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Abstract

This Supplementary Material is organised as follows. Appendix A presents additional results
on global convergence and feature learning when the activation function is the (non-smooth)
ReLU function. In particular, Theorem A.1 states conditions for the global convergence of
gradient flow in the ReLU case, and is similar to Theorem 5.1 (smooth case) in the main paper.
Appendix A.3 discusses some open problems in our framework when dealing with the ReLU
activation function. Useful bounds and identities are presented in Appendix B. Appendix C
gives a proof of the proposition regarding the structure of the limiting NTG at initialisation
while Appendix D provides a secondary proposition regarding the minimum eigenvalue of
the NTG at initialisation. Appendix E states and proves secondary lemmas on gradient
flow dynamics. Appendix F and G give details of the main proof for global convergence of
gradient flow, respectively for the ReLU and smooth case. The proofs are rather short and
mostly build on the secondary lemmas and propositions of Appendices D and E. Appendix H
gives a detailed proof for global convergence of gradient descent in the smooth case. The
proof builds on results of convergence of gradient flow. Appendix I gives proofs of the
feature-learning results for the smooth case in Section 7, and Appendix J presents proofs of
the corresponding feature-learning results for the ReLU case in Appendix A.2. Appendix K
provides additional experiments to those of Section 8, under a smooth activation. Finally,
Appendix L provides detailed results on the same experiments as in Section 8, but with the
ReLU activation instead of the Swish activation function used in the main paper.
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A Results for the ReLU activation function

Although we assume a smooth activation function in the main text of the paper (Assumption 3.2), some
of the results remain true when we drop this assumption and use the ReLU activation function instead.
In this section, we explain these results for ReLU. Throughout the section, we assume a weak derivative
σ′(x) = 1{x>0} of the ReLU activation function σ.

A.1 Global convergence under gradient flow

Our global convergence theorem under gradient flow in the main text (Theorem 5.1) has a counterpart for
the ReLU case, which is given below. This counterpart says that when we train the network with the ReLU
activation, with high probability, the loss decays exponentially fast with respect to κn and the training time
t, and the weights wtj and the NTG matrix respectively change by

O

(
nλ

1/2
m,j

κnd1/2

)
and O

n2∑m
j=1 λ

3/2
m,j

κnd3/2 +
n3/2

√∑m
j=1 λ

3/2
m,j

κ
1/2
n d5/4

 .

Theorem A.1 (Global convergence, gradient flow, ReLU). Consider δ ∈ (0, 1). Let D0 =
√

2C2 + (2/d).
Assume Assumptions 3.1 and 3.3, and the use of the ReLU activation function. Also, assume γ > 0 and

m ≥ max
(23n log 4n

δ

κnd
,

225n4D2
0

κ4
nd3γ2δ5 ,

235n6D2
0

κ6
nd5γ2δ5

)
.

Then, with probability at least 1 − δ, the following properties hold for all t ≥ 0:

(a) eigmin(Θ̂m(X; Wt)) ≥ γκn

4 ;
(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);
(c) ∥wtj − w0j∥ ≤ 23nD0

κnd1/2γδ1/2

√
λm,j for all j ∈ [m];

(d) ∥Θ̂m(X; Wt) − Θ̂m(X; W0)∥2 ≤
(

29n2D0
κnd3/2γδ5/2 ·

∑m
j=1 λ

3/2
m,j

)
+
(

26n3/2D
1/2
0

κ
1/2
n d5/4γ1/2δ5/4

·
√∑m

j=1 λ
3/2
m,j

)
.

The proof of the theorem is given in Appendix F, and uses Lemmas E.1 to E.3 and Proposition D.1.

The theorem guarantees that whenever γ > 0, the training error converges to 0 exponentially fast. Also, it
implies that the weight change is bounded by a factor

√
λm,j , and the NTG change is bounded by a factor√∑m

j=1 λ
3/2
m,j . As we show in Appendix B.2, as m tends to ∞,

λm,j → (1 − γ)λ̃j for every j ≥ 1, and
m∑

j=1
λ

3/2
m,j → (1 − γ)3/2

∞∑
j=1

λ̃
3/2
j .

Thus, when λ̃j > 0 (note that we necessarily have λ̃1 > 0), the upper bound in (c) is vanishing in the
infinite-width limit if and only if γ = 1 (NTK regime); similarly, the upper bound in (d) is vanishing if and
only if γ = 1. In fact, both feature learning and non-uniform feature learning in high-probability versions of
Definitions 7.1 and 7.3 occur whenever γ < 1, as we will show in the next subsection.

A.2 Results on feature learning

We present feature-learning results for the ReLU activation. The proofs of the theorems in this subsection
appear in Appendix J

We start with a result that corresponds to Theorem 7.9 in the smooth-activation case. The result says that if
γ < 1 and the activation function is ReLU, then after the first step of gradient descent, both feature learning
and non-uniform feature learning occur in a slightly weaker sense than that of Definitions 7.1 and 7.3 where
we have substituted the almost-sure conditions with corresponding high-probability conditions.
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Theorem A.2. Suppose that Assumptions 3.1, 3.3, 7.7 and 7.8 hold. Suppose also that γ < 1 and that the
activation function σ is ReLU. If λ̃k > 0, then with probability at least 1 − (1/2)k, the following inequalities
hold for all i ∈ [n]:

lim inf
m→∞

∑m
j=1 λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2

∑m
j=1 λm,j

(
σ(Zj(xi; W0))

)2 > 0 (S.1)

and lim inf
m→∞

maxj∈[m] λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2

∑m
j=1 λm,j

(
σ(Zj(xi; W0))

)2 > 0 (S.2)

As we mentioned already, the proof of Theorem A.2 appears in Appendix J. Here we explain the key steps
of the proof. Note that the condition for non-uniform feature learning in Equation (S.2) implies that for
feature learning in Equation (S.1). Thus, we focus on proving the former condition. The crux of proving the
condition in Equation (S.2) lies in the derivation of the following lower bound:

lim inf
m→∞

(
max
j∈[m]

λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2
)

≥ max
j∈[k]

(
1{w⊤

0j
xi≥0} · min

{
η2c2(1 − γ)2λ̃2

j

d2 ,
(1 − γ)λ̃j(w⊤

0jxi)2

d

})

where c is a positive real-valued continuous random variable that depends only on the outputs y1, . . . , yn. In
particular, c does not depend on W0 nor m, and moreover c2 > 0 almost surely. The assumptions of the
theorem and the properties of c imply that the above lower bound is strictly positive if w⊤

0jxi > 0 for some j,
and this latter condition happens with probability at least 1 − (1/2)k, which gives the claim of the theorem.

Recall that by definition, λ̃1 is always positive. Thus, Theorem A.2 implies that the inequalities in Equa-
tions (S.1) and (S.2) (which are the conditions for feature learning and non-uniform feature learning stated
in Definitions 7.1 and 7.3 excepting the almost-sure condition) hold with probability at least 1/2 for any
choice of the node-scaling parameters. Another immediate and perhaps more important consequence of the
theorem is that, if all the λ̃j ’s are positive, then both feature learning and non-uniform feature learning
occur, precisely in the sense of Definitions 7.1 and 7.3. This is because, in that case, the inequalities in
Equations (S.1) and (S.2) hold with probability at least 1 − (1/2)k for all k by Theorem A.2, but this implies
that both inequalities hold almost surely. The next corollary states this consequence more explicitly.

Corollary A.3. Suppose Assumptions 3.1, 3.3, 7.7 and 7.8 hold. Suppose also that γ < 1 and that the
activation function σ is ReLU. Let i ∈ [n]. If λ̃j > 0 for all j, the following inequalities hold almost surely:

lim inf
m→∞

∑m
j=1 λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2

∑m
j=1 λm,j

(
σ(Zj(xi; W0))

)2 > 0

and lim inf
m→∞

maxj∈[m] λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2

∑m
j=1 λm,j

(
σ(Zj(xi; W0))

)2 > 0.

Our next result about the ReLU activation function is a counterpart of Theorem 7.10 in the smooth-activation
case. It says that for all j, if γ < 1 and λ̃j > 0, then with probability at least 1/2, the first step of gradient
descent induces a non-zero change in the squared norm of the weight vector wj in the infinite-width limit.
The result also suggests that the change in the squared norm is proportional to λ̃j .
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Theorem A.4. Suppose Assumptions 3.1, 3.3, 7.7 and 7.8 hold. Suppose also that the activation function σ
is ReLU. Then, for all j, the following holds almost surely:

lim inf
m→∞

∥∥∇wtj
L(Wt)

∣∣
t=0

∥∥2 ≥ (1 − γ)λ̃j

d

∣∣∣∣∣
n∑

i=1

n∑
i′=1

yiyi′

(
x⊤

i xi′1{w⊤
0j

xi≥0}1{w⊤
0j

xi′ ≥0}

)∣∣∣∣∣ . (S.3)

In particular, if γ < 1 and λ̃j > 0, then with probability at least 1/2, the above lower bound is positive so that

lim inf
m→∞

∥∥∇wtj
L(Wt)

∣∣
t=0

∥∥2
> 0.

