
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIMBA: TIME SERIES IMPUTATION WITH BI-
DIRECTIONAL MAMBA BLOCKS AND DIFFUSION
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of imputing multivariate time series spans a wide range of fields,
from clinical healthcare to multi-sensor systems. Initially, Recurrent Neural Net-
works (RNNs) were employed for this task; however, their error accumulation
issues led to the adoption of Transformers, leveraging attention mechanisms to
mitigate these problems. Concurrently, the promising results of diffusion models
in capturing original distributions have positioned them at the forefront of current
research, often in conjunction with Transformers. In this paper, we propose replac-
ing time-oriented Transformers with State-Space Models (SSM), which are better
suited for temporal data modeling. Specifically, we utilize the latest SSM vari-
ant, S6, which incorporates attention-like mechanisms. By embedding S6 within
Mamba blocks, we develop a model that integrates SSM, Graph Neural Networks,
and node-oriented Transformers to achieve enhanced spatiotemporal representa-
tions. Implementing these architectural modifications, previously unexplored in
this field, we present Time series Imputation with Bi-directional mamba blocks
and diffusion models (TIMBA). TIMBA achieves superior performance in almost
all benchmark scenarios and performs comparably in others across a diverse range
of missing value situations and three real-world datasets. We also evaluate how
the performance of our model varies with different amounts of missing values and
analyse its performance on downstream tasks. In addition, we provide the original
code to replicate the results.

1 INTRODUCTION

The issue of missing values is widely recognized and can arise from various causes, including dif-
ficulties in data collection, problems with recording mechanisms, or human errors. In the field of
Multivariate Time Series (MTS) analysis, where multiple variables are recorded, sometimes with
irregular frequency, this problem is even more pronounced. It affects many fields, from defective
sensor records that transmit erroneous data (Wu et al., 2020), to the Internet of Things (IoT) where
these failures are even more common (Ahmed et al., 2022), and even clinical contexts (Moor et al.,
2020). Properly filling these gaps is crucial, as failure to do so can distort the data distribution and
reduce model performance (Solı́s-Garcı́a et al., 2023).

In recent years, this problem has been tackled using Deep Learning (DL) techniques, employing
Recurrent Neural Networks (RNNs) to capture temporal representations and Graph Neural Networks
(GNNs) for spatial ones (Cini et al., 2022). However, the error accumulation problem in RNNs has
led to their replacement by Transformers (Tashiro et al., 2021), which use attention mechanisms to
avoid these issues. Furthermore, the latest state-of-the-art results have been achieved using diffusion
models (Tashiro et al., 2021; Liu et al., 2023), which excel at modeling multiple distributions in the
original data. Additionally, the use of State-Space Models (SSMs) has expanded in recent years,
thanks to their discretization, as presented in S4 (Gu et al., 2022b). These models, reminiscent of
RNNs, have shown a high capacity to handle time series and long sequences, such as those found
in speech processing, text, and even DNA sequencing (Gu et al., 2022b). This architecture has been
briefly explored in the context of multivariate time series imputation (MTSI) (Alcaraz & Strodthoff,
2023). Recently, S6, an improvement over S4 that incorporates an attention-like mechanism, was
developed to potentially eliminate error accumulation issues, as demonstrated in selective copy tasks

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and speech processing (Gu & Dao, 2023). However, the S6 and Mamba blocks have not yet been
tested in the context of MTSI.

Starting from the state-of-the-art models for MTSI, CSDI and PriSTI (Tashiro et al., 2021; Liu et al.,
2023), in this article we replaced time-oriented Transformers in their architecture with S6 layers
embedded within bi-directional Mamba blocks (Gu & Dao, 2023), carefully maintaining a similar
parameter count for fair comparability. This combination results in our proposed method, Time
series Imputation with bi-directional Mamba Blocks and Diffusion models (TIMBA).

Our main contributions are as follows: 1) We propose TIMBA, a model that replaces the time-
oriented transformers in state-of-the-art diffusion models with bi-directional Mamba blocks, an ap-
proach not previously explored to the best of our knowledge. 2) Through an extensive benchmark
using three real-world datasets, we demonstrate that TIMBA consistently achieves superior perfor-
mance in almost all scenarios and performs comparably in others when compared to state-of-the-art
models 3) Additionally, we expand the model’s analysis by presenting an ablation study, evaluating
its sensitivity to different missing rates, and using it for data imputation followed by an evaluation
on a downstream task. The rest of the paper is organized as follows: In Section 2, we review related
work in the literature. Section 3 introduces the mathematical background supporting our approach.
Section 4 presents TIMBA. In Section 5, we discuss the benchmark, experimental setup, and results
obtained. Finally, Section 6 provides the conclusion. Additional information about the code and
data can be found in Appendix A.

2 RELATED WORKS

Multivariate time series imputation MTSI has been explored through various approaches. Tra-
ditional solutions such as mean, zero, or linear imputation have been utilized to address missing
values (Moor et al., 2020). However, these methods often distort the original data distribution, thus
degrading the data quality. In contrast, Machine Learning (ML) offers a range of simple to sophis-
ticated techniques, including k nearest neighbors (Beretta & Santaniello, 2016), linear predictors
(Seaman et al., 2012), matrix factorization (MF) (Cichocki & Phan, 2009), vector autoregressive
model-imputation (VAR) (Bashir & Wei, 2018), and multivariate Gaussian processes (MGP) (Li &
Marlin, 2016), which have improved outcomes in many cases.

