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ABSTRACT

The problem of imputing multivariate time series spans a wide range of fields,
from clinical healthcare to multi-sensor systems. Initially, Recurrent Neural Net-
works (RNNs) were employed for this task; however, their error accumulation
issues led to the adoption of Transformers, leveraging attention mechanisms to
mitigate these problems. Concurrently, the promising results of diffusion models
in capturing original distributions have positioned them at the forefront of current
research, often in conjunction with Transformers. In this paper, we propose replac-
ing time-oriented Transformers with State-Space Models (SSM), which are better
suited for temporal data modeling. Specifically, we utilize the latest SSM vari-
ant, S6, which incorporates attention-like mechanisms. By embedding S6 within
Mamba blocks, we develop a model that integrates SSM, Graph Neural Networks,
and node-oriented Transformers to achieve enhanced spatiotemporal representa-
tions. Implementing these architectural modifications, previously unexplored in
this field, we present Time series Imputation with Bi-directional mamba blocks
and diffusion models (TIMBA). TIMBA achieves superior performance in almost
all benchmark scenarios and performs comparably in others across a diverse range
of missing value situations and three real-world datasets. We also evaluate how
the performance of our model varies with different amounts of missing values and
analyse its performance on downstream tasks. In addition, we provide the original
code to replicate the results.

1 INTRODUCTION

The issue of missing values is widely recognized and can arise from various causes, including dif-
ficulties in data collection, problems with recording mechanisms, or human errors. In the field of
Multivariate Time Series (MTS) analysis, where multiple variables are recorded, sometimes with
irregular frequency, this problem is even more pronounced. It affects many fields, from defective
sensor records that transmit erroneous data (Wu et al., 2020), to the Internet of Things (IoT) where
these failures are even more common (Ahmed et al., 2022), and even clinical contexts (Moor et al.,
2020). Properly filling these gaps is crucial, as failure to do so can distort the data distribution and
reduce model performance (Solı́s-Garcı́a et al., 2023).

In recent years, this problem has been tackled using Deep Learning (DL) techniques, employing
Recurrent Neural Networks (RNNs) to capture temporal representations and Graph Neural Networks
(GNNs) for spatial ones (Cini et al., 2022). However, the error accumulation problem in RNNs has
led to their replacement by Transformers (Tashiro et al., 2021), which use attention mechanisms to
avoid these issues. Furthermore, the latest state-of-the-art results have been achieved using diffusion
models (Tashiro et al., 2021; Liu et al., 2023), which excel at modeling multiple distributions in the
original data. Additionally, the use of State-Space Models (SSMs) has expanded in recent years,
thanks to their discretization, as presented in S4 (Gu et al., 2022b). These models, reminiscent of
RNNs, have shown a high capacity to handle time series and long sequences, such as those found
in speech processing, text, and even DNA sequencing (Gu et al., 2022b). This architecture has been
briefly explored in the context of multivariate time series imputation (MTSI) (Alcaraz & Strodthoff,
2023). Recently, S6, an improvement over S4 that incorporates an attention-like mechanism, was
developed to potentially eliminate error accumulation issues, as demonstrated in selective copy tasks
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and speech processing (Gu & Dao, 2023). However, the S6 and Mamba blocks have not yet been
tested in the context of MTSI.

Starting from the state-of-the-art models for MTSI, CSDI and PriSTI (Tashiro et al., 2021; Liu et al.,
2023), in this article we replaced time-oriented Transformers in their architecture with S6 layers
embedded within bi-directional Mamba blocks (Gu & Dao, 2023), carefully maintaining a similar
parameter count for fair comparability. This combination results in our proposed method, Time
series Imputation with bi-directional Mamba Blocks and Diffusion models (TIMBA).

Our main contributions are as follows: 1) We propose TIMBA, a model that replaces the time-
oriented transformers in state-of-the-art diffusion models with bi-directional Mamba blocks, an ap-
proach not previously explored to the best of our knowledge. 2) Through an extensive benchmark
using three real-world datasets, we demonstrate that TIMBA consistently achieves superior perfor-
mance in almost all scenarios and performs comparably in others when compared to state-of-the-art
models 3) Additionally, we expand the model’s analysis by presenting an ablation study, evaluating
its sensitivity to different missing rates, and using it for data imputation followed by an evaluation
on a downstream task. The rest of the paper is organized as follows: In Section 2, we review related
work in the literature. Section 3 introduces the mathematical background supporting our approach.
Section 4 presents TIMBA. In Section 5, we discuss the benchmark, experimental setup, and results
obtained. Finally, Section 6 provides the conclusion. Additional information about the code and
data can be found in Appendix A.