A.3 Discussion

Theorem A.1 is the counterpart of Theorem 5.1 for the global convergence of gradient flow with the ReLU
activation function. Despite empirical evidence from Appendix L suggesting that similar convergence
results could potentially be applicable to GD in the ReLU context, we have yet to substantiate this with
a comprehensive proof. The proof of the global convergence of GD with smooth activation provided in
Appendix H relies on a Taylor approximation. This necessitates the activation function σ to be twice
differentiable. It is worth noting that, in the symmetric NTK case, the global convergence of GD with the
ReLU activation has been shown by Du et al. (2019b, Section 4). Their proof, however, critically relies on
the fact that the weights remain stationary throughout the iterations of GD, which is not the scenario we are
dealing with here when γ > 0. As such, it remains a compelling open question to determine whether the
global convergence of GD can be proven within our specific framework when employing the ReLU activation
function.

B Useful bounds and identities

B.1 Matrix Chernoff inequalities

The following matrix bounds can be found in (Tropp, 2012).
Proposition B.1. Consider a finite sequence (X1, X2, . . . , Xp) of independent, random, positive semi-definite
n × n matrices with eigmax(Xj) ≤ R almost surely for all j ∈ [p], for some R > 0. Define

µmin = eigmin

 p∑
j=1

E[Xj ]

 and µmax = eigmax

 p∑
j=1

E[Xj ]

 .

Then, for all δ ∈ [0, 1),

Pr

eigmin

 p∑
j=1

Xj

 ≤ (1 − δ)µmin

 ≤ n

[
e−δ

(1 − δ)1−δ

]µmin/R

≤ ne−δ2µmin/(2R).

Also, for all δ ≥ 0,

Pr

eigmax

 p∑
j=1

Xj

 ≥ (1 + δ)µmax

 ≤ n

[
eδ

(1 + δ)1+δ

]µmax/R

≤ ne−δ2µmax/((2+δ)R).

B.2 Some identities on (λm,j)j∈[m]

The following proposition summarises a number of useful properties on the scaling parameters defined by (1).
Proposition B.2. For all m ≥ 1,

m∑
j=1

λm,j = 1, (S.4)

√
γm ≤

m∑
j=1

√
λm,j ≤

√
m. (S.5)

7



Published in Transactions on Machine Learning Research (02/2025)

For every r > 1, as m → ∞,

m∑
j=1

λr
m,j ∼

m∑
j=1

(
λ

(2)
m,j

)r

→ (1 − γ)r
∑
j≥1

λ̃r
j . (S.6)

Finally, we have, for all ρ ∈ (0, 1),

lim
m→∞

m∑
j=⌊ρm⌋+1

λm,j = γ(1 − ρ). (S.7)

Proof. Equation (S.4) follows from the definition of λm,j as shown below:

m∑
j=1

λm,j =
m∑

j=1

(
γ

m
+ (1 − γ) λ̃j∑m

k=1 λ̃k

)
= γ + (1 − γ)

m∑
j=1

λ̃j∑m
k=1 λ̃k

= γ + (1 − γ) = 1.

In Equation (S.5), the upper bound follows from Cauchy-Schwarz and Equation (S.4), and the lower bound
from the definition of λm,j :

√
γm =

m∑
j=1

√
γ

m
≤

m∑
j=1

√
λm,j ≤

√√√√ m∑
j=1

λm,j

√√√√ m∑
j=1

1 = 1 ·
√

m.

For Equation (S.6), we note the following bounds on the sum of the λr
m,j for all r > 1:

m∑
j=1

(
λ

(2)
m,j

)r

≤
m∑

j=1
(λm,j)r ≤


 m∑

j=1

(
λ

(1)
m,j

)r

1/r

+

 m∑
j=1

(
λ

(2)
m,j

)r

1/r


r

where the second inequality uses the Minkowski inequality. But as m → ∞, the term
∑m

j=1(λ(1)
m,j)r =

γrm−(r−1) → 0. Furthermore, as m → ∞,

m∑
j=1

(
λ

(2)
m,j

)r

= (1 − γ)r(∑m
k=1 λ̃k

)r

m∑
j=1

λ̃r
j → (1 − γ)r

∑
j≥1

λ̃r
j

because (
∑

k≥1 λ̃k)r = 1.

Finally, we prove Equation (S.7). For all ρ ∈ (0, 1), we have

m∑
j=⌊ρm⌋+1

λm,j = γ(m − ⌊ρm⌋)
m

+ (1 − γ)
∑m

j=⌊ρm⌋ λ̃j∑m
j=1 λ̃j

.

By sandwiching, γ(m−⌊ρm⌋)
m → γ(1 − ρ). Additionally, the series

∑m
j=1 λ̃j converges to 1. Thus, its tail

converges to 0 and
∑m

j=⌊ρm⌋+1 λ̃j → 0.

Figure 1 shows the value of
∑

j≥1 λ̃2
j = ζ(2/α)

ζ(1/α)2 as a function of α, when using Zipf weights Equation (4).

C Proof of Proposition 4.3 on the limiting NTG

This proposition holds also under the ReLU activation case. In what follows, we will give a proof that works
for both the smooth activation function and ReLU.

8
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Figure 1: Value of
∑∞

j=1 λ̃2
j as a function of α, where (λ̃j)j≥1 are defined as in Equation (4), As α → 1, it

converges to 0, which corresponds to the kernel regime.

It is sufficient to look at the convergence of individual entries of the NTG matrix; that is, to show that, for
each pair 1 ≤ i, i′ ≤ n,

Θm(xi, xi′ ; W0) = x⊤
i xi′

d
×
(

γ

m

m∑
j=1

σ′(Zj(xi; W0))σ′(Zj(xi′ ; W0))

+ (1 − γ)∑m
k=1 λ̃k

m∑
j=1

λ̃jσ′(Zj(xi; W0))σ′(Zj(xi′ ; W0))
) (S.8)

tends to

γΘ∗(xi, xi′) + (1 − γ)
d

x⊤
i xi′

∞∑
j=1

λ̃jσ′(Zj(xi; W0))σ′(Zj(xi′ ; W0)) (S.9)

almost surely as m → ∞. Using the fact that |σ′(z)| ≤ 1 and the triangle inequality, the modulus of the
difference between the RHS of Equation (S.8) and Equation (S.9) is upper bounded by

∣∣∣∣x⊤
i xi′

d

∣∣∣∣
γ

∣∣∣∣∣∣
 1

m

m∑
j=1

σ′(Zj(xi; W0))σ′(Zj(xi′ ; W0))

− E[σ′(Z1(xi; W0))σ′(Z1(xi′ ; W0))]

∣∣∣∣∣∣
+ (1 − γ)

( 1∑m
j=1 λ̃j

− 1
)

m∑
j=1

λ̃j +
∞∑

j=m+1
λ̃j


=

∣∣∣∣∣x⊤
i xi′

d

∣∣∣∣∣
(

γ

∣∣∣∣∣
(

1
m

m∑
j=1

σ′(Zj(xi; W0))σ′(Zj(xi′ ; W0))
)

− E[σ′(Z1(xi; W0))σ′(Z1(xi′ ; W0))]

∣∣∣∣∣
+ 2(1 − γ)

1 −
m∑

j=1
λ̃j

)

which tends to 0 almost surely as m tends to infinity using the law of large numbers and the fact that∑∞
j=1 λ̃j = 1.

D Secondary Proposition - NTG at initialisation

The following proposition is a corollary of Lemma 4 in (Oymak and Soltanolkotabi, 2020). It holds under
both the ReLU and smooth activation cases. A proof is included for completeness.

9
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Proposition D.1. Let δ ∈ (0, 1). Assume Assumptions 3.1 and 3.3, γ > 0, and m ≥ 23n log n
δ

κnd . Also, assume
that the activation function satisfies Assumption 3.2 or it is ReLU. Then, with probability at least 1 − δ,

eigmin(Θ̂m(X; W0)) ≥ eigmin(Θ̂(1)
m (X; W0)) >

γκn

2 > 0.

Proof. We follow here the proof of Lemma 4 in (Oymak and Soltanolkotabi, 2020).

Θ̂m(X; W) = 1
d

m∑
j=1

λm,jAj

= 1
d

m∑
j=1

λ
(1)
m,jAj + 1

d

m∑
j=1

λ
(2)
m,jAj

where
Aj = diag(σ′(Xwj/

√
d))XX⊤ diag(σ′(Xwj/

√
d)).

Let Θ̂(1)
m (X; W) = 1

d

∑m
j=1 λ

(1)
m,jAj = γ

md

∑m
j=1 Aj . Note that eigmin(Θ̂m(X; W)) ≥ eigmin(Θ̂(1)

m (X; W)) a.s.,
and

E[Θ̂(1)
m (X; W0)] = γΘ̂∗(X)

where Θ̂∗(X) is defined in Equation (10). We have, for all j ≥ 1,

∥Aj∥2 = eigmax(Aj) ≤ eigmax(diag(σ′(Xwj/
√

d))2) eigmax(XX⊤) ≤ eigmax(XX⊤)
≤ trace(XX⊤) ≤ n.