With the advent of DL, MTSI applications were soon discovered. Initially, Recurrent Neural Net-
works (RNNs) (Suo et al., 2019; Lipton et al., 2016) excelled due to their robust capacity to extract
accurate temporal representations, crucial for effective imputation. Advancements in RNNs led to
the adoption of architectures such as Bi-directional RNNs (BiRNNs), exemplified by BRITS (Cao
et al., 2018), which analyze time series data both forwards and backwards, thereby enhancing impu-
tation capabilities. However, recent years have seen the rise of Transformers as a dominant architec-
ture, highlighting the limitations of RNNs. The attention mechanism in Transformers is particularly
effective in identifying significant or real samples in time series, addressing the error accumulation
issues prevalent in RNNs, as evidenced by several studies (Tashiro et al., 2021; Liu et al., 2023).

Lastly, the role of GNNs, which are based on graph theory, must be noted for their profound ability to
extract spatial relationships among variables. Many researchers argue that for accurate imputation,
it is essential to derive robust spatio-temporal representations, hence the integration of RNNs or
Transformers with GNNs has become a focal point (Cini et al., 2022; Liu et al., 2023). To further
enhance the effectiveness of MTSI, generative models and State-Space Models have emerged as
powerful tools, offering unique advantages in handling complex data distributions and dynamics.

Generative models for imputation Recently, there has been growing interest in applying genera-
tive methods to MTSI due to their ability to learn the original data distribution, making them highly
suitable for addressing this issue. Variational Autoencoders (VAE) have been used in this context
for several years (Fortuin et al., 2020). However, interest in generative techniques for imputation
exploded following the introduction of Generative Adversarial Networks (GANs), with the ground-
breaking work of Generative Adversarial Imputation Networks (GAIN) (Yoon et al., 2018) marking
a significant milestone. Following this development, numerous GAN applications emerged in MTSI,
often incorporating RNN layers to analyze temporal sequences (Luo et al., 2018; Miao et al., 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Nevertheless, the issue of model collapse in GANs (Thanh-Tung & Tran, 2020), coupled with the
emergence of Denoising Diffusion Probabilistic Models (DDPMs) and their superior ability to cap-
ture diverse and high-quality distributions, has led to a shift away from GANs. Research such as
CSDI by Tashiro et al. (2021) demonstrated how DDPMs, with the right conditional information,
could efficiently address MTSI challenges. Further studies, such as those by Yun et al. (2023), con-
firmed that unconditional DDPMs might fail, whereas Liu et al. (2023) enhanced DDPMs’ ability to
generate better conditional information through specialized layers, furthering their effectiveness in
MTSI applications.

State-Space Models State-Space Models (SSMs) (Hangos et al., 2006), derived from control the-
ory to model system dynamics, have been successfully adapted to the Deep Learning (DL) realm
as Structured State Space Models (S4) (Gu et al., 2022b). These models, similar to RNNs, have
recently demonstrated their proficiency in modeling diverse sequences, leading to their application
in text, audio, and even video-related problems (Gu et al., 2022a). Like RNNs, however, they lack
an attention mechanism, which is crucial for avoiding error accumulation during tasks such as im-
putation.

Nevertheless, the latest iteration, Selective State Space Models (S6), has incorporated an attention
mechanism into the SSM structure, sparking a surge in applications. These models have been em-
ployed in selective copy tasks, language modeling, DNA modeling, and audio modeling and gen-
eration (Gu & Dao, 2023), occasionally outperforming traditional transformers. Specifically, in the
field of time series imputation with DDPMs, the application of S4 has so far been limited to the
study by (Alcaraz & Strodthoff, 2023), while S6 remains unexplored.

3 BACKGROUND

3.1 MULTIVARIATE TIME SERIES IMPUTATION

A multivariate time series (MTS) consists of Nt variables or channels recorded at different time
instants denoted by t. Consequently, these data can be represented as Xt ∈ RNt×d, where each row
i contains the d-dimensional vector xi

t ∈ Rd, associating the ith variable with the time instant t.
Additionally, a matrix Mt ∈ {0, 1}Nt×d is used, where each entry contains a 0 if the corresponding
value in Xt is missing, and a 1 if it is an observed data point.

Considering this, we define X̃t as the unknown ground truth variable-measure matrix, i.e., the com-
plete time series without missing data; X̂t denotes the time series imputed by the model, and X the
series imputed by linear interpolation technique.

Finally, given that our work will focus on graph-based models, we model the time series as a se-
quence of graphs following the approach established by Cini et al. (2022). In this approach, each
instant t is defined as a graph Gt with Nt nodes at each time instant. Moreover, the graph is defined
as Gt = ⟨Xt,At⟩, where Xt represents the data matrix and At represents the adjacency matrix at
instant t. However, this paper only considers the approach in which the graph topology does not
change over time, thus A is constant for each t.

3.2 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPM) rely on a Markov chain with time steps t =
1, . . . , T . Beginning with an initial state xT ∼ N (0, 1), these models aim to reverse the sequence
of latent variables xt in the same space as x0, to learn pθ(x0) that approximates the original data
distribution q(x0) (Ho et al., 2020).

The forward process or diffusion process involves progressively corrupting an initial sample x0

by gradually adding Gaussian noise until reaching xT ∼ N (0, 1). Noise addition is moderated
by a variance scheduler βt = β1, . . . , βT to ensure distribution variance remains controlled and
converges appropriately. This process is formalized by:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

Reparameterizing the parameters from Equation 1, we define αt = 1 − βt and αt :=
∏T

t=1 αt.
Utilizing the transformation N (µ, σ2) = µ + σ · ϵ, where ϵ ∼ N (0, 1), allows us to derive a
simplified model: q(xt|x0) =

√
αtx0 +

√
1− αtϵ.