2 RELATED WORKS

Multivariate time series imputation MTSI has been explored through various approaches. Tra-
ditional solutions such as mean, zero, or linear imputation have been utilized to address missing
values (Moor et al., 2020). However, these methods often distort the original data distribution, thus
degrading the data quality. In contrast, Machine Learning (ML) offers a range of simple to sophis-
ticated techniques, including k nearest neighbors (Beretta & Santaniello, 2016), linear predictors
(Seaman et al., 2012), matrix factorization (MF) (Cichocki & Phan, 2009), vector autoregressive
model-imputation (VAR) (Bashir & Wei, 2018), and multivariate Gaussian processes (MGP) (Li &
Marlin, 2016), which have improved outcomes in many cases.

With the advent of DL, MTSI applications were soon discovered. Initially, Recurrent Neural Net-
works (RNNs) (Suo et al., 2019; Lipton et al., 2016) excelled due to their robust capacity to extract
accurate temporal representations, crucial for effective imputation. Advancements in RNNs led to
the adoption of architectures such as Bi-directional RNNs (BiRNNs), exemplified by BRITS (Cao
et al., 2018), which analyze time series data both forwards and backwards, thereby enhancing impu-
tation capabilities. However, recent years have seen the rise of Transformers as a dominant architec-
ture, highlighting the limitations of RNNs. The attention mechanism in Transformers is particularly
effective in identifying significant or real samples in time series, addressing the error accumulation
issues prevalent in RNNs, as evidenced by several studies (Tashiro et al., 2021; Liu et al., 2023).

Lastly, the role of GNNs, which are based on graph theory, must be noted for their profound ability to
extract spatial relationships among variables. Many researchers argue that for accurate imputation,
it is essential to derive robust spatio-temporal representations, hence the integration of RNNs or
Transformers with GNNs has become a focal point (Cini et al., 2022; Liu et al., 2023). To further
enhance the effectiveness of MTSI, generative models and State-Space Models have emerged as
powerful tools, offering unique advantages in handling complex data distributions and dynamics.

Generative models for imputation Recently, there has been growing interest in applying genera-
tive methods to MTSI due to their ability to learn the original data distribution, making them highly
suitable for addressing this issue. Variational Autoencoders (VAE) have been used in this context
for several years (Fortuin et al., 2020). However, interest in generative techniques for imputation
exploded following the introduction of Generative Adversarial Networks (GANs), with the ground-
breaking work of Generative Adversarial Imputation Networks (GAIN) (Yoon et al., 2018) marking
a significant milestone. Following this development, numerous GAN applications emerged in MTSI,
often incorporating RNN layers to analyze temporal sequences (Luo et al., 2018; Miao et al., 2021).
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Nevertheless, the issue of model collapse in GANs (Thanh-Tung & Tran, 2020), coupled with the
emergence of Denoising Diffusion Probabilistic Models (DDPMs) and their superior ability to cap-
ture diverse and high-quality distributions, has led to a shift away from GANs. Research such as
CSDI by Tashiro et al. (2021) demonstrated how DDPMs, with the right conditional information,
could efficiently address MTSI challenges. Further studies, such as those by Yun et al. (2023), con-
firmed that unconditional DDPMs might fail, whereas Liu et al. (2023) enhanced DDPMs’ ability to
generate better conditional information through specialized layers, furthering their effectiveness in
MTSI applications.

State-Space Models State-Space Models (SSMs) (Hangos et al., 2006), derived from control the-
ory to model system dynamics, have been successfully adapted to the Deep Learning (DL) realm
as Structured State Space Models (S4) (Gu et al., 2022b). These models, similar to RNNs, have
recently demonstrated their proficiency in modeling diverse sequences, leading to their application
in text, audio, and even video-related problems (Gu et al., 2022a). Like RNNs, however, they lack
an attention mechanism, which is crucial for avoiding error accumulation during tasks such as im-
putation.

Nevertheless, the latest iteration, Selective State Space Models (S6), has incorporated an attention
mechanism into the SSM structure, sparking a surge in applications. These models have been em-
ployed in selective copy tasks, language modeling, DNA modeling, and audio modeling and gen-
eration (Gu & Dao, 2023), occasionally outperforming traditional transformers. Specifically, in the
field of time series imputation with DDPMs, the application of S4 has so far been limited to the
study by (Alcaraz & Strodthoff, 2023), while S6 remains unexplored.

3 BACKGROUND

3.1 MULTIVARIATE TIME SERIES IMPUTATION

A multivariate time series (MTS) consists of Nt variables or channels recorded at different time
instants denoted by t. Consequently, these data can be represented as Xt ∈ RNt×d, where each row
i contains the d-dimensional vector xi

t ∈ Rd, associating the ith variable with the time instant t.
Additionally, a matrix Mt ∈ {0, 1}Nt×d is used, where each entry contains a 0 if the corresponding
value in Xt is missing, and a 1 if it is an observed data point.

Considering this, we define X̃t as the unknown ground truth variable-measure matrix, i.e., the com-
plete time series without missing data; X̂t denotes the time series imputed by the model, and X the
series imputed by linear interpolation technique.