(S.10)

At initialisation, A1, A2, . . . , Am are independent random matrices. Using matrix Chernoff inequalities (see
Proposition B.1), we obtain, for all ϵ ∈ [0, 1),

Pr
(

eigmin(Θ̂m(X; W0)) ≤ (1 − ϵ)γκn

)
≤ ne−ϵ2mκnd/(2n).

Let δ ∈ (0, 1). Taking ϵ = 1/2, we have that, if mκnd
23n ≥ log n

δ , then

Pr
(

eigmin(Θ̂m(X; W0)) ≤ γκn

2

)
≤ δ.

E Secondary Lemmas on gradient flow dynamics

The proof technique used to prove Theorems 5.1 and A.1 is similar to that of (Du et al., 2019b) (NTK
scaling). In particular, we provide in this section Lemmas similar to Lemmas 3.2, 3.3 and 3.4 in (Du et al.,
2019b), but adapted to our setting. Lemma E.1 is an adaptation of Lemma 3.3. Lemmas E.2 and E.4 are
adaptations of Lemma 3.2, respectively for the ReLU and smooth activation cases. Lemmas E.3 and E.5 are
adaptations of Lemma 3.4, respectively for the ReLU and smooth activation cases.

E.1 Lemma on exponential decay of the empirical risk and scaling of the weight changes

The following lemma is an adaptation of Lemma 3.3 of (Du et al., 2019b), and applies to both the ReLU and
smooth activation cases. It shows that, if the minimum eigenvalue of the NTG matrix is bounded away from
0, gradient flow converges to a global minimum exponentially fast. Recall that y = (y1, . . . , yn)⊤ ∈ Rn.
Lemma E.1. Let t > 0 and ζ > 0. Assume Assumption 3.1 and eigmin(Θ̂m(X; Ws)) ≥ ζ

2 for all 0 ≤ s ≤ t.
Also, assume that the activation function satisfies Assumption 3.2 or it is ReLU. Then,

Lm(Wt) ≤ e−ζtLm(W0),

10
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and for all j ∈ [m],

∥wtj − w0j∥ ≤
√

nλm,j

d
∥y − u0∥ 2

ζ
, (S.11)

where u0 = (fm(x1; W0), . . . , fm(xn; W0))⊤ ∈ Rn.

Proof. For 0 ≤ s ≤ t, write us = (fm(x1; Ws), . . . , fm(xn; Ws))⊤. We have

d

ds
us = Θ̂m(X; Ws)(y − us).

It follows that

dLm(Ws)
ds

= −(y − us)⊤Θ̂m(X; Ws)(y − us) ≤ −ζ

2(y − us)⊤(y − us) = −ζLm(Ws).

Using Grönwall’s inequality, we obtain

Lm(Wt) ≤ e−ζtLm(W0).

For 0 ≤ s ≤ t, using the Cauchy-Schwarz inequality, we get

∥∥∥∥dwsj

ds

∥∥∥∥2
=

∥∥∥∥∥√λm,j
aj√

d

n∑
i=1

σ′(Zsj(xi))xi · (yi − fm(xi; Ws))

∥∥∥∥∥
2

= λm,j

d

d∑
k=1

(
n∑

i=1
σ′(Zsj(xi))xik · (yi − fm(xi; Ws))

)2

≤ λm,j

d

d∑
k=1

(
n∑

i=1
x2

ik

)(
n∑

i=1
σ′(Zsj(xi))2(yi − fm(xi; Ws))2

)

= λm,j

d

(
n∑

i=1
σ′(Zsj(xi))2(yi − fm(xi; Ws))2

)(
d∑

k=1

n∑
i=1

x2
ik

)

≤ λm,j

d

(
n∑

i=1
(yi − fm(xi; Ws))2

)(
n∑

i=1

d∑
k=1

x2
ik

)

≤ nλm,j

d
∥y − us∥2

≤ nλm,j

d
∥y − u0∥2e−ζs.

Integrating and using Minkowski’s integral inequality, we obtain

∥wtj − w0j∥ =
∥∥∥∥∫ t

0

d

ds
wsjds

∥∥∥∥ ≤
∫ t

0

∥∥∥∥ d

ds
wsj

∥∥∥∥ ds

≤
√

nλm,j

d
∥y − u0∥

∫ t

0
e−ζs/2ds

≤
√

nλm,j

d
∥y − u0∥ 2

ζ
.

From now on, the proofs for the ReLU and smooth-activation cases slightly differ.

11
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E.2 Lemma bounding the NTK change and minimum eigenvalue - ReLU case

The next lemma and its proof are similar to Lemma 3.2 in (Du et al., 2019b) and its proof. Recall that
0 < ∥xi∥ ≤ 1 for every i ∈ [n], and the w0j are iid N (0, Id).
Lemma E.2. Let δ ∈ (0, 1), and cm,j > 0 for every j ∈ [m]. Assume that Assumptions 3.1 and 3.3 holds
and the activation function is ReLU. Then, with probability at least 1 − δ, the following holds. For every
W = (w⊤

1 , . . . , w⊤
m)⊤, if it satisfies

∥w0j − wj∥ ≤ δ2cm,j

4 for all j ∈ [m],

we have ∥∥∥Θ̂(s)
m (X; W) − Θ̂(s)

m (X; W0)
∥∥∥

2
≤ n

d

m∑
j=1

λ
(k)
m,jcm,j + 2n

d

√√√√ m∑
j=1

λ
(k)
m,jcm,j for all k ∈ [2]

and

eigmin(Θ̂m(X; W)) ≥ eigmin(Θ̂(1)
m (X; W0)) −

 nγ

dm

m∑
j=1

cm,j + 2nγ

dm1/2

√√√√ m∑
j=1

cm,j

 . (S.12)

Proof. For k ∈ [2], let

f (k)
m (−; W) : Rd → R, f (k)

m (x; W) =
m∑

j=1

√
λ

(k)
m,jajσ(Zj(x; W)).

Define ∇Wf
(k)
m (X; W) to be the n-by-(md) matrix whose i-th row is the md-dimensional row vector

(∇Wf
(k)
m (xi; W))⊤.

Note that for all k ∈ [2],∥∥∥Θ̂(k)
m (X; W) − Θ̂(k)

m (X; W0)
∥∥∥

2

=
∥∥∥∇Wf (k)

m (X; W)∇Wf (k)
m (X; W)⊤ − ∇Wf (k)

m (X; W0)∇Wf (k)
m (X; W0)⊤

∥∥∥
2

≤
∥∥∥∇Wf (k)

m (X; W) − ∇Wf (k)
m (X; W0)

∥∥∥2

2
(S.13)

+ 2
∥∥∥∇Wf (k)

m (X; W0)
∥∥∥

2

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥

2
.

The justification of the inequality from above is given below (which is an expanded version of the three
equations (364-366) in (Bartlett et al., 2021)): for all n-by-(pd) matrices A and B,∥∥AA⊤ − BB⊤∥∥

2 =
∥∥∥∥1

2(A − B)(A + B)⊤ + 1
2(A + B)(A − B)⊤

∥∥∥∥
2

≤ 1
2
(∥∥(A − B)(A + B)⊤∥∥

2 +
∥∥(A + B)(A − B)⊤∥∥

2

)
≤ 1

2
(
∥A − B∥2 ×

∥∥(A + B)⊤∥∥
2 + ∥A + B∥2 ×

∥∥(A − B)⊤∥∥
2

)
= ∥A − B∥2 × ∥A + B∥2
≤ ∥A − B∥2 × (∥A − B + B∥2 + ∥B∥2)
≤ ∥A − B∥2 × (∥A − B∥2 + 2 ∥B∥2) .

Coming back to the inequality in Equation (S.13), we next bound the two terms
∥∥∥∇Wf

(k)
m (X; W0)

∥∥∥
2

and∥∥∥∇Wf
(k)
m (X; W) − ∇Wf

(k)
m (X; W0)

∥∥∥
2

there.

12
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We bound the first term as follows:

∥∥∥∇Wf (k)
m (X; W0)

∥∥∥2

2
≤
∥∥∥∇Wf (k)

m (X; W0)
∥∥∥2

F
=

n∑
i=1

m∑
j=1

∥∥∥∇wj f (k)
m (xi; W0)

∥∥∥2

=
n∑

i=1

m∑
j=1

λ
(k)
m,j |σ′(Zj(xi; W0))|2 ∥xi∥2

d

≤ n

d

m∑
j=1

λ
(k)
m,j ≤ n

d
γk (S.14)

where γ1 = γ and γ2 = 1 − γ. The second inequality uses the assumption that |σ′(x)| ≤ 1 for all x ∈ R and
∥xi∥ ≤ 1 for all i ∈ [n]. The third inequality follows from the fact that

∑m
j=1 λ

(k)
m,j ≤

∑m
j=1 λm,j = 1.