The reverse process, to recover the initial sample x0, is defined by the following Markov chain:

pθ(x0:T) := pθ(xT)

T∏
t=1

pθ(xt−1|xt), xT ∼ N (0, 1)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σθ(xt, t)I)

(2)

As in (Ho et al., 2020), we do not predict σθ as it remains fixed, controlled by the scheduler. µθ is
recalculated as:

µθ(xt, t) =
1
√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) (3)

With the above considerations, in order to learn to model the original distribution, for each step of the
chain t, and an xt generated according to q(xt|x0), our model must solve the following optimization
problem defined by L(θ) := Et,xo,ϵ[||ϵ− ϵθ(xt, t)||2].

3.3 STATE-SPACE MODELS AND MAMBA

State-Space Models (SSMs) are based on the theory of continuous control systems and process an
input signal as defined in Equation 4 (Brogan, 1974).

ḣ(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)
(4)

An input signal x(t) is mapped to a latent state h(t) and then projected to an output signal y(t). The
matrices A, B, C, and D determine the transformations involved in this process. Structured State
Space Models (S4) (Gu et al., 2022b) adapt SSMs by discretizing them. This involves modeling D
as a skip-connection layer, defining a step size ∆ = tn+1 − tn, and discretizing all matrices, where
C = C, D = D, A = (I − ∆/2 ·A)−1(I + ∆/2 ·A), and B = (I − ∆/2 ·A)−1∆B. This
results in Equation 5, noting that D is not represented as it is modeled as a skip-connection.

ht = Aht−1 +Bxt

yt = Cht

(5)

Following S4, Selective State Space Models (S6) were introduced (Gu & Dao, 2023), improving on
S4 by making ∆,B, and C dependent on a selection mechanism such that ∆ ← τ∆(Parameter +
s∆(x)), B ← sB(x) and C ← sC(x), where sB(x), sC(x) and s∆(x) are implemented as param-
eterized linear projections focusing on the hidden state of each t in the original sequence x.

Finally, in Gu & Dao (2023), S6 is embedded within a Mamba block, which essentially consists of
Multi-layer Perceptron (MLP) layers that serve to increase the hidden state size and generate two
distinct information channels. In the first channel, a convolutional layer and S6 are applied, while
the second channel applies a non-linear activation function to create a gate controlling the retention
of information. Lastly, a MLP layer compresses everything back to its original dimensions.

4 TIMBA

Our approach builds upon the architecture established by Tashiro et al. (2021) and Liu et al. (2023),
which is centered on a diffusion model incorporating various blocks for refining data imputation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 TRAINING DDPM FOR IMPUTATION

Although the general theory behind DDPMs was discussed in Section 3.2, these models need condi-
tional information to perform effectively for general imputation, as proposed by Tashiro et al. (2021)
and demonstrated by Yun et al. (2023).

To train a DDPM for MTSI, key modifications include adapting the reverse process to incorporate
this conditional information. Thus, we revise Equation 2 to include our conditional variables, which
are X and A:

pθ(x0:T) := pθ(xT)

T∏
t=1

pθ(xt−1|xt,X ,A)

pθ(xt−1|xt,X ,A) := N (xt−1;µθ(xt,X ,A, t), βtI)

(6)

Following this, the optimization objective will be similar to that described in Section 3.2. However,
as in Tashiro et al. (2021), we need to generate synthetic missing values (generate imputation targets
x0 ∈ M ta) where the imputation error is calculated. The model generates imputations for all
missing values, but we filter the results and retain only those specifically marked as targets for error
calculation. The optimization function then changes to that defined by Equation 7. Finally, it should
be noted that there are many strategies for generating M ta, which are detailed further in Section
5.3.

L(θ) := Et,xo,ϵ[M
ta · ||ϵ− ϵθ(xt,X ,A, t)||2] (7)

4.2 MODEL ARCHITECTURE

Our architecture builds upon the foundational design by Tashiro et al. (2021) and incorporates en-
hancements introduced by Liu et al. (2023). Referring to Figure 1, and following the information
flow from left to right, we begin with the Conditional Feature Extraction Module (CFEM) (Liu et al.,
2023). This module is responsible for generating conditional information that aids other components
in improving imputation quality. The CFEM takes X and A as inputs and processes temporal data
with bidirectional Mamba blocks, replacing the original transformers—a modification we propose
and will justify subsequently. Spatial data is processed using transformer and Message Passing Neu-
ral Network (MPNN) blocks, inspired by Wu et al. (2019). This information is then refined with an
MLP to produce Hpri, as illustrated in the CFEM bubble of Figure 1. The operation is defined as:
Hpri = CFEM(X ,A).
Afterwards, a series of Noise Estimation Modules (NEM) (Tashiro et al., 2021) is employed to esti-
mate the final noise. These modules receive Hpri, the diffusion time embedding t, A, and Hin. For
the initial NEM, Hin is a concatenation of noisy Xt and X . The output generates two information
flows: one as input for the next NEM block (acting as Hin) and another as Hout, serving as the
initial noise estimation. Outputs from each NEM are aggregated and processed by a convolutional
layer to finalize the noise estimation. The internal workings of these blocks are akin to CFEM, as
depicted in the NEM bubble in Figure 1, and described by: Hout = NEM(Hin, Hpri,A, t).
Now, we will discuss our decision to replace the transformer blocks, which focus on the temporal
dimension, with Mamba blocks. Originally, this architecture utilized transformers for the temporal
processing of information. However, despite their known advantages in MTSI, transformers lack
an intrinsic inductive bias for temporal data. In contrast, Mamba blocks provide this bias while
incorporating attention mechanisms, making them more suitable for accurately capturing temporal
relationships. Therefore, we propose replacing time-focused transformers with Mamba blocks.

Furthermore, the mechanism within Mamba blocks’ S6 layers resembles that of RNNs. This similar-
ity allows us to adopt a BiRNN-like approach, where each Mamba block processes time series bidi-
rectionally. Inspired by the Vision Mamba block (Zhu et al., 2024), which processes image patches
in both directions, we have modified this approach to work effectively with NEM and CFEM blocks.