Finally, given that our work will focus on graph-based models, we model the time series as a se-
quence of graphs following the approach established by Cini et al. (2022). In this approach, each
instant t is defined as a graph Gt with Nt nodes at each time instant. Moreover, the graph is defined
as Gt = ⟨Xt,At⟩, where Xt represents the data matrix and At represents the adjacency matrix at
instant t. However, this paper only considers the approach in which the graph topology does not
change over time, thus A is constant for each t.

3.2 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPM) rely on a Markov chain with time steps t =
1, . . . , T . Beginning with an initial state xT ∼ N (0, 1), these models aim to reverse the sequence
of latent variables xt in the same space as x0, to learn pθ(x0) that approximates the original data
distribution q(x0) (Ho et al., 2020).

The forward process or diffusion process involves progressively corrupting an initial sample x0

by gradually adding Gaussian noise until reaching xT ∼ N (0, 1). Noise addition is moderated
by a variance scheduler βt = β1, . . . , βT to ensure distribution variance remains controlled and
converges appropriately. This process is formalized by:
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q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

Reparameterizing the parameters from Equation 1, we define αt = 1 − βt and αt :=
∏T

t=1 αt.
Utilizing the transformation N (µ, σ2) = µ + σ · ϵ, where ϵ ∼ N (0, 1), allows us to derive a
simplified model: q(xt|x0) =

√
αtx0 +

√
1− αtϵ.

The reverse process, to recover the initial sample x0, is defined by the following Markov chain:

pθ(x0:T ) := pθ(xT )

T∏
t=1

pθ(xt−1|xt), xT ∼ N (0, 1)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σθ(xt, t)I)

(2)

As in (Ho et al., 2020), we do not predict σθ as it remains fixed, controlled by the scheduler. µθ is
recalculated as:

µθ(xt, t) =
1
√
αt

(xt −
βt√
1− αt

ϵθ(xt, t)) (3)

With the above considerations, in order to learn to model the original distribution, for each step of the
chain t, and an xt generated according to q(xt|x0), our model must solve the following optimization
problem defined by L(θ) := Et,xo,ϵ[||ϵ− ϵθ(xt, t)||2].

3.3 STATE-SPACE MODELS AND MAMBA

State-Space Models (SSMs) are based on the theory of continuous control systems and process an
input signal as defined in Equation 4 (Brogan, 1974).

ḣ(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)
(4)

An input signal x(t) is mapped to a latent state h(t) and then projected to an output signal y(t). The
matrices A, B, C, and D determine the transformations involved in this process. Structured State
Space Models (S4) (Gu et al., 2022b) adapt SSMs by discretizing them. This involves modeling D
as a skip-connection layer, defining a step size ∆ = tn+1 − tn, and discretizing all matrices, where
C = C, D = D, A = (I − ∆/2 ·A)−1(I + ∆/2 ·A), and B = (I − ∆/2 ·A)−1∆B. This
results in Equation 5, noting that D is not represented as it is modeled as a skip-connection.

ht = Aht−1 +Bxt

yt = Cht

(5)

Following S4, Selective State Space Models (S6) were introduced (Gu & Dao, 2023), improving on
S4 by making ∆,B, and C dependent on a selection mechanism such that ∆ ← τ∆(Parameter +
s∆(x)), B ← sB(x) and C ← sC(x), where sB(x), sC(x) and s∆(x) are implemented as param-
eterized linear projections focusing on the hidden state of each t in the original sequence x.

Finally, in Gu & Dao (2023), S6 is embedded within a Mamba block, which essentially consists of
Multi-layer Perceptron (MLP) layers that serve to increase the hidden state size and generate two
distinct information channels. In the first channel, a convolutional layer and S6 are applied, while
the second channel applies a non-linear activation function to create a gate controlling the retention
of information. Lastly, a MLP layer compresses everything back to its original dimensions.

4 TIMBA

Our approach builds upon the architecture established by Tashiro et al. (2021) and Liu et al. (2023),
which is centered on a diffusion model incorporating various blocks for refining data imputation.

4
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4.1 TRAINING DDPM FOR IMPUTATION

Although the general theory behind DDPMs was discussed in Section 3.2, these models need condi-
tional information to perform effectively for general imputation, as proposed by Tashiro et al. (2021)
and demonstrated by Yun et al. (2023).

To train a DDPM for MTSI, key modifications include adapting the reverse process to incorporate
this conditional information. Thus, we revise Equation 2 to include our conditional variables, which
are X and A:

pθ(x0:T ) := pθ(xT )

T∏
t=1

pθ(xt−1|xt,X ,A)

pθ(xt−1|xt,X ,A) := N (xt−1;µθ(xt,X ,A, t), βtI)

(6)

Following this, the optimization objective will be similar to that described in Section 3.2. However,
as in Tashiro et al. (2021), we need to generate synthetic missing values (generate imputation targets
x0 ∈ M ta) where the imputation error is calculated. The model generates imputations for all
missing values, but we filter the results and retain only those specifically marked as targets for error
calculation. The optimization function then changes to that defined by Equation 7. Finally, it should
be noted that there are many strategies for generating M ta, which are detailed further in Section
5.3.