For the second term, we recall that Zj(xi; W) = 1√
d
w⊤

j xi. Using this fact, we derive an upper bound for the
second term as follows:∥∥∥∇Wf (k)

m (X; W) − ∇Wf (k)
m (X; W0)

∥∥∥2

2

≤
∥∥∥∇Wf (k)

m (X; W) − ∇Wf (k)
m (X; W0)

∥∥∥2

F

=
n∑

i=1

m∑
j=1

∥∥∥∇wj f (k)
m (xi; W) − ∇wj f (k)

m (xi; W0)
∥∥∥2

=
n∑

i=1

m∑
j=1

∥∥∥∥√λ
(k)
m,jaj

xi√
d

[σ′(Zj(xi; W)) − σ′(Zj(xi; W0))]
∥∥∥∥2

= 1
d

n∑
i=1

m∑
j=1

∥xi∥2
λ

(k)
m,j |σ′(Zj(xi; W)) − σ′(Zj(xi; W0))|2 . (S.15)

In the rest of the proof, we will derive a probabilistic bound on the upper bound just obtained, and show the
conclusions claimed in the lemma.

For any ϵ > 0, i ∈ [n], and j ∈ [m], we define the event

Ai,j(ϵ) =
{

∃wj s.t. ∥w0j − wj∥ ≤ ϵ and σ′(w⊤
j xi) ̸= σ′(w⊤

0jxi)
}

.

If this event happens, we have |w⊤
0jxi| ≤ ϵ. To see this, assume that Ai,j(ϵ) holds with wj as a witness of the

existential quantification, and note that since the norm of xi is at most 1,∣∣w⊤
0jxi − w⊤

j xi

∣∣ ≤ ∥w0j − wj∥ ∥xi∥ ≤ ϵ.

If w⊤
0jxi > 0, then w⊤

j xi ≤ 0 and thus

w⊤
0jxi ≤ ϵ + w⊤

j xi < ϵ.

Alternatively, if w⊤
0jxi ≤ 0, then w⊤

j xi > 0 and thus

−w⊤
0jxi ≤ ϵ − w⊤

j xi ≤ ϵ.

In both cases, we have the desired |w⊤
0jxi| ≤ ϵ.

13
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Using the observation that we have just explained and the fact that w⊤
0jxi ∼ N (0, ∥xi∥2), we obtain, for a

random variable N ∼ N (0, 1),

Pr(Ai,j(ϵ)) ≤ Pr
(

|N | ≤ ϵ

∥xi∥

)
= erf

(
ϵ

∥xi∥
√

2

)

≤

√√√√1 − exp
(

−

(
4
(

ϵ

∥xi∥
√

2

)2
)

/π

)

≤

√
2ϵ2

∥xi∥2π
≤ ϵ

∥xi∥
, (S.16)

where the second inequality uses erf(x) ≤
√

1 − exp(−(4x2)/π). Let Ψ(W0) be the constraint on W =
(w⊤

1 , . . . , w⊤
m)⊤ defined by

W ∈ Ψ(W0) ⇐⇒ ∥w0j′ − wj′∥ ≤ δ2cm,j′

4 for all j′ ∈ [m].

Then, for all k = 1, 2, we have

E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥2

2

]

≤ 1
d

n∑
i=1

m∑
j=1

∥xi∥2λ
(k)
m,jE

[
sup

W∈Ψ(W0)
|σ′(Zj(xi; W)) − σ′(Zj(xi; W0))|2

]

≤ 1
d

n∑
i=1

m∑
j=1

∥xi∥2λ
(k)
m,j Pr (∃W ∈ Ψ(W0) s.t. σ′(Zj(xi; W)) ̸= σ′(Zj(xi; W0)))

= 1
d

n∑
i=1

m∑
j=1

∥xi∥2λ
(k)
m,j Pr

(
∃wj s.t. ∥w0j − wj∥ ≤ δ2cm,j

4 and σ′(w⊤
j xi) ̸= σ′(w⊤

0jxi)
)

≤ 1
d

n∑
i=1

m∑
j=1

∥xi∥2λ
(k)
m,j Pr

(
Ai,j(δ2cm,j/4)

)
≤ (δ2/4)

d

n∑
i=1

m∑
j=1

∥xi∥λ
(k)
m,jcm,j

≤ n(δ2/4)
d

m∑
j=1

λ
(k)
m,jcm,j .

The first inequality uses the bound in Equation (S.15), and the fourth inequality uses the inequality derived
in Equation (S.16).
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We bring together the bound on the expectation just shown and also the bounds proved in Equations (S.13)
and (S.14). Recalling that γ1 = γ and γ2 = 1 − γ, we have

E

[
sup

W∈Ψ(W0)

∥∥∥Θ̂(k)
m (X; W) − Θ̂(k)

m (X; W0)
∥∥∥

2

]

≤ E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥2

2

]

+ 2E
[

sup
W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X; W0)

∥∥∥
2

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥

2

]

≤ E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥2

2

]

+ 2
√

n

d
γk E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥

2

]

≤ E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥2

2

]

+ 2
√

n

d
γk

√√√√E

[
sup

W∈Ψ(W0)

∥∥∥∇Wf
(k)
m (X; W) − ∇Wf

(k)
m (X; W0)

∥∥∥2

2

]

≤ n(δ2/4)
d

m∑
j=1

λ
(k)
m,jcm,j + 2

√
n

d
γk

√√√√n(δ2/4)
d

m∑
j=1

λ
(k)
m,jcm,j

≤ δ

2

n

d

m∑
j=1

λ
(k)
m,jcm,j + 2n

d

√√√√γk

m∑
j=1

λ
(k)
m,jcm,j

 .

The third inequality uses Jensen’s inequality, and the last uses the fact that δ/2 ≥ (δ/2)2. Hence, for each
k = 1, 2, by Markov inequality, we have, with probability at least 1 − (δ/2),

sup
W∈Ψ(W0)

∥∥∥Θ̂(k)
m (X; W) − Θ̂(k)

m (X; W0)
∥∥∥

2
≤ n

d

m∑
j=1

λ
(k)
m,jcm,j + 2n

d

√
γk

√√√√ m∑
j=1

λ
(k)
m,jcm,j .

By union bound, the conjunction of the above inequalities for the k = 1 and k = 2 cases holds with probability
at least 1 − δ.

We prove the last remaining claim using the following lemma.

If A and B are real symmetric matrices, then

eigmin(A) ≥ eigmin(B) − ∥A − B∥2,

which holds because

eigmin(A) = eigmin(B + (A − B)) ≥ eigmin(B) + eigmin(A − B)
≥ eigmin(B) − eigmax(B − A)
≥ eigmin(B) − ∥B − A∥2 = eigmin(B) − ∥A − B∥2.
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Thus,

inf
W∈Ψ(W0)

(
eigmin(Θ̂(1)

m (X; W))
)

≥ eigmin(Θ̂(1)
m (X; W0)) − sup

W∈Ψ(W0)

∥∥∥Θ̂(1)
m (X; W) − Θ̂(1)

m (X; W0)
∥∥∥

2

≥ eigmin(Θ̂(1)
m (X; W0)) −

n

d

m∑
j=1

λ
(1)
m,jcm,j + 2n

d

√√√√γ

m∑
j=1

λ
(1)
m,jcm,j


= eigmin(Θ̂(1)

m (X; W0)) −

 nγ

dm

m∑
j=1

cm,j + 2nγ

dm1/2

√√√√ m∑
j=1

cm,j


holds with probability at least 1 − δ. Equation (S.12) then follows from the fact that for all W,
eigmin(Θ̂m(X; W)) ≥ eigmin(Θ̂(1)

m (X; W)).

E.3 Lemma on a sufficient condition for Theorem A.1 - ReLU case

We now bring together the results from Proposition D.1 and Lemmas E.1 and E.2, and identify a sufficient
condition for Theorem A.1, which corresponds to the condition in Lemma 3.4 in (Du et al., 2019b).
Lemma E.3. Consider δ ∈ (0, 1). Assume that Assumptions 3.1 and 3.3 hold, the activation function is
ReLU, and cm,j > 0 for all j ∈ [m]. Also, assume that γ > 0 and

m ≥ max

(8n log 4n
δ

dκn

)
,

 8n

dκn

m∑
j=1

cm,j

 ,

162n2

d2κ2
n

m∑
j=1

cm,j

 .

Define

R′
m,j =

√
nλm,j

d
∥y − u0∥ 4

γκn
and Rm,j = δ2cm,j

64 .

If R′
m,j < Rm,j for all j ∈ [m] with probability at least 1 − δ

2 , then on an event with probability at least 1 − δ,
we have that for all j ∈ [m], R′

m,j < Rm,j and the following properties also hold for all t ≥ 0:

(a) eigmin(Θ̂m(X; Wt)) ≥ γκn

4 ;

(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);

(c) ∥wtj − w0j∥ ≤ R′
m,j for all j ∈ [m]; and

(d) ∥Θ̂m(X; Wt) − Θ̂m(X; W0)∥2 ≤ n
d

∑m
j=1 λm,jcm,j + 2

√
2·n
d

√∑m
j=1 λm,jcm,j.