Our bidirectional block, depicted in Figure 2, processes a data tensor. If it is a NEM block, it
concatenates Hpri and applies layer normalization. Dropout is employed for regularization, and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Architecture of the TIMBA model

Figure 2: Implementation of the Mamba block within the NEM module capable of bi-directional
time series analysis.

MLP layers expand the hidden state to create two information channels, similar to the original
Mamba block. The first channel is modified to establish two additional paths that analyze the time
series forwards and backwards, each with its convolutional layer and S6 layer. The second channel
remains unchanged, maintaining its activation and gating mechanism. Outputs are aggregated and
compressed back to their original dimensions via another MLP, followed by layer normalization.
Finally, a residual connection incorporates previously processed information, producing the final
output of this module.

5 EXPERIMENTS

5.1 DATASETS

We employed datasets identical to those used in Cini et al. (2022), which established benchmarks
later used as comparison metrics (Tashiro et al., 2021; Liu et al., 2023). The AQI-36 dataset (Yi
et al., 2016) comprises air quality data from 36 stations in Beijing, recorded hourly over a year,
with 13.24% missing values. We also utilized the METR-LA and PEMS-BAY datasets (Li et al.,
2018), documenting traffic in Los Angeles and the San Francisco Bay Area, respectively. METR-
LA includes data from 207 sensors over four months with an 8.10% missing rate, while PEMS-BAY
covers 325 sensors over six months with 0.02% missing values, both sampled every five minutes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Consistent with the Cini et al. (2022) benchmark, we replicated the adjacency matrices using thresh-
olded Gaussian Kernels on geographical distances, as suggested in (Li et al., 2018) and (Wu et al.,
2019). The same training, validation, and testing splits were used: 70%, 10%, and 20% of the data,
respectively, with identical seeds. For AQI-36, testing was conducted in February, May, August, and
November, as originally designated, with 10% validation samples using the same seed.

Evaluation of these datasets includes three scenarios with synthetic missing data. In the ”Block
missing” scenario, 5% of the data was randomly masked, and 1-4 hour blocks were masked at each
sensor with a 0.15% probability; in the ”Point missing” scenario, 25% of the values were randomly
masked; in the last scenario, missing values are simulated with the same distribution as the original
data.

5.2 BASELINES

We compared our proposed method against established benchmark methods originally presented in
the GRIN article (Cini et al., 2022), and subsequently extended by CSDI (Tashiro et al., 2021) and
PriSTI (Liu et al., 2023). To ensure the accuracy of our comparison, we replicated the experiments
of CSDI and PriSTI using the parameters reported in their original papers. The only modification
made was the adjustment of small differences found in the training and validation splits of the AQI-
36 dataset between CSDI, PriSTI and GRIN to maintain a fair comparison. The evaluated methods
are:

1) Statistical techniques: MEAN (using historical mean values), DA (daily averages), and KNN
(geographical proximity). 2) Machine learning algorithms: Lin-ITP (linear interpolation), MICE
(White et al., 2011) (multiple imputation), VAR (vector autoregressive model), and KF (Kalman
Filter). 3) Matrix factorization strategies: TRMF (Yu et al., 2016) (temporal regularized ma-
trix factorization) and BATF (Chen et al., 2019) (Bayesian augmented tensor factorization). 4)
Autoregressive models: BRITS (Cao et al., 2018) (bidirectional RNN), MPGRU (one-step-ahead
GNN-based predictor similar to DCRNN (Li et al., 2018)), GRIN (Cini et al., 2022). 5) Generative
models: CSDI (Tashiro et al., 2021), PriSTI (Liu et al., 2023), V-RIN (Mulyadi et al., 2021) (VAE
with quantified uncertainty), GP-VAE (Fortuin et al., 2020) (VAE combined with Gaussian process),
and rGAIN (Yoon et al., 2018) (GAN-based imputation with a recurrent structure).

5.3 EXPERIMENTAL SETTINGS

For DDPMs, 100 imputations were generated per missing value, with the median serving as the final
imputation. Additionally, all experiments have been repeated 3 times using different seeds. During
training, four synthetic missing data generation techniques were used:

1) Point strategy: A random [0, 100]% of data was masked per batch. 2) Block strategy: Se-
quences of missing values of length [L/2, L] were generated with a [0, 15]% probability, plus an
additional 5% missing. 3) Historical strategy: Real imputation masks already present in the data
were used. 4) Hybrid strategy: Each training sample was masked using the point strategy as a first
option, or block or historical strategies as a second option with a 50% probability.

For the ”Point missing” scenarios described in Section 5.1, the point strategy was used. For ”Block
missing” scenarios, the hybrid strategy was applied with the block strategy as the secondary option.
For AQI-36, the hybrid strategy with the historical strategy as the secondary option was employed.

It is important to highlight that for the benchmark comparison in Section 5.4.1, the CSDI, PriSTI,
and TIMBA models were trained for the number of epochs specified in their original papers: 200
epochs for the AQI-36 dataset and 300 epochs for the Traffic datasets. However, for the remaining
experiments discussed in Section 5.4, the training epochs were limited to 50 due to time constraints
during the execution of the experiments.

Finally, as in the original work by Tashiro et al. (2021), the model was trained with a learning rate
of 10−3, which was reduced to 10−4 after 75% of the training epochs, and again to 10−5 after
90%. Consistent with Tashiro et al. (2021), a quadratic scheduler was used for the noise scheduling.
Detailed hyperparameter settings, as well as information on training and inference times, and code
reproducibility, are provided in Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results obtained after testing TIMBA against the benchmark established in the literature
(Cini et al., 2022). The results are shown in terms of MAE and MSE.