L(θ) := Et,xo,ϵ[M
ta · ||ϵ− ϵθ(xt,X ,A, t)||2] (7)

4.2 MODEL ARCHITECTURE

Our architecture builds upon the foundational design by Tashiro et al. (2021) and incorporates en-
hancements introduced by Liu et al. (2023). Referring to Figure 1, and following the information
flow from left to right, we begin with the Conditional Feature Extraction Module (CFEM) (Liu et al.,
2023). This module is responsible for generating conditional information that aids other components
in improving imputation quality. The CFEM takes X and A as inputs and processes temporal data
with bidirectional Mamba blocks, replacing the original transformers—a modification we propose
and will justify subsequently. Spatial data is processed using transformer and Message Passing Neu-
ral Network (MPNN) blocks, inspired by Wu et al. (2019). This information is then refined with an
MLP to produce Hpri, as illustrated in the CFEM bubble of Figure 1. The operation is defined as:
Hpri = CFEM(X ,A).
Afterwards, a series of Noise Estimation Modules (NEM) (Tashiro et al., 2021) is employed to esti-
mate the final noise. These modules receive Hpri, the diffusion time embedding t, A, and Hin. For
the initial NEM, Hin is a concatenation of noisy Xt and X . The output generates two information
flows: one as input for the next NEM block (acting as Hin) and another as Hout, serving as the
initial noise estimation. Outputs from each NEM are aggregated and processed by a convolutional
layer to finalize the noise estimation. The internal workings of these blocks are akin to CFEM, as
depicted in the NEM bubble in Figure 1, and described by: Hout = NEM(Hin, Hpri,A, t).
Now, we will discuss our decision to replace the transformer blocks, which focus on the temporal
dimension, with Mamba blocks. Originally, this architecture utilized transformers for the temporal
processing of information. However, despite their known advantages in MTSI, transformers lack
an intrinsic inductive bias for temporal data. In contrast, Mamba blocks provide this bias while
incorporating attention mechanisms, making them more suitable for accurately capturing temporal
relationships. Therefore, we propose replacing time-focused transformers with Mamba blocks.

Furthermore, the mechanism within Mamba blocks’ S6 layers resembles that of RNNs. This similar-
ity allows us to adopt a BiRNN-like approach, where each Mamba block processes time series bidi-
rectionally. Inspired by the Vision Mamba block (Zhu et al., 2024), which processes image patches
in both directions, we have modified this approach to work effectively with NEM and CFEM blocks.

Our bidirectional block, depicted in Figure 2, processes a data tensor. If it is a NEM block, it
concatenates Hpri and applies layer normalization. Dropout is employed for regularization, and

5
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Figure 1: Architecture of the TIMBA model

Figure 2: Implementation of the Mamba block within the NEM module capable of bi-directional
time series analysis.

MLP layers expand the hidden state to create two information channels, similar to the original
Mamba block. The first channel is modified to establish two additional paths that analyze the time
series forwards and backwards, each with its convolutional layer and S6 layer. The second channel
remains unchanged, maintaining its activation and gating mechanism. Outputs are aggregated and
compressed back to their original dimensions via another MLP, followed by layer normalization.
Finally, a residual connection incorporates previously processed information, producing the final
output of this module.

5 EXPERIMENTS

5.1 DATASETS

We employed datasets identical to those used in Cini et al. (2022), which established benchmarks
later used as comparison metrics (Tashiro et al., 2021; Liu et al., 2023). The AQI-36 dataset (Yi
et al., 2016) comprises air quality data from 36 stations in Beijing, recorded hourly over a year,
with 13.24% missing values. We also utilized the METR-LA and PEMS-BAY datasets (Li et al.,
2018), documenting traffic in Los Angeles and the San Francisco Bay Area, respectively. METR-
LA includes data from 207 sensors over four months with an 8.10% missing rate, while PEMS-BAY
covers 325 sensors over six months with 0.02% missing values, both sampled every five minutes.
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Consistent with the Cini et al. (2022) benchmark, we replicated the adjacency matrices using thresh-
olded Gaussian Kernels on geographical distances, as suggested in (Li et al., 2018) and (Wu et al.,
2019). The same training, validation, and testing splits were used: 70%, 10%, and 20% of the data,
respectively, with identical seeds. For AQI-36, testing was conducted in February, May, August, and
November, as originally designated, with 10% validation samples using the same seed.

Evaluation of these datasets includes three scenarios with synthetic missing data. In the ”Block
missing” scenario, 5% of the data was randomly masked, and 1-4 hour blocks were masked at each
sensor with a 0.15% probability; in the ”Point missing” scenario, 25% of the values were randomly
masked; in the last scenario, missing values are simulated with the same distribution as the original
data.