Proof. Suppose R′
m,j < Rm,j for all j ∈ [m] on some event A′ having probability at least 1 − δ

2 . Also, we
would like to instantiate Proposition D.1 and Lemma E.2 with δ/4, so that each of their claims holds with
probability at least 1 − δ

4 . Let A be the intersection of A′ with the event that the conjunction of the two
claims in Proposition D.1 and Lemma E.2 hold with δ/4. By the union bound, A has probability at least
1 − δ. We will show that on the event A, the four claimed properties of the lemma hold.

It will be sufficient to show that

∥wsj − w0j∥ ≤ Rm,j for all j ∈ [m] and s ≥ 0. (S.17)

To see why doing so is sufficient, pick an arbitrary t0 ≥ 0, and assume the above inequality for all s ≥ 0.
Then, by event A and Lemma E.2, for all 0 ≤ s ≤ t0, we have the following upper bound on the change of
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the Gram matrix from time 0 to s, and the following lower bound on the smallest eigenvalue of Θ̂m(X; Ws):

∥∥∥Θ̂m(X; Ws) − Θ̂m(X; W0)
∥∥∥

2
≤

2∑
k=1

∥∥∥Θ̂(k)
m (X; Ws) − Θ̂(k)

m (X; W0)
∥∥∥

2

≤
2∑

k=1

n

d

m∑
j=1

λ
(k)
m,jcm,j + 2n

d

√√√√ m∑
j=1

λ
(k)
m,jcm,j


≤ n

d

m∑
j=1

λm,jcm,j + 2
√

2 · n

d

√√√√ m∑
j=1

λm,jcm,j

and

eigmin(Θ̂m(X; Ws)) ≥ eigmin(Θ̂(1)
m (X; W0)) −

 nγ

dm

m∑
j=1

cm,j + 2nγ

dm1/2

√√√√ m∑
j=1

cm,j


≥ γκn

2 − γκn

4 ·

 1
m

· 4n

dκn

m∑
j=1

cm,j + 1
m1/2 · 8n

dκn

√√√√ m∑
j=1

cm,j


≥ γκn

2 − γκn

4 = γκn

4 .

We now apply Lemma E.1 with ζ being set to γκn

2 , which gives

Lm(Wt0) ≤ e−(γκnt0)/2Lm(W0)

and

∥wt0j − w0j∥ ≤
√

nλm,j

d
∥y − u0∥ 4

γκn
= R′

m,j for all j ∈ [m].

We have just shown that all the four properties in the lemma hold for t0.

It remains to prove Equation (S.17) under the event A and the assumption that R′
m,j < Rm,j for all j ∈ [m]

holds on this event. Suppose that Equation (S.17) fails for some j ∈ [m]. Let

t1 = inf {t | ∥wj − w0j∥ > Rm,j for some j ∈ [m]} .

Then, by the continuity of wtj on t, we have

∥wsj − w0j∥ ≤ Rm,j for all j ∈ [m] and 0 ≤ s ≤ t1

and for some j0 ∈ [m],
∥wt1j0 − w0j0∥ = Rm,j0 . (S.18)

Thus, by the argument that we gave in the previous paragraph, we have

∥wt1j − w0j∥ ≤ R′
m,j for all j ∈ [m].

In particular, ∥wt1j0 − w0j0∥ ≤ R′
m,j0

. But this contradicts our assumption R′
m,j0

< Rm,j0 .

E.4 Lemma bounding the NTK change and minimum eigenvalue - Smooth activation case

We now give a version of Lemma E.2 for the smooth activation case (that is, under Assumption 3.2). The
proof of this version is similar to the one for Lemma 5 in (Oymak and Soltanolkotabi, 2020), and uses the
three equations (364-366) in (Bartlett et al., 2021).
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Lemma E.4. Assume that Assumptions 3.1 to 3.3 hold. Let cm,j > 0 for every j ∈ [m]. Then, for any fixed
W = (w⊤

1 , . . . , w⊤
m)⊤, if it satisfies

∥w0j − wj∥ ≤ cm,j

2 for all j ∈ [m],

we have

∥∥∥Θ̂(k)
m (X; W) − Θ̂(k)

m (X; W0)
∥∥∥

2
≤ nM2

4d2

m∑
j=1

λ
(k)
m,jc2

m,j + nM

d3/2

√√√√ m∑
j=1

λ
(k)
m,jc2

m,j for all k ∈ [2]

and

eigmin(Θ̂m(X; W)) ≥ eigmin(Θ̂(1)
m (X; W0)) −

nM2γ

4d2m

m∑
j=1

c2
m,j + nMγ

d3/2m1/2

√√√√ m∑
j=1

c2
m,j

 . (S.19)

Note that this lemma has a deterministic conclusion, although its original counterpart (Lemma E.2) has a
probabilistic one.

Proof. The beginning part of the proof is essentially an abbreviated version of the beginning part of the proof
of Lemma E.2. This repetition is intended to help the reader by not forcing her or him to look at the proof of
Lemma E.2 beforehand.

For k ∈ [2], let

f (k)
m (−; W) : Rd → R, f (k)

m (x; W) =
m∑

j=1

√
λ

(k)
m,jajσ(Zj(x; W)),

and define ∇Wf
(k)
m (X; W) to be the n-by-(pd) matrix whose i-th row is the md-dimensional row vector

(∇Wf
(k)
m (xi; W))⊤.

For all k ∈ [2], we have∥∥∥Θ̂(k)
m (X; W) − Θ̂(k)

m (X; W0)
∥∥∥

2

=
∥∥∥∇Wf (k)

m (X; W)∇Wf (k)
m (X; W)⊤ − ∇Wf (k)

m (X; W0)∇Wf (k)
m (X; W0)⊤

∥∥∥
2

≤
∥∥∥∇Wf (k)

m (X; W) − ∇Wf (k)
m (X; W0)

∥∥∥2

2
(S.20)

+ 2
∥∥∥∇Wf (k)

m (X; W0)
∥∥∥

2

∥∥∥∇Wf (k)
m (X; W) − ∇Wf (k)

m (X; W0)
∥∥∥

2
.

To see why this inequality holds, see the proof of Lemma E.2. We bound the two terms
∥∥∥∇Wf

(k)
m (X; W0)

∥∥∥
2

and
∥∥∥∇Wf

(k)
m (X; W) − ∇Wf

(k)
m (X; W0)

∥∥∥
2

in Equation (S.20). We bound the first term as follows:

∥∥∥∇Wf (k)
m (X; W0)

∥∥∥2

2
≤
∥∥∥∇Wf (k)

m (X; W0)
∥∥∥2

F
=

n∑
i=1

m∑
j=1

∥∥∥∇wj f (k)
m (xi; W0)

∥∥∥2

=
n∑

i=1

m∑
j=1

λ
(k)
m,j |σ′(Zj(xi; W0))|2 ∥xi∥2

d

≤ n

d

m∑
j=1

λ
(k)
m,j ≤ n

d
γk
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where γ1 = γ and γ2 = 1 − γ. The second inequality uses the assumption that |σ′(x)| ≤ 1 for all x ∈ R and
∥xi∥ ≤ 1 for all i ∈ [n]. The third inequality holds because

∑m
j=1 λ

(k)
m,j ≤

∑m
j=1 λm,j = 1. For the second

term, we recall that |σ′′(x)| ≤ M and so σ′ is M -Lipschitz, and also that Zj(xi; W) = 1√
d
w⊤

j xi. Using these
facts, we derive an upper bound for the second term as follows:∥∥∥∇Wf (k)

m (X; W) − ∇Wf (k)
m (X; W0)

∥∥∥2

2

≤
∥∥∥∇Wf (k)

m (X; W) − ∇Wf (k)
m (X; W0)

∥∥∥2

F

=
n∑

i=1

m∑
j=1

∥∥∥∇wj
f (k)

m (xi; W) − ∇wj
f (k)

m (xi; W0)
∥∥∥2

=
n∑

i=1

m∑
j=1

∥∥∥∥√λ
(k)
m,jaj

xi√
d

[σ′(Zj(xi; W)) − σ′(Zj(xi; W0))]
∥∥∥∥2

= 1
d

n∑
i=1

∥xi∥2
m∑

j=1
λ

(k)
m,j [σ′(Zj(xi; W)) − σ′(Zj(xi; W0))]2

≤ 1
d

n∑
i=1

m∑
j=1

λ
(k)
m,j [σ′(Zj(xi; W)) − σ′(Zj(xi; W0))]2

≤ M2

d2

n∑
i=1

m∑
j=1

λ
(k)
m,j

(
(wj − w0j)⊤ xi

)2

≤ nM2

d2

m∑
j=1

λ
(k)
m,j ∥wj − w0j∥2

≤ nM2

4d2

m∑
j=1

λ
(k)
m,jc2

m,j .