AQI-36 METR-LA PEMS-BAY

Simulated failure (24.6%) Block-missing (16.6%) Point-missing (31.1%) Block-missing (9.2%) Point-missing (25.0%)

Models MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Mean 53.48 ± 0.00 4578.08 ± 0.00 7.48 ± 0.00 139.54 ± 0.00 7.56 ± 0.00 142.22 ± 0.00 5.46 ± 0.00 87.56 ± 0.00 5.42 ± 0.00 86.59 ± 0.00

DA 50.51 ± 0.00 4416.10 ± 0.00 14.53 ± 0.00 445.08 ± 0.00 14.57 ± 0.00 448.66 ± 0.00 3.30 ± 0.00 43.76 ± 0.00 3.35 ± 0.00 44.50 ± 0.00

KNN 30.21 ± 0.00 2892.31 ± 0.00 7.79 ± 0.00 124.61 ± 0.00 7.88 ± 0.00 129.29 ± 0.00 4.30 ± 0.00 49.90 ± 0.00 4.30 ± 0.00 49.80 ± 0.00

Lin-ITP 14.46 ± 0.00 673.92 ± 0.00 3.26 ± 0.00 33.76 ± 0.00 2.43 ± 0.00 14.75 ± 0.00 1.54 ± 0.00 14.14 ± 0.00 0.76 ± 0.00 1.74 ± 0.00

KF 54.09 ± 0.00 4942.26 ± 0.00 16.75 ± 0.00 534.69 ± 0.00 16.66 ± 0.00 529.96 ± 0.00 5.64 ± 0.00 93.19 ± 0.00 5.68 ± 0.00 93.32 ± 0.00

MICE 30.37 ± 0.09 2594.06 ± 7.17 4.22 ± 0.05 51.07 ± 1.25 4.42 ± 0.07 55.07 ± 1.46 2.94 ± 0.02 28.28 ± 0.37 3.09 ± 0.02 31.43 ± 0.41

VAR 15.64 ± 0.08 833.46 ± 13.85 3.11 ± 0.08 28.00 ± 0.76 2.69 ± 0.00 21.10 ± 0.02 2.09 ± 0.10 16.06 ± 0.73 1.30 ± 0.00 6.52 ± 0.01

TRMF 15.46 ± 0.06 1379.05 ± 34.83 2.96 ± 0.00 22.65 ± 0.13 2.86 ± 0.00 20.39 ± 0.02 1.95 ± 0.01 11.21 ± 0.06 1.85 ± 0.00 10.03 ± 0.00

BATF 15.21 ± 0.27 662.87 ± 29.55 3.56 ± 0.01 35.39 ± 0.03 3.58 ± 0.01 36.05 ± 0.02 2.05 ± 0.00 14.48 ± 0.01 2.05 ± 0.00 14.90 ± 0.06

V-RIN 10.00 ± 0.10 838.05 ± 24.74 6.84 ± 0.17 150.08 ± 6.13 3.96 ± 0.08 49.98 ± 1.30 2.49 ± 0.04 36.12 ± 0.66 1.21 ± 0.03 6.08 ± 0.29

GP-VAE 25.71 ± 0.30 2589.53 ± 59.14 6.55 ± 0.09 122.33 ± 2.05 6.57 ± 0.10 127.26 ± 3.97 2.86 ± 0.15 26.80 ± 2.10 3.41 ± 0.23 38.95 ± 4.16

rGAIN 15.37 ± 0.26 641.92 ± 33.89 2.90 ± 0.01 21.67 ± 0.15 2.83 ± 0.01 20.03 ± 0.09 2.18 ± 0.01 13.96 ± 0.20 1.88 ± 0.02 10.37 ± 0.20

MPGRU 16.79 ± 0.52 1103.04 ± 106.83 2.57 ± 0.01 25.15 ± 0.17 2.44 ± 0.00 22.17 ± 0.03 1.59 ± 0.01 14.19 ± 0.11 1.11 ± 0.00 7.59 ± 0.02

BRITS 14.50 ± 0.35 622.36 ± 65.16 2.34 ± 0.01 17.00 ± 0.14 2.34 ± 0.00 16.46 ± 0.05 1.70 ± 0.01 10.50 ± 0.07 1.47 ± 0.00 7.94 ± 0.03

GRIN 12.08 ± 0.47 523.14 ± 57.17 2.03 ± 0.00 13.26 ± 0.05 1.91 ± 0.00 10.41 ± 0.03 1.14 ± 0.01 6.60 ± 0.10 0.67 ± 0.00 1.55 ± 0.01

CSDI 9.74 ± 0.16 388.37 ± 11.42 1.90 ± 0.01 12.27 ± 0.18 1.77 ± 0.05 9.42 ± 0.47 0.84 ± 0.00 4.06 ± 0.04 0.58 ± 0.00 1.30 ± 0.04

PriSTI 9.84 ± 0.11 376.11 ± 10.62 1.78 ± 0.00 10.64 ± 0.13 1.70 ± 0.00 8.47 ± 0.04 0.87 ± 0.01 4.64 ± 0.21 0.59 ± 0.00 1.61 ± 0.03

TIMBA 9.56 ± 0.4 352.29 ± 5.33 1.76 ± 0.02 10.36 ± 0.34 1.69 ± 0.00 8.36 ± 0.01 0.84 ± 0.01 4.57 ± 0.08 0.58 ± 0.00 1.63 ± 0.08

Aiming for precise parameter alignment in model comparisons, when we developed TIMBA, we
replaced PriSTI’s dedicated temporal dimension transformer with a Mamba block with the most
similar parameter count possible, while maintaining the approach described in Gu & Dao (2023) of
using a factor of 2 expansion on the original tensor’s hidden space. Using the METR-LA dataset
as a reference, TIMBA has 876,765 parameters, while PriSTI and CSDI have 797,533 and 416,305
parameters, respectively. This results in a proportionally smaller increase in capacity, as PriSTI
increases its parameters by 91.5% more compared to CSDI, whereas TIMBA only increases by
9.93% compared to PriSTI.