5.2 BASELINES

We compared our proposed method against established benchmark methods originally presented in
the GRIN article (Cini et al., 2022), and subsequently extended by CSDI (Tashiro et al., 2021) and
PriSTI (Liu et al., 2023). To ensure the accuracy of our comparison, we replicated the experiments
of CSDI and PriSTI using the parameters reported in their original papers. The only modification
made was the adjustment of small differences found in the training and validation splits of the AQI-
36 dataset between CSDI, PriSTI and GRIN to maintain a fair comparison. The evaluated methods
are:

1) Statistical techniques: MEAN (using historical mean values), DA (daily averages), and KNN
(geographical proximity). 2) Machine learning algorithms: Lin-ITP (linear interpolation), MICE
(White et al., 2011) (multiple imputation), VAR (vector autoregressive model), and KF (Kalman
Filter). 3) Matrix factorization strategies: TRMF (Yu et al., 2016) (temporal regularized ma-
trix factorization) and BATF (Chen et al., 2019) (Bayesian augmented tensor factorization). 4)
Autoregressive models: BRITS (Cao et al., 2018) (bidirectional RNN), MPGRU (one-step-ahead
GNN-based predictor similar to DCRNN (Li et al., 2018)), GRIN (Cini et al., 2022). 5) Generative
models: CSDI (Tashiro et al., 2021), PriSTI (Liu et al., 2023), V-RIN (Mulyadi et al., 2021) (VAE
with quantified uncertainty), GP-VAE (Fortuin et al., 2020) (VAE combined with Gaussian process),
and rGAIN (Yoon et al., 2018) (GAN-based imputation with a recurrent structure).

5.3 EXPERIMENTAL SETTINGS

For DDPMs, 100 imputations were generated per missing value, with the median serving as the final
imputation. Additionally, all experiments have been repeated 3 times using different seeds. During
training, four synthetic missing data generation techniques were used:

1) Point strategy: A random [0, 100]% of data was masked per batch. 2) Block strategy: Se-
quences of missing values of length [L/2, L] were generated with a [0, 15]% probability, plus an
additional 5% missing. 3) Historical strategy: Real imputation masks already present in the data
were used. 4) Hybrid strategy: Each training sample was masked using the point strategy as a first
option, or block or historical strategies as a second option with a 50% probability.

For the ”Point missing” scenarios described in Section 5.1, the point strategy was used. For ”Block
missing” scenarios, the hybrid strategy was applied with the block strategy as the secondary option.
For AQI-36, the hybrid strategy with the historical strategy as the secondary option was employed.

It is important to highlight that for the benchmark comparison in Section 5.4.1, the CSDI, PriSTI,
and TIMBA models were trained for the number of epochs specified in their original papers: 200
epochs for the AQI-36 dataset and 300 epochs for the Traffic datasets. However, for the remaining
experiments discussed in Section 5.4, the training epochs were limited to 50 due to time constraints
during the execution of the experiments.

Finally, as in the original work by Tashiro et al. (2021), the model was trained with a learning rate
of 10−3, which was reduced to 10−4 after 75% of the training epochs, and again to 10−5 after
90%. Consistent with Tashiro et al. (2021), a quadratic scheduler was used for the noise scheduling.
Detailed hyperparameter settings, as well as information on training and inference times, and code
reproducibility, are provided in Appendix A.
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Table 1: Results obtained after testing TIMBA against the benchmark established in the literature
(Cini et al., 2022). The results are shown in terms of MAE and MSE.

AQI-36 METR-LA PEMS-BAY

Simulated failure (24.6%) Block-missing (16.6%) Point-missing (31.1%) Block-missing (9.2%) Point-missing (25.0%)

Models MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Mean 53.48 ± 0.00 4578.08 ± 0.00 7.48 ± 0.00 139.54 ± 0.00 7.56 ± 0.00 142.22 ± 0.00 5.46 ± 0.00 87.56 ± 0.00 5.42 ± 0.00 86.59 ± 0.00

DA 50.51 ± 0.00 4416.10 ± 0.00 14.53 ± 0.00 445.08 ± 0.00 14.57 ± 0.00 448.66 ± 0.00 3.30 ± 0.00 43.76 ± 0.00 3.35 ± 0.00 44.50 ± 0.00

KNN 30.21 ± 0.00 2892.31 ± 0.00 7.79 ± 0.00 124.61 ± 0.00 7.88 ± 0.00 129.29 ± 0.00 4.30 ± 0.00 49.90 ± 0.00 4.30 ± 0.00 49.80 ± 0.00

Lin-ITP 14.46 ± 0.00 673.92 ± 0.00 3.26 ± 0.00 33.76 ± 0.00 2.43 ± 0.00 14.75 ± 0.00 1.54 ± 0.00 14.14 ± 0.00 0.76 ± 0.00 1.74 ± 0.00