The second to last step uses the Cauchy-Schwartz inequality, and the last step uses our assumption that
∥wj − w0j∥ ≤ cm,j

2 for all j ∈ [m]. From the derived bounds on the first and second terms in the last line of
Equation (S.20), it follows that

∥∥∥Θ̂(k)
m (X; W) − Θ̂(k)

m (X; W0)
∥∥∥

2
≤ nM2

4d2

m∑
j=1

λ
(k)
m,jc2

m,j + 2
√

n

d
γk

√√√√nM2

4d2

m∑
j=1

λ
(k)
m,jc2

m,j

= nM2

4d2

m∑
j=1

λ
(k)
m,jc2

m,j + nM

d3/2

√√√√γk

m∑
j=1

λ
(k)
m,jc2

m,j .

Finally, as noted in the proof of Lemma E.2, we have

eigmin(Θ̂m(X; W)) ≥ eigmin(Θ̂(1)
m (X; W))

≥ eigmin(Θ̂(1)
m (X; W0)) −

∥∥∥Θ̂(1)
m (X; W) − Θ̂(1)

m (X; W0)
∥∥∥

2
.

Thus,

eigmin(Θ̂m(X; W)) ≥ eigmin(Θ̂(1)
m (X; W0)) −

nM2γ

4d2m

m∑
j=1

c2
m,j + nMγ

d3/2m1/2

√√√√ m∑
j=1

c2
m,j

 .
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E.5 Lemma on a sufficient condition for Theorem 5.1 - Smooth activation case

We now give a version of Lemma E.3 for the smooth activation case (i.e., under Assumption 3.2). It brings
together the results from Proposition D.1 and Lemmas E.1 and E.4, and identifies a sufficient condition for
Theorem A.1, which corresponds to the condition in Lemma 3.4 in (Du et al., 2019b).

Lemma E.5. Assume that Assumptions 3.1 to 3.3 hold. Let δ ∈ (0, 1), and cm,j > 0 for all j ∈ [m]. Assume
that γ > 0 and

m ≥ max

8n log 2n
δ

dκn
,

nM2δ2

8d2κn

m∑
j=1

c2
m,j ,

4n2M2δ2

d3κ2
n

m∑
j=1

c2
m,j

 .

For each j ∈ [m], define

R′
m,j =

√
nλm,j

d
∥y − u0∥ 4

γκn
and Rm,j = δcm,j

8 .

If R′
m,j < Rm,j for all j ∈ [m] with probability at least 1 − δ

2 , then on an event with probability at least 1 − δ,
we have that for all j ∈ [m], R′

m,j < Rm,j and the following properties also hold for all t ≥ 0:

(a) eigmin(Θ̂m(X; Wt)) ≥ γκn

4 ;

(b) Lm(Wt) ≤ e−(γκnt)/2Lm(W0);

(c) ∥wtj − w0j∥ ≤ R′
m,j for all j ∈ [m]; and

(d) ∥Θ̂m(X; Wt) − Θ̂m(X; W0)∥2 ≤ nM2δ2

82d2

∑m
j=1 λm,jc2

m,j + nMδ
23/2d3/2

√∑m
j=1 λm,jc2

m,j.

Proof. The proof is very similar to that of Lemma E.3, although the concrete bounds in these proofs differ
due to the differences between Lemma E.2 and Lemma E.4.

Suppose R′
m,j < Rm,j for all j ∈ [m] on some event A′ having probability at least 1 − δ

2 . Also, we would like
to instantiate Proposition D.1 with δ/2, so that its claim holds with probability at least 1 − δ

2 . Let A be the
intersection of A′ with the event that the claim in Proposition D.1 holds with δ/2. By the union bound, A
has probability at least 1 − δ. We will show that on the event A, the four claimed properties of the lemma
hold.

It will be sufficient to show that

∥wsj − w0j∥ ≤ Rm,j for all s ≥ 0. (S.21)

To see why doing so is sufficient, pick an arbitrary t0 ≥ 0, and assume the above inequality for all s ≥ 0.
Then, by the event A and Lemma E.4, for all 0 ≤ s ≤ t0, we have the following upper bound on the change of
the Gram matrix from time 0 to s, and the following lower bound on the smallest eigenvalue of Θ̂m(X; Ws):∥∥∥Θ̂m(X; Ws) − Θ̂m(X; W0)

∥∥∥
2

≤
∥∥∥Θ̂(1)

m (X; Ws) − Θ̂(1)
m (X; W0)

∥∥∥
2

+
∥∥∥Θ̂(2)

m (X; Ws) − Θ̂(2)
m (X; W0)

∥∥∥
2

≤ nM2δ2

64d2

m∑
j=1

λm,jc2
m,j + nMδ

23/2d3/2

√√√√ m∑
j=1

λm,jc2
m,j
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and

eigmin(Θ̂m(X; Ws)) ≥ eigmin(Θ̂(1)
m (X; W0)) −

nM2δ2γ

64d2m

m∑
j=1

c2
m,j + nMδγ

4d3/2m1/2

√√√√ m∑
j=1

c2
m,j


>

γκn

2 − γκn

4

 1
m

· nM2δ2

16d2κn

m∑
j=1

c2
m,j + 1

m1/2 · nMδ

d3/2κn

√√√√ m∑
j=1

c2
m,j


≥ γκn

2 − γκn

4

(
1
2 + 1

2

)
= γκn

4 .

We now apply the version of Lemma E.1 for the analytic activation σ, with ζ being set to γκn

2 . This application
gives

Lm(Wt0) ≤ e−(γκnt0)/2Lm(W0)

and

∥wt0j − w0j∥ ≤
√

nλm,j

d
∥y − u0∥ 4

γκn
= R′

m,j for all j ∈ [m].

We have just shown that all the four properties in the lemma hold for t0.

It remains to prove Equation (S.21) under the event A. Suppose that Equation (S.21) fails for some j ∈ [m].
Let

t1 = inf {t | ∥wtj − w0j∥ > Rm,j for some j ∈ [m]} .

Then, by the continuity of wtj on t, we have

∥wsj − w0j∥ ≤ Rm,j for all j ∈ [m] and 0 ≤ s ≤ t1

and for some j0 ∈ [m],
∥wt1j0 − w0j0∥ = Rm,j0 . (S.22)

Thus, by the argument that we gave in the previous paragraph, we have

∥wt1j − w0j∥ ≤ R′
m,j for all j ∈ [m].

In particular, ∥wt1j0 − w0j0∥ ≤ R′
m,j0

. But this contradicts our assumption R′
m,j0

< Rm,j0 .

F Proof of Theorem A.1 on the global convergence of gradient flow (ReLU case)

The proof of Theorem A.1 essentially follows Lemma E.3, which itself follows from the secondary Proposi-
tion D.1 and Lemmas E.1 and E.2, derived in Appendices D and E. Pick δ ∈ (0, 1). Let

D =

√
n2
(

C2 + 1
d

)
2 · 5122

γ2δ5κ2
nd

where C is the assumed upper bound on the |yi|’s. Assume γ > 0 and

m ≥ max
((8n log 4n

δ

κnd

)
,

(
8nD

dκn

)2
,

(
162n2D

d2κ2
n

)2)

and set cm,j as follows:

cm,j =
√

λm,j ·

√
n2
(

C2 + 1
d

)
2 · 5122

γ2δ5κ2
nd

=
√

λm,j · D.
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Note that  8n

dκn

m∑
j=1

cm,j

2

=
(

8nD

dκn

)2
·

 m∑
j=1

√
λm,j

2

≤
(

8nD

dκn

)2
·

 m∑
j=1

λm,j

 · m

=
(

8nD

dκn

)2
· m ≤ m2,

and also that162n2

d2κ2
n

m∑
j=1

cm,j

2

=
(

162n2D

d2κ2
n

)2

·

 m∑
j=1

√
λm,j

2

≤
(

162n2D

d2κ2
n

)2

·

 m∑
j=1

λm,j

 · m

=
(

162n2D

d2κ2
n

)2

· m ≤ m2.

Thus,

m ≥ max

(8n log 4n
δ

dκn

)
,

 8n

dκn

m∑
j=1

cm,j

 ,

162n2

d2κ2
n

m∑
j=1

cm,j

 .