5.4 RESULTS AND DISCUSSION

To evaluate the imputation performance of TIMBA, we used the Mean Absolute Error (MAE) and
Mean Square Error (MSE) metrics, following the benchmark established by Cini et al. (2022).

5.4.1 BENCHMARK RESULTS

Table 1 presents the evaluation results of TIMBA compared to the previously defined benchmark.
Our method generally outperforms previous results, consistently achieving better or at least compa-
rable outcomes to PriSTI.

However, a more detailed analysis reveals that our method does not perform as well in the PEMS-
BAY point-missing scenario, achieving results comparable to PriSTI. Interestingly, in this specific
scenario, CSDI outperforms both methods. Given that the primary difference between PriSTI and
TIMBA with CSDI lies in the hyperparameters of the noise scheduler, a finer adjustment of these
values might further improve our model’s performance.

5.4.2 ABLATION ANALYSIS

This section presents the results of an ablation study comparing the performance of TIMBA using
both bidirectional and unidirectional Mamba blocks. The objective of this experiment was to de-
termine to what extent bidirectional information processing is beneficial for Mamba blocks. The
results are shown in Table 2.

The analysis indicates that TIMBA achieves superior performance across all scenarios when utiliz-
ing bidirectional blocks. This finding supports the necessity of these blocks for effectively extracting
improved temporal representations from the data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablation results for TIMBA. TIMBA refers to the configuration utilizing bidirectional
blocks, while TIMBA-Uni represents the model using only unidirectional Mamba blocks. This
experiment was conducted with training limited to 50 epochs, as described in Section 5.3

AQI-36 METR-LA PEMS-BAY

Simulated failure (24.6%) Block-missing (16.6%) Point-missing (31.1%) Block-missing (9.2%) Point-missing (25.0%)

Models MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

TIMBA-Uni 10.18 ± 0.06 402.62 ± 6.57 1.88 ± 0.00 12.18 ± 0.09 1.79 ± 0.01 9.59 ± 0.05 0.92 ± 0.01 5.01 ± 0.14 0.64 ± 0.00 1.99 ± 0.06

TIMBA 9.66 ± 0.32 360.66 ± 25.02 1.79 ± 0.01 10.73 ± 0.24 1.71 ± 0.01 8.56 ± 0.10 0.86 ± 0.01 4.80 ± 0.19 0.59 ± 0.01 1.65 ± 0.14

5.4.3 MISSING RATE SENSITIVITY ANALYSIS

In the following experiment, we analyze the sensitivity of our model to varying levels of missing
values. We evaluate CSDI, PriSTI, and TIMBA using the METR-LA dataset under the Point-missing
scenario with different rates of missing data. For each model, we used the best-performing weights
obtained during a previous training of 50 epochs, consistent with the description in Section 5.3. The
results for the three models are presented in terms of MAE and MSE in Tables 3 and 4, respectively.

Table 3: Sensitivity analysis for different levels of missing values in the METR-LA dataset under
the Point missing scenario, presented in terms of MAE.

MAE - METR-LA (P)

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

CSDI 1.77 1.82 1.88 1.96 2.07 2.20 2.39 2.70 3.29
PriSTI 1.64 1.67 1.71 1.76 1.81 1.89 1.99 2.14 2.43

TIMBA 1.64 1.66 1.70 1.75 1.80 1.88 1.98 2.13 2.41

Table 4: Sensitivity analysis for different levels of missing values in the METR-LA dataset under
the Point missing scenario, presented in terms of MSE.

MSE - METR-LA (P)

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

CSDI 8.50 9.10 9.92 10.88 12.14 13.86 16.54 21.75 32.54
PriSTI 7.71 8.07 8.61 9.29 10.08 11.24 12.88 15.88 22.08

TIMBA 7.60 7.91 8.48 9.15 9.96 11.09 12.65 15.55 21.57

Analyzing the results, we find that TIMBA consistently delivers the best performance, particularly in
terms of MSE. This demonstrates that our model effectively manages higher rates of missing values
in the input data, further highlighting the advantages of SSMs over classical Transformers for these
time series tasks.

5.4.4 DOWNSTREAM TASK ANALYSIS

Evaluating imputation models requires assessing their effectiveness on downstream tasks (Wang
et al., 2024). This section outlines a specific task using imputed data to evaluate CSDI, PriSTI, and
TIMBA. The downstream task designed for this experiment involves predicting the value of a node
at time t using the values of other nodes at the same time t.

For this section, we performed the node forecasting task using two different nodes. We conducted all
experiments twice, once targeting node 14 and once targeting node 31, to ensure a more informative
comparison. These nodes correspond to stations with the highest and lowest connectivity in the
graph, following a similar approach to Cini et al. (2022) in selecting nodes for experiments.

We use the AQI-36 dataset, imputing missing values with the best weights obtained from the results
in Table 1. For this task, we only impute validation and test data to ensure that the imputation models

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

work with data they have never seen. These new imputed data are split into a new training set (80%)
and test set (20%), normalized using a MinMax scaler.

We employ an MLP with one hidden layer of 100 neurons and an output layer of 1. This network
is trained for 500 epochs to minimize the MSE between the actual and predicted values, using the
same five seeds for the imputed data with CSDI, PriSTI, and TIMBA. Final test results are measured
using MSE and MAE and only consider actual values. Imputed target values are excluded from the
final test results for the calculation of both metrics.

Table 5: Results of the downstream task for node value prediction using data imputed by CSDI,
PriSTI, and TIMBA.