KF 54.09 ± 0.00 4942.26 ± 0.00 16.75 ± 0.00 534.69 ± 0.00 16.66 ± 0.00 529.96 ± 0.00 5.64 ± 0.00 93.19 ± 0.00 5.68 ± 0.00 93.32 ± 0.00

MICE 30.37 ± 0.09 2594.06 ± 7.17 4.22 ± 0.05 51.07 ± 1.25 4.42 ± 0.07 55.07 ± 1.46 2.94 ± 0.02 28.28 ± 0.37 3.09 ± 0.02 31.43 ± 0.41

VAR 15.64 ± 0.08 833.46 ± 13.85 3.11 ± 0.08 28.00 ± 0.76 2.69 ± 0.00 21.10 ± 0.02 2.09 ± 0.10 16.06 ± 0.73 1.30 ± 0.00 6.52 ± 0.01

TRMF 15.46 ± 0.06 1379.05 ± 34.83 2.96 ± 0.00 22.65 ± 0.13 2.86 ± 0.00 20.39 ± 0.02 1.95 ± 0.01 11.21 ± 0.06 1.85 ± 0.00 10.03 ± 0.00

BATF 15.21 ± 0.27 662.87 ± 29.55 3.56 ± 0.01 35.39 ± 0.03 3.58 ± 0.01 36.05 ± 0.02 2.05 ± 0.00 14.48 ± 0.01 2.05 ± 0.00 14.90 ± 0.06

V-RIN 10.00 ± 0.10 838.05 ± 24.74 6.84 ± 0.17 150.08 ± 6.13 3.96 ± 0.08 49.98 ± 1.30 2.49 ± 0.04 36.12 ± 0.66 1.21 ± 0.03 6.08 ± 0.29

GP-VAE 25.71 ± 0.30 2589.53 ± 59.14 6.55 ± 0.09 122.33 ± 2.05 6.57 ± 0.10 127.26 ± 3.97 2.86 ± 0.15 26.80 ± 2.10 3.41 ± 0.23 38.95 ± 4.16

rGAIN 15.37 ± 0.26 641.92 ± 33.89 2.90 ± 0.01 21.67 ± 0.15 2.83 ± 0.01 20.03 ± 0.09 2.18 ± 0.01 13.96 ± 0.20 1.88 ± 0.02 10.37 ± 0.20

MPGRU 16.79 ± 0.52 1103.04 ± 106.83 2.57 ± 0.01 25.15 ± 0.17 2.44 ± 0.00 22.17 ± 0.03 1.59 ± 0.01 14.19 ± 0.11 1.11 ± 0.00 7.59 ± 0.02

BRITS 14.50 ± 0.35 622.36 ± 65.16 2.34 ± 0.01 17.00 ± 0.14 2.34 ± 0.00 16.46 ± 0.05 1.70 ± 0.01 10.50 ± 0.07 1.47 ± 0.00 7.94 ± 0.03

GRIN 12.08 ± 0.47 523.14 ± 57.17 2.03 ± 0.00 13.26 ± 0.05 1.91 ± 0.00 10.41 ± 0.03 1.14 ± 0.01 6.60 ± 0.10 0.67 ± 0.00 1.55 ± 0.01

CSDI 9.74 ± 0.16 388.37 ± 11.42 1.90 ± 0.01 12.27 ± 0.18 1.77 ± 0.05 9.42 ± 0.47 0.84 ± 0.00 4.06 ± 0.04 0.58 ± 0.00 1.30 ± 0.04

PriSTI 9.84 ± 0.11 376.11 ± 10.62 1.78 ± 0.00 10.64 ± 0.13 1.70 ± 0.00 8.47 ± 0.04 0.87 ± 0.01 4.64 ± 0.21 0.59 ± 0.00 1.61 ± 0.03

TIMBA 9.56 ± 0.4 352.29 ± 5.33 1.76 ± 0.02 10.36 ± 0.34 1.69 ± 0.00 8.36 ± 0.01 0.84 ± 0.01 4.57 ± 0.08 0.58 ± 0.00 1.63 ± 0.08

Aiming for precise parameter alignment in model comparisons, when we developed TIMBA, we
replaced PriSTI’s dedicated temporal dimension transformer with a Mamba block with the most
similar parameter count possible, while maintaining the approach described in Gu & Dao (2023) of
using a factor of 2 expansion on the original tensor’s hidden space. Using the METR-LA dataset
as a reference, TIMBA has 876,765 parameters, while PriSTI and CSDI have 797,533 and 416,305
parameters, respectively. This results in a proportionally smaller increase in capacity, as PriSTI
increases its parameters by 91.5% more compared to CSDI, whereas TIMBA only increases by
9.93% compared to PriSTI.

5.4 RESULTS AND DISCUSSION

To evaluate the imputation performance of TIMBA, we used the Mean Absolute Error (MAE) and
Mean Square Error (MSE) metrics, following the benchmark established by Cini et al. (2022).