As a result, we can now employ Lemma E.3. Thus, if we find an event A′ such that the probability of A′ is at
least 1 − (δ/2) and under A′, we have R′

m,j < Rm,j , then the conclusion of Lemma E.3 holds. In particular,
we may further calculate conclusions (c) and (d) of Lemma E.3 as

∥wtj − w0j∥ ≤ R′
m,j < Rm,j = δ2cm,j

64 = δ2

64 ·
√

λm,j ·

√
n2
(

C2 + 1
d

)
2 · 5122

γ2δ5κ2
nd

= 8n

κnd1/2 ·

√(
C2 + 1

d

)
2

γ2δ
·
√

λm,j ,

and

∥Θ̂m(X; Wt) − Θ̂m(X; W0)∥2 ≤ n

d

m∑
j=1

λm,jcm,j + 2
√

2 · n

d

√√√√ m∑
j=1

λm,jcm,j

= n

d
· D ·

m∑
j=1

λ
3/2
m,j + 2

√
2 · n

d
·
√

D ·

√√√√ m∑
j=1

λ
3/2
m,j

= n

d
·

√
n2
(

C2 + 1
d

)
2 · 5122

γ2δ5κ2
nd

·
m∑

j=1
λ

3/2
m,j

+ 2
√

2 · n

d
·
(

n2
(

C2 + 1
d

)
2 · 5122

γ2δ5κ2
nd

)1/4

·

√√√√ m∑
j=1

λ
3/2
m,j

= 512n2

κnd3/2 ·

√(
C2 + 1

d

)
2

γ2δ5 ·
m∑

j=1
λ

3/2
m,j

+ 64n3/2

κ
1/2
n d5/4

·
((

C2 + 1
d

)
2

γ2δ5

)1/4
·

√√√√ m∑
j=1

λ
3/2
m,j .
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It remains to find such an event A′. Start by noting that

E[∥y − u0∥2] =
n∑

i=1

(
y2

i − 2yiE[fm(xi; W0)] + E[fm(xi; W0)2]
)

=
n∑

i=1

y2
i − 2yi · 0 + E

1
d

m∑
j=1

λm,j(w⊤
j xi)21{w⊤

j
xi≥0}


=

n∑
i=1

y2
i + 1

d

m∑
j=1

λm,jE
[
(w⊤

j xi)21{w⊤
j

xi≥0}

]
≤ n

(
C2 + 1

d

)
.

Thus, by Markov inequality, with probability at least 1 − (δ/2),

∥y − u0∥2
< n

(
C2 + 1

d

)
2
δ

.

Let A′ be the corresponding event for the above inequality. Then, under A′, we have

R′
m,j =

√
nλm,j

d
∥y − u0∥ 4

γκn

<

√
nλm,j

d
·

√
n

(
C2 + 1

d

)
2
δ

· 4
γκn

=
√

λm,j ·

√
n2
(

C2 + 1
d

)
2 · 42

γ2δκ2
nd

= δ2cm,j

128 <
δ2cm,j

64 = Rm,j .

Thus, A′ is the desired event.

G Proof of Theorem 5.1 on the global convergence of gradient flow (smooth case)

The proof of the theorem is similar to that of Theorem A.1. It derives from Lemma E.5, which itself follows
from the secondary Proposition D.1 and Lemmas E.1 and E.4, derived in Appendices D and E. Recall that

C1 = sup
c∈(0,1]

E[σ(cz)2]

where the expectation is taken over the real-valued random variable z with the distribution N (0, 1/d). To see
that C1 is finite, note that since |σ′(x)| ≤ 1 for all x ∈ R, we have

|σ(cz) − σ(0)| ≤ |cz| for all c ∈ (0, 1].

Thus, for every c ∈ (0, 1],
σ(0) − |cz| ≤ σ(cz) ≤ σ(0) + |cz|,

which implies that

E[σ(cz)2] ≤ σ(0)2 + 2|σ(0)| · |c| · E[|z|] + c2E[z2]
≤ σ(0)2 + 2|σ(0)| · E[|z|] + E[z2].

As a result, E[σ(cz)2] is bounded, so C1 is finite.
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Pick δ ∈ (0, 1). Assume γ > 0 and

m ≥ max
((

8n

κnd
· log 2n

δ

)
,

(
210n3M2

κ3
nd3 · C2 + C1

γ2δ

)
,

(
215n4M2

κ4
nd4 · C2 + C1

γ2δ

))

and instantiate Lemma E.5 using the below cm,j :

cm,j =
√

λm,j ·

√
n2 (C2 + C1) 2 · 642

γ2δ3κ2
nd

where C is the assumed upper bound on the |yi|’s. Note that

nM2δ2

8d2κn

m∑
j=1

c2
m,j = nM2δ2

8d2κn

m∑
j=1

(
λm,j · n2 (C2 + C1

) 2 · 642

γ2δ3κ2
nd

)

= nM2δ2

8d2κn
· n2 (C2 + C1

) 2 · 642

γ2δ3κ2
nd

·
m∑

j=1
λm,j

= 210n3M2

κ3
nd3 × C2 + C1

γ2δ

and

4n2M2δ2

d3κ2
n

m∑
j=1

c2
m,j = 4n2M2δ2

d3κ2
n

m∑
j=1

(
λm,j · n2 (C2 + C1

) 2 · 642

γ2δ3κ2
nd

)

= 4n2M2δ2

d3κ2
n

· n2 (C2 + C1
) 2 · 642

γ2δ3κ2
nd

·
m∑

j=1
λm,j

= 215n4M2

κ4
nd4 × C2 + C1

γ2δ
.

Thus,

m ≥ max

8n log 2n
δ

dκn
,

nM2δ2

8d2κn

m∑
j=1

c2
m,j ,

4n2M2δ2

d3κ2
n

m∑
j=1

c2
m,j

 .

This allows us to employ Lemma E.5. Hence, it is sufficient to find an event A′ such that the probability of
A′ is at least 1 − (δ/2) and under A′, we have R′

m,j < Rm,j . The desired conclusion then follows from the
conclusion of Lemma E.5, and the below calculations: if ∥wtj − w0j∥ ≤ R′

m,j and R′
m,j < Rm,j , then

∥wtj − w0j∥ < Rm,j = δcm,j

8

= δ

8 ·
√

λm,j ·

√
n2 (C2 + C1) 2 · 642

γ2δ3κ2
nd

=
√

λm,j × n

κnd1/2

√
128(C2 + C1)

γ2δ
,
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and the upper bound on ∥Θ̂m(X; Wt) − Θ̂m(X; W0)∥2 in the conclusion of Lemma E.5 can be rewritten to

∥Θ̂m(X; Wt) − Θ̂m(X; W0)∥2

≤ nM2δ2

82d2

m∑
j=1

λm,jc2
m,j + nMδ

23/2d3/2

√√√√ m∑
j=1

λm,jc2
m,j

= nM2δ2

43d2

m∑
j=1

λm,j

(
λm,jn2 (C2 + C1)2 · 642

γ2δ3κ2
nd

)

+ nMδ

23/2d3/2

√√√√ m∑
j=1

λm,j

(
λm,jn2 (C2 + C1)2 · 642

γ2δ3κ2
nd

)

=

n3M2

κ2
nd3

m∑
j=1

λ2
m,j

27(C2 + C1)
γ2δ

+ n2M

κnd2

√√√√ m∑
j=1

λ2
m,j

210(C2 + C1)
γ2δ

.

Note that

E[∥y − u0∥2] =
n∑

i=1

(
y2

i − 2yiE[fm(xi; W0)] + E[fm(xi; W0)2]
)

=
n∑

i=1

y2
i − 2yi · 0 + E

 m∑
j=1

λm,jσ(Zj(xi; W0))2


=

n∑
i=1

y2
i +

m∑
j=1

λm,jE
[
σ(Zj(xi; W0))2]

≤ n
(
C2 + C1

)
.

Thus, by Markov inequality, with probability at least 1 − (δ/2),

∥y − u0∥2
< n

(
C2 + C1

) 2
δ

.

Let A′ be the corresponding event for the above inequality. Then, under A′, we have

R′
m,j =

√
nλm,j

d
∥y − u0∥ 4

γκn

<

√
nλm,j

d
·
√

n (C2 + C1) 2
δ

· 4
γκn

=
√

λm,j ·

√
n2 (C2 + C1) 2 · 42

γ2δκ2
nd

= δcm,j

16 <
δcm,j

8 = Rm,j .

Thus, A′ is the desired event.

H Proof of Theorem 6.1 on the global convergence of gradient descent (smooth
activation)

Our convergence proof follows the structure of the convergence proof of (Du et al., 2019a, Theorem 5.1) with
necessary modifications, which in particular account for the changing weights and Gram matrices in our
setup.
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H.1 Sketch of the proof

The proof is by induction on the number of gradient-update steps s. Here is a sketch of the proof for the
inductive case. We start by decomposing the error at step s + 1:

∥y − us+1∥2 = ∥(y − us) − (us+1 − us)∥2

= ∥y − us∥2 − 2(y − us)⊤(us+1 − us) + ∥us+1 − us∥2

= ∥y − us∥2 − 2(y − us)⊤I1 − 2(y − us)⊤I2 + ∥us+1 − us∥2
, (S.23)

where I1 = ηΘ̂m(X; Ws)(y − us) and I2 = (us+1 − us − I1). We can then show that with high probability,
both the third and the fourth terms in Equation (S.23) are O(η2)∥y − us∥2, so that the sum of these terms
can be bounded from above by (ηγκn/4)∥y − us∥2 if η is sufficiently small. On the other hand, the second
term can be bounded using the minimum eigenvalue of the positive definite Gram matrix:

−2(y − us)⊤I1 =
(

−2η(y − us)⊤Θ̂m(X; Ws)(y − us)
)

≤ −2η eigmin(Θ̂m(X; Ws))∥y − us∥2.