Sensor 14 Sensor 31

Models MAE MSE MAE MSE

CSDI 6.51 ± 0.69 96.99 ± 21.25 11.99 ± 1.92 376.40 ± 148.06

PriSTI 6.46 ± 0.71 92.70 ± 20.27 11.70 ± 1.80 361.19 ± 132.99

TIMBA 6.45 ± 0.69 91.90 ± 20.33 11.68 ± 1.77 359.80 ± 131.74

As shown in Table 5, TIMBA achieves the best results for both nodes and both metrics. This indi-
cates that the quality of imputation provided by our method is advantageous for use as a preprocess-
ing step to improve subsequent tasks.

5.4.5 LIMITATIONS

Analyzing the limitations of our model, it should be noted that our method does not assume any
distribution in the missing values beyond their occurrence through a stationary process. Throughout
the paper, we mainly focus on the missing at random (MAR) scenario (Rubin, 1976). Beyond this,
we make no assumptions about the amount or length of the missing data.

6 CONCLUSIONS

In this paper, we presented TIMBA, a model that replaces the time-oriented transformer layers in
state-of-the-art diffusion models for multivariate time series imputation with bidirectional Mamba
blocks. Our extensive benchmark with three real-world datasets demonstrates that TIMBA either
surpasses or performs comparably to the current state-of-the-art. Additionally, we showed that
TIMBA can scale effectively with longer temporal sequences, generally achieving better results
as the number of time steps per sample increases.

For future work, it would be valuable to explore ways to further reduce training and inference time,
potentially through the application of latent diffusion models or denoising diffusion implicit models.
Additionally, it would be interesting to apply our architecture to time series forecasting problems.

REFERENCES

Hassan M Ahmed, Bessam Abdulrazak, F Guillaume Blanchet, Hamdi Aloulou, and Mounir
Mokhtari. Long gaps missing iot sensors time series data imputation: A bayesian gaussian ap-
proach. IEEE Access, 10:116107–116119, 2022.

Juan Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecasting
with structured state space models. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=hHiIbk7ApW.

Faraj Bashir and Hua-Liang Wei. Handling missing data in multivariate time series using a vector
autoregressive model-imputation (var-im) algorithm. Neurocomputing, 276:23–30, 2018.

Lorenzo Beretta and Alessandro Santaniello. Nearest neighbor imputation algorithms: a critical
evaluation. BMC medical informatics and decision making, 16(3):197–208, 2016.

10

https://openreview.net/forum?id=hHiIbk7ApW

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

W.L. Brogan. Modern Control Theory. QPI series. Quantum Publishers, 1974. ISBN
9780135903070. URL https://books.google.es/books?id=Vu9QAAAAMAAJ.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

Xinyu Chen, Zhaocheng He, Yixian Chen, Yuhuan Lu, and Jiawei Wang. Missing traffic data impu-
tation and pattern discovery with a bayesian augmented tensor factorization model. Transporta-
tion Research Part C: Emerging Technologies, 104:66–77, 2019.

Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale nonnegative matrix and
tensor factorizations. IEICE transactions on fundamentals of electronics, communications and
computer sciences, 92(3):708–721, 2009.

Andrea Cini and Ivan Marisca. Torch Spatiotemporal, 3 2022. URL https://github.com/
TorchSpatiotemporal/tsl.

Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the g ap s: Multivariate time series imputation
by graph neural networks. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=kOu3-S3wJ7.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https:
//github.com/Lightning-AI/lightning.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilis-
tic time series imputation. In International conference on artificial intelligence and statistics, pp.
1651–1661. PMLR, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022b.

Katalin M Hangos, József Bokor, and Gábor Szederkényi. Analysis and control of nonlinear process
systems. Springer Science & Business Media, 2006.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Ar-
ray programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/
s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Steven Cheng-Xian Li and Benjamin M Marlin. A scalable end-to-end gaussian process adapter for
irregularly sampled time series classification. Advances in neural information processing systems,
29, 2016.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=SJiHXGWAZ.

Zachary C Lipton, David C Kale, Randall Wetzel, et al. Modeling missing data in clinical time
series with rnns. Machine Learning for Healthcare, 56(56):253–270, 2016.

11

https://books.google.es/books?id=Vu9QAAAAMAAJ
https://github.com/TorchSpatiotemporal/tsl
https://github.com/TorchSpatiotemporal/tsl
https://openreview.net/forum?id=kOu3-S3wJ7
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://doi.org/10.1038/s41586-020-2649-2
https://openreview.net/forum?id=SJiHXGWAZ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. Pristi: A conditional
diffusion framework for spatiotemporal imputation. arXiv preprint arXiv:2302.09746, 2023.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with
generative adversarial networks. Advances in neural information processing systems, 31, 2018.

Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment.
Linux journal, 2014(239):2, 2014.

Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei Yin. Generative
semi-supervised learning for multivariate time series imputation. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 8983–8991, 2021.

Michael Moor, Max Horn, Christian Bock, Karsten Borgwardt, and Bastian Rieck. Path imputation
strategies for signature models. In ICML Workshop on the Art of Learning with Missing Values
(Artemiss), 2020.

Ahmad Wisnu Mulyadi, Eunji Jun, and Heung-Il Suk. Uncertainty-aware variational-recurrent im-
putation network for clinical time series. IEEE Transactions on Cybernetics, 52(9):9684–9694,
2021.

The pandas development team. pandas-dev/pandas: 1.4.4, February 2020. URL https://doi.
org/10.5281/zenodo.3509134.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

Shaun R Seaman, Jonathan W Bartlett, and Ian R White. Multiple imputation of missing covari-
ates with non-linear effects and interactions: an evaluation of statistical methods. BMC medical
research methodology, 12:1–13, 2012.