5.4.1 BENCHMARK RESULTS

Table 1 presents the evaluation results of TIMBA compared to the previously defined benchmark.
Our method generally outperforms previous results, consistently achieving better or at least compa-
rable outcomes to PriSTI.

However, a more detailed analysis reveals that our method does not perform as well in the PEMS-
BAY point-missing scenario, achieving results comparable to PriSTI. Interestingly, in this specific
scenario, CSDI outperforms both methods. Given that the primary difference between PriSTI and
TIMBA with CSDI lies in the hyperparameters of the noise scheduler, a finer adjustment of these
values might further improve our model’s performance.

5.4.2 ABLATION ANALYSIS

This section presents the results of an ablation study comparing the performance of TIMBA using
both bidirectional and unidirectional Mamba blocks. The objective of this experiment was to de-
termine to what extent bidirectional information processing is beneficial for Mamba blocks. The
results are shown in Table 2.

The analysis indicates that TIMBA achieves superior performance across all scenarios when utiliz-
ing bidirectional blocks. This finding supports the necessity of these blocks for effectively extracting
improved temporal representations from the data.
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Table 2: Ablation results for TIMBA. TIMBA refers to the configuration utilizing bidirectional
blocks, while TIMBA-Uni represents the model using only unidirectional Mamba blocks. This
experiment was conducted with training limited to 50 epochs, as described in Section 5.3

AQI-36 METR-LA PEMS-BAY

Simulated failure (24.6%) Block-missing (16.6%) Point-missing (31.1%) Block-missing (9.2%) Point-missing (25.0%)

Models MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

TIMBA-Uni 10.18 ± 0.06 402.62 ± 6.57 1.88 ± 0.00 12.18 ± 0.09 1.79 ± 0.01 9.59 ± 0.05 0.92 ± 0.01 5.01 ± 0.14 0.64 ± 0.00 1.99 ± 0.06

TIMBA 9.66 ± 0.32 360.66 ± 25.02 1.79 ± 0.01 10.73 ± 0.24 1.71 ± 0.01 8.56 ± 0.10 0.86 ± 0.01 4.80 ± 0.19 0.59 ± 0.01 1.65 ± 0.14

5.4.3 MISSING RATE SENSITIVITY ANALYSIS

In the following experiment, we analyze the sensitivity of our model to varying levels of missing
values. We evaluate CSDI, PriSTI, and TIMBA using the METR-LA dataset under the Point-missing
scenario with different rates of missing data. For each model, we used the best-performing weights
obtained during a previous training of 50 epochs, consistent with the description in Section 5.3. The
results for the three models are presented in terms of MAE and MSE in Tables 3 and 4, respectively.

Table 3: Sensitivity analysis for different levels of missing values in the METR-LA dataset under
the Point missing scenario, presented in terms of MAE.

MAE - METR-LA (P)

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

CSDI 1.77 1.82 1.88 1.96 2.07 2.20 2.39 2.70 3.29
PriSTI 1.64 1.67 1.71 1.76 1.81 1.89 1.99 2.14 2.43

TIMBA 1.64 1.66 1.70 1.75 1.80 1.88 1.98 2.13 2.41

Table 4: Sensitivity analysis for different levels of missing values in the METR-LA dataset under
the Point missing scenario, presented in terms of MSE.

MSE - METR-LA (P)

Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

CSDI 8.50 9.10 9.92 10.88 12.14 13.86 16.54 21.75 32.54
PriSTI 7.71 8.07 8.61 9.29 10.08 11.24 12.88 15.88 22.08

TIMBA 7.60 7.91 8.48 9.15 9.96 11.09 12.65 15.55 21.57

Analyzing the results, we find that TIMBA consistently delivers the best performance, particularly in
terms of MSE. This demonstrates that our model effectively manages higher rates of missing values
in the input data, further highlighting the advantages of SSMs over classical Transformers for these
time series tasks.

5.4.4 DOWNSTREAM TASK ANALYSIS

Evaluating imputation models requires assessing their effectiveness on downstream tasks (Wang
et al., 2024). This section outlines a specific task using imputed data to evaluate CSDI, PriSTI, and
TIMBA. The downstream task designed for this experiment involves predicting the value of a node
at time t using the values of other nodes at the same time t.

For this section, we performed the node forecasting task using two different nodes. We conducted all
experiments twice, once targeting node 14 and once targeting node 31, to ensure a more informative
comparison. These nodes correspond to stations with the highest and lowest connectivity in the
graph, following a similar approach to Cini et al. (2022) in selecting nodes for experiments.

We use the AQI-36 dataset, imputing missing values with the best weights obtained from the results
in Table 1. For this task, we only impute validation and test data to ensure that the imputation models

9
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work with data they have never seen. These new imputed data are split into a new training set (80%)
and test set (20%), normalized using a MinMax scaler.

We employ an MLP with one hidden layer of 100 neurons and an output layer of 1. This network
is trained for 500 epochs to minimize the MSE between the actual and predicted values, using the
same five seeds for the imputed data with CSDI, PriSTI, and TIMBA. Final test results are measured
using MSE and MAE and only consider actual values. Imputed target values are excluded from the
final test results for the calculation of both metrics.

