity
(
U
(
Sd−1

)
; t
)

is fixed for a given t, the above implies that Luniformity underestimates the closeness
of f#p to a uniform distribution.

• Rank. The rank of a given matrix of representations rank(U) ≤ min(M,d), where U ∈ RM×d. This gives a
measurement of the dimensions that are utilised. To account for numerical errors it is computed as follows:

r̂ank(U) = |{σi(U) > ϵ | σi(U) : i− th singular value of U}|, (38)

where ϵ was chosen to 1e− 5.

• Effective rank. A smooth approximation of the rank (Roy & Vetterli, 2007), that is less prone to numerical errors
and has been found in practice to correlate well with downstream performance (Garrido et al., 2023). It is equal to the
entropy of the normalised singular values:

σ̂i(U) =
σi(U)∑min(M,d)

i=1 |σi(U)|
+ ϵ

eff-rank(U) = −
min(M,d)∑

i=1

σ̂i(U) log σ̂i(U),

(39)

where we chose ϵ = 1e− 7 as in (Garrido et al., 2023).
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C.3. Implementation Details

Code The implementation of the experimental pipeline (networks, augmentations, training, evaluation functions etc)
were based on https://github.com/AndrewAtanov/simclr-pytorch.git, while our implementation of
the proposed loss functions and metrics can be found at https://github.com/pakoromilas/DHEL-KCL.git

CIFAR10, CIFAR100 and STL10 ResNet-18 is employed as the encoder architecture for CIFAR10, CIFAR100, and
STL10 datasets. Training spans 200 epochs with the SGD optimizer and the cosine annealing learning rate schedule, using a
base learning rate of (batch size) / 256. It’s worth mentioning that STL10 includes both the train and unlabeled sets for
pre-training the model. Augmentations include resizing, cropping, horizontal flipping, color jittering, and random grayscale
conversion. Linear evaluation is conducted by training a single linear layer on the learned embeddings, with an additional
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Figure 3: Mean value of properties vs batch size calculated on CIFAR10 (top) & CIFAR100 (bottom) datasets.
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Figure 4: Comparison of two uniformity and rank metrics calculated on CIFAR-10 (top) & CIFAR-100 (bottom) dataset
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200 epochs using SGD and a learning rate of 0.1.

ImageNet-100 ResNet-50 is employed as the encoder architecture for ImageNet-100. Training spans 200 epochs with the
SGD optimizer and the cosine annealing learning rate schedule, using a base learning rate of 1.4 * (batch size) / 256. We use
the same augmentations as in the above datasets and extend them to include gaussian blur. Linear evaluation is conducted by
training a single linear layer on the learned embeddings, with an additional 200 epochs using SGD and a learning rate of 0.5.

Hyperparameters For the InfoNCE methods we run experiments for temperatures
[0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. For the G-kernel we use the same temperature parameters along
w = [8, 16, 32]. For the Log-kernel we use s = [1, 1.5, 2, 3] and w = [16, 32, 64].

C.4. Further Results

In this section we present further experimental results on (i) the optimisation capabilities of the examined loss functions, as
well as (ii) the comparison between different measures of uniformity and rank.

Optimisation capabilities As demonstrated in Appendix B.2, CL objectives are optimised for both perfect alignment and
uniformity. In Figure 3 we compare the mean value of such properties for all the examined methods across different batch
sizes for the CIFAR10 and CIFAR100 datasets. The methods that decouple uniformity from alignment (DHEL and KCL)
achieve superior optimization of uniformity, although they are inferior to baseline methods in alignment optimization. This
shortfall may not be problematic, as recent studies (Gupta et al., 2023; Xie et al., 2022) suggest that perfect alignment might
not be ideal for downstream performance, since many downstream tasks may not be invariant to the augmentations used to
generate positive samples, implying that perfect alignment could be less critical in these scenarios.

Despite alignment and Wasserstein distance observed values being on different scales, both metrics have the same range [0, 1]
and monotonicity.Therefore, we examine the balance of the overall metric (alignment + uniformity) to gain insights into how
these properties interact. Methods that optimize this combination tend to perform better in downstream tasks. For example,
the Log-kernel method performs well for both CIFAR10 and CIFAR100, and the DHEL method excels in CIFAR100.
However, the G-kernel achieves the second-best performance in CIFAR10 despite having the poorest optimization. This
discrepancy can be attributed to the possibly undesired optimal alignment (Gupta et al., 2023; Xie et al., 2022), and the
tolerance-uniformity dilemma (Wang & Liu, 2021). The pretraining stage can be benefited by designing a proper weighting
function that correlates these two properties to downstream task performance.

Uniformity metric vs Wasserstein distance In Figure 4, we elucidate the difference between the conventional uniformity
metric and the Wasserstein distance introduced in our study. Although both metrics are generally consistent, discernible
differences emerge at temperatures 0.07, 0.1, and 0.2. The Wasserstein distance more effectively highlights the superior
uniformity of DCL and the compromised uniformity of SimCLR. This distinction is also observed in downstream task
performance. Despite DCL and SimCLR having the same alignment and uniformity for all temperatures, DCL achieves
superior performance at these specific temperatures ([0.07, 0.1, 0.2]) and matches SimCLR’s performance at other tempera-
tures, as shown in Figure 2 . Our metric captures the actual uniformity difference, which reflects to different downstream
task performance. Notably, this behavior is observed at optimal uniformity levels, underscoring the discerning power of the
introduced metric.

Rank vs Effective rank In Figure 4 we can see that both the rank and the effective rank metrics demonstrate the same
trend. In most cases, the rank does correlate with downstream performance as (Garrido et al., 2023) mention, but note that
for small temperatures, this correlation seems to die out, which probably comes from the fact that alignment is quite poor,
since the latter is not captured by either rank metrics.
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