Javier Solı́s-Garcı́a, Belén Vega-Márquez, Juan A Nepomuceno, José C Riquelme-Santos, and Is-
abel A Nepomuceno-Chamorro. Comparing artificial intelligence strategies for early sepsis de-
tection in the icu: an experimental study. Applied Intelligence, 53(24):30691–30705, 2023.

Qiuling Suo, Liuyi Yao, Guangxu Xun, Jianhui Sun, and Aidong Zhang. Recurrent imputation for
multivariate time series with missing values. In 2019 IEEE international conference on healthcare
informatics (ICHI), pp. 1–3. IEEE, 2019.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. Advances in Neural Information Pro-
cessing Systems, 34:24804–24816, 2021.

Hoang Thanh-Tung and Truyen Tran. Catastrophic forgetting and mode collapse in gans. In 2020
international joint conference on neural networks (ijcnn), pp. 1–10. IEEE, 2020.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009. ISBN 1441412697.

Jun Wang, Wenjie Du, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan Liang, and Qingsong Wen. Deep
learning for multivariate time series imputation: A survey. arXiv preprint arXiv:2402.04059,
2024.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and
Jarrod Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56 – 61, 2010.
doi: 10.25080/Majora-92bf1922-00a.

Ian R White, Patrick Royston, and Angela M Wood. Multiple imputation using chained equations:
issues and guidance for practice. Statistics in medicine, 30(4):377–399, 2011.

12

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xian Wu, Stephen Mattingly, Shayan Mirjafari, Chao Huang, and Nitesh V Chawla. Personalized
imputation on wearable-sensory time series via knowledge transfer. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 1625–1634, 2020.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pp. 1907–1913. International Joint Conferences
on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/264. URL https:
//doi.org/10.24963/ijcai.2019/264.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019.
URL https://github.com/facebookresearch/hydra.

Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. St-mvl: Filling missing values in geo-sensory
time series data. In Proceedings of the 25th International Joint Conference on Artificial Intelli-
gence, 2016.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning, pp. 5689–5698. PMLR, 2018.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization for
high-dimensional time series prediction. Advances in neural information processing systems, 29,
2016.

Taeyoung Yun, Haewon Jung, and Jiwoo Son. Imputation as inpainting: Diffusion models for
spatiotemporal data imputation. 2023.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

A IMPLEMENTATION DETAILS

A.1 COMPLETE HYPERPARAMS DESCRIPTION

Table 6 lists all the hyperparameters used to obtain the results presented in this paper. Most of these
hyperparameters are directly taken from the PriSTI GitHub repository to ensure a fair comparison.

Table 6: The hyperparameters of TIMBA for all datasets.
Description AQI-36 METR-LA PEMS-BAY

Batch size 16 4 4
Time length L 36 24 24
Epochs 200 300 300
Learning rate 0.001 0.001 0.001
Layers of noise estimation 4 4 4
Channel size d 64 64 64
Number of attention heads 8 8 8
Minimum noise level β1 0.0001 0.0001 0.0001
Maximum noise level βT 0.2 0.2 0.2
Diffusion steps T 100 50 50
Number of virtual nodes k 16 64 64
Mamba block dropout 0.1 0.1 0.1
SSM state expansion factor 16 16 16
Mamba local convolution width 4 4 4
Mamba block expansion factor 2 2 2

To expand on this information, it is important to note that the virtual nodes k were introduced by Liu
et al. (2023). These nodes help reduce the complexity of transformers in handling spatial information
by compressing real nodes into a defined number of virtual nodes k.

13

https://doi.org/10.24963/ijcai.2019/264
https://doi.org/10.24963/ijcai.2019/264
https://github.com/facebookresearch/hydra

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 CODE REPRODUCIBILITY

This project has been conducted with a focus on facilitating code reproducibility and easy access to
the datasets used. The code is available on GitHub: [Hidden for anonymization – check supple-
mentary material during review].

The implementation is in Python (Van Rossum & Drake, 2009), utilizing the following open-source
libraries:

• Pytorch (Paszke et al., 2017).
• Pytorch Lightning (Falcon & The PyTorch Lightning team, 2019)
• Numpy (Harris et al., 2020).
• Torch spatio-temporal (Cini & Marisca, 2022).
• Pandas (pandas development team, 2020; Wes McKinney, 2010).
• Hydra (Yadan, 2019).

Additionally, to simplify execution, a Docker image and container (Merkel, 2014) have been devel-
oped, along with scripts to create and run them easily.

All experiments were conducted on a computer with the following specifications: Ubuntu 22.04.2
LTS, AMD Ryzen Threadripper PRO 3955WX 16-Cores CPU, NVIDIA RTX A5000 24 GB GPU,
and 8X16 GB (128GB) DDR4 RAM. The runtime results obtained using this setup are presented in
Table 7.

Table 7: Training and inference times measured in hours.
AQI-36 METR-LA PEMS-BAY

Models Training Inference Training Inference Training Inference

CSDI 0.29 0.22 7.28 1.74 19.11 4.62
PriSTI 0.40 0.33 8.21 2.44 19.72 5.99
TIMBA 0.56 0.44 12.83 3.65 32.74 8.71

A.3 DATA AVAILABILITY

The datasets used in this paper are publicly and freely accessible. Specifically, the Torch Spatio-
Temporal library (Cini & Marisca, 2022) includes code for downloading and preparing these
datasets, so there is no need to obtain them separately before running our code.

14

	Introduction
	Related works
	Background
	Multivariate time series imputation
	Denoising Diffusion Probabilistic Models
	State-Space Models and Mamba

	TIMBA
	Training DDPM for imputation
	Model architecture

	Experiments
	Datasets
	Baselines
	Experimental settings
	Results and discussion
	Benchmark results
	Ablation analysis
	Missing rate sensitivity analysis
	Downstream task analysis
	Limitations

	Conclusions
	Implementation details
	Complete hyperparams description
	Code reproducibility
	Data availability