Table 5: Results of the downstream task for node value prediction using data imputed by CSDI,
PriSTI, and TIMBA.

Sensor 14 Sensor 31

Models MAE MSE MAE MSE

CSDI 6.51 ± 0.69 96.99 ± 21.25 11.99 ± 1.92 376.40 ± 148.06

PriSTI 6.46 ± 0.71 92.70 ± 20.27 11.70 ± 1.80 361.19 ± 132.99

TIMBA 6.45 ± 0.69 91.90 ± 20.33 11.68 ± 1.77 359.80 ± 131.74

As shown in Table 5, TIMBA achieves the best results for both nodes and both metrics. This indi-
cates that the quality of imputation provided by our method is advantageous for use as a preprocess-
ing step to improve subsequent tasks.

5.4.5 LIMITATIONS

Analyzing the limitations of our model, it should be noted that our method does not assume any
distribution in the missing values beyond their occurrence through a stationary process. Throughout
the paper, we mainly focus on the missing at random (MAR) scenario (Rubin, 1976). Beyond this,
we make no assumptions about the amount or length of the missing data.

6 CONCLUSIONS

In this paper, we presented TIMBA, a model that replaces the time-oriented transformer layers in
state-of-the-art diffusion models for multivariate time series imputation with bidirectional Mamba
blocks. Our extensive benchmark with three real-world datasets demonstrates that TIMBA either
surpasses or performs comparably to the current state-of-the-art. Additionally, we showed that
TIMBA can scale effectively with longer temporal sequences, generally achieving better results
as the number of time steps per sample increases.

For future work, it would be valuable to explore ways to further reduce training and inference time,
potentially through the application of latent diffusion models or denoising diffusion implicit models.
Additionally, it would be interesting to apply our architecture to time series forecasting problems.
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A IMPLEMENTATION DETAILS

A.1 COMPLETE HYPERPARAMS DESCRIPTION

Table 6 lists all the hyperparameters used to obtain the results presented in this paper. Most of these
hyperparameters are directly taken from the PriSTI GitHub repository to ensure a fair comparison.

Table 6: The hyperparameters of TIMBA for all datasets.
Description AQI-36 METR-LA PEMS-BAY

Batch size 16 4 4
Time length L 36 24 24
Epochs 200 300 300
Learning rate 0.001 0.001 0.001
Layers of noise estimation 4 4 4
Channel size d 64 64 64
Number of attention heads 8 8 8
Minimum noise level β1 0.0001 0.0001 0.0001
Maximum noise level βT 0.2 0.2 0.2
Diffusion steps T 100 50 50
Number of virtual nodes k 16 64 64
Mamba block dropout 0.1 0.1 0.1
SSM state expansion factor 16 16 16
Mamba local convolution width 4 4 4
Mamba block expansion factor 2 2 2

To expand on this information, it is important to note that the virtual nodes k were introduced by Liu
et al. (2023). These nodes help reduce the complexity of transformers in handling spatial information
by compressing real nodes into a defined number of virtual nodes k.
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A.2 CODE REPRODUCIBILITY

This project has been conducted with a focus on facilitating code reproducibility and easy access to
the datasets used. The code is available on GitHub: [Hidden for anonymization – check supple-
mentary material during review].

The implementation is in Python (Van Rossum & Drake, 2009), utilizing the following open-source
libraries:

• Pytorch (Paszke et al., 2017).
• Pytorch Lightning (Falcon & The PyTorch Lightning team, 2019)
• Numpy (Harris et al., 2020).
• Torch spatio-temporal (Cini & Marisca, 2022).
• Pandas (pandas development team, 2020; Wes McKinney, 2010).
• Hydra (Yadan, 2019).

Additionally, to simplify execution, a Docker image and container (Merkel, 2014) have been devel-
oped, along with scripts to create and run them easily.

All experiments were conducted on a computer with the following specifications: Ubuntu 22.04.2
LTS, AMD Ryzen Threadripper PRO 3955WX 16-Cores CPU, NVIDIA RTX A5000 24 GB GPU,
and 8X16 GB (128GB) DDR4 RAM. The runtime results obtained using this setup are presented in
Table 7.

Table 7: Training and inference times measured in hours.
AQI-36 METR-LA PEMS-BAY

Models Training Inference Training Inference Training Inference

CSDI 0.29 0.22 7.28 1.74 19.11 4.62
PriSTI 0.40 0.33 8.21 2.44 19.72 5.99
TIMBA 0.56 0.44 12.83 3.65 32.74 8.71

A.3 DATA AVAILABILITY

The datasets used in this paper are publicly and freely accessible. Specifically, the Torch Spatio-
Temporal library (Cini & Marisca, 2022) includes code for downloading and preparing these
datasets, so there is no need to obtain them separately before running our code.
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