We will show that if the network is large enough, with high probability, −2η eigmin(Θ̂m(X; Ws)) in the above
upper bound is at most −3ηγκn/4. Putting all these together gives the required bound: with high probability,

∥y − us+1∥2 ≤ ∥y − us∥2 − 2(y − us)⊤I1 − 2(y − us)⊤I2 + ∥us+1 − us∥2

≤ ∥y − us∥2 − 3ηγκn

4 ∥y − us∥2 + ηγκn

4 ∥y − us∥2

≤
(

1 − ηγκn

2

)
∥y − us∥2

≤
(

1 − ηγκn

2

)s+1
∥y − u0∥2.

The step of upper-bounding −2η eigmin(Θ̂m(X; Ws)) by −3ηγκn/4 is where we have to account for the
changing weights and Gram matrix, and this is where the difference between our proof and that of (Du et al.,
2019a) lies.

As mentioned already, the Gram matrix Θ̂m(X; Ws) changes during gradient descent even when the network
is very wide, but we will show that despite these changes, its minimum eigenvalue remains lower-bounded by
3γκn/8 with high probability. This can be done using the decomposition Θ̂m = Θ̂(1)

m + Θ̂(2)
m in Equation (15)

from our proof sketch of the global convergence of gradient flow. At a high level, the reasoning goes like
this. The induction hypothesis implies that the weight change ∥wsj − w0j∥ is O(

√
λm,j), which is small

enough to guarantee that Θ̂(1)
m (X; Ws′) remains almost constant during training for a large network. This, in

turn, implies that the minimum eigenvalue of Θ̂(1)
m (X; Ws) is lower-bounded by 3γκn/8 with high probability.

Since eigmin(Θ̂m(X; Ws)) ≥ eigmin(Θ̂(1)
m (X; Ws)), we get the desired upper bound.

H.2 Two key lemmas

Before proving the theorem, we show two useful facts. Let u(W) be the n-dimensional vector

(fm(x1; W), . . . , fm(xn; W))⊤

which consists of the network outputs on the training inputs under the parameters W. Note that for each
gradient-update step s ∈ N ∪ {0}, the vector u(Ws) is equal to us, the notation that we have been using in
the main text of the paper. We also define u′(W) to be the following n-by-m matrix:

u′(W) = ∂u
∂W .
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For each s ∈ N ∪ {0}, let Θ̂m(s) = Θ̂m(X; Ws) and

ũs+1 =
(

us − η
dut

dt

∣∣∣
Wt=Ws

)
=
(

us − ηΘ̂m(s)(us − y)
)

be the Euler discretisation of the gradient flow of the output. Here η > 0 is the learning rate.
Lemma H.1. For all W and j ∈ [m],∥∥∥∥∂Lm(W)

∂wj

∥∥∥∥ ≤
√

λm,jn
√

d
∥y − u(W)∥.

Proof. ∥∥∥∥∂Lm(W)
∂wj

∥∥∥∥ =

∥∥∥∥∥
n∑

i=1
(u(W)i − yi) ×

√
λm,jaj × σ′

(
w⊤

j xi√
d

)
× xi√

d

∥∥∥∥∥
≤

n∑
i=1

∥∥∥∥∥(u(W)i − yi) ×
√

λm,jaj × σ′

(
w⊤

j xi√
d

)
× xi√

d

∥∥∥∥∥
≤
√

λm,j√
d

×
n∑

i=1
|u(W)i − yi|

≤
√

λm,jn
√

d
∥y − u(W)∥.

The next lemma gives an upper bound on ∥y − us+1∥. As we will show shortly, this upper bound will play a
crucial role in the proof of Theorem 6.1.
Lemma H.2. Assume Assumptions 3.1 to 3.3. Then, for all s ∈ N ∪ {0}, we have

∥y − us+1∥2 ≤
(

1 − 2η eigmin(Θ̂m(s)) + 2η2Mn3/2

d2 ∥y − us∥ + η2n2

d2

)
× ∥y − us∥2. (S.24)

Proof. Write
us+1 − us = ũs+1 − us︸ ︷︷ ︸

I1

+ us+1 − ũs+1︸ ︷︷ ︸
I2

.

Then, we have

∥y − us+1∥2 = ∥(y − us) − (us+1 − us)∥2

= ∥y − us∥2 − 2(y − us)⊤(us+1 − us) + ∥us+1 − us∥2

= ∥y − us∥2 − 2(y − us)⊤I1 − 2(y − us)⊤I2 + ∥us+1 − us∥2
.

Since the Gram matrix Θ̂m(s) is positive definite and η > 0, we have

(y − us)⊤I1 = (y − us)⊤ (ũs+1 − us) = η(y − us)⊤Θ̂m(s)(y − us)

≥ η eigmin(Θ̂m(s)) ∥y − us∥2
.

We now get a bound on I2. Note that Θ̂m(s) = u′
s(u′

s)⊤ where u′
s = u′(Ws) = ∂u

∂W

∣∣
W=Ws

. Let

L′
m(W) = ∂Lm(W)

∂W =
n∑

i=1
(u(W)i − yi)u′(W)i = u′(W)⊤(u(W) − y)
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and

L′
m(s) = L′

m(Ws).

Then,

I2 = us+1 − us + ηu′
s(u′

s)⊤(us − y)

=
(

−
∫ η

r=0

(
u′(Ws − rL′

m(s)
))

L′
m(s) dr

)
+ ηu′

s(u′
s)⊤(us − y)

=
∫ η

r=0

(
u′

s − u′(Ws − rL′
m(s))

)
L′

m(s) dr.

Also,

∥L′
m(s)∥ =

∥∥∥∥∥
n∑

i=1
(yi − usi)u′

si

∥∥∥∥∥ ≤
n∑

i=1
|yi − usi| ∥u′

si∥

and

∥u′
si∥

2 =
m∑

j=1
λm,ja2

j

(
σ′

(
w⊤

sjxi√
d

))2
∥xi∥2

d
≤ 1

d
,

since
∑

j λm,j = 1, aj ∈ {−1, +1}, σ′ is 1-Lipschitz, and ∥xi∥ ≤ 1. Hence, by Cauchy-Schwarz,

∥L′
m(s)∥ ≤ 1√

d

n∑
i=1

|yi − usi| ≤
√

n√
d

∥y − us∥ .

Let W(s,r) = Ws − rL′
m(s). For j ∈ [m], write w(s,r)j for the part of W(s,r) going to the j-th node. Then,

for all i ∈ [n],

∥∥u′
si − u′(W(s,r))i

∥∥2 =
m∑

j=1
λm,ja2

j

(
σ′

(
w⊤

sjxi√
d

)
− σ′

(
w⊤

(s,r)jxi
√

d

))2
∥xi∥2

d

≤ M2
m∑

j=1
λm,ja2

j

((
wsj − w(s,r)j

)⊤ xi

)2 ∥xi∥2

d2

≤ M2

d2

m∑
j=1

λm,j

∥∥wsj − w(s,r)j

∥∥2

≤ M2

d2

∥∥Ws − W(s,r)
∥∥2

.

The first inequality follows from the M -Lipschitz continuity of σ′, and the next inequality from aj ∈ {−1, 1},
∥xi∥ ≤ 1, and Cauchy-Schwartz. The last inequality uses the fact that

∑
j λm,j = 1. Finally, for all 0 ≤ r ≤ η,

∥∥Ws − W(s,r)
∥∥ = r ∥L′

m(s)∥ ≤ η

√
n√
d

∥y − us∥ .
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Thus,

∥I2∥2 =
n∑

i=1

(∫ η

r=0

(
u′

si − u′(W(s,r))i

)⊤
L′

m(s) dr

)2

≤
n∑

i=1

(∫ η

r=0

∣∣∣∣(u′
si − u′(W(s,r))i

)⊤
L′

m(s)
∣∣∣∣ dr

)2

≤
n∑

i=1

(∫ η

r=0
∥u′

si − u′(W(s,r))i∥ × ∥L′
m(s)∥ dr

)2

≤
n∑

i=1

(∫ η

r=0

ηM
√

n

d3/2 ∥y − us∥ ×
√

n√
d

∥y − us∥ dr

)2

= η4M2n3

d4 ∥y − us∥4

=
(

η2Mn3/2

d2 ∥y − us∥2
)2

.

As the upper bound depends quadratically on η, we can choose it small enough for gradient descent to
converge, as we will show in the proof of Theorem 6.1 in the next subsection.

Recall that ∥y − us+1∥2 can be expressed as the sum of four terms:

∥y − us+1∥2 = ∥y − us∥2 − 2(y − us)⊤I1 − 2(y − us)⊤I2 + ∥us+1 − us∥2
. (S.25)

Thus far, we have bounded the second and third terms on the RHS of Equation (S.25):

−2(y − us)⊤I1 ≤ −2η eigmin(Θ̂m(s))∥y − us∥2,

−2(y − us)⊤I2 ≤ 2∥y − us∥∥I2∥ ≤
(

2η2Mn3/2

d2 ∥y − us∥3
)

.

These bounds lead to the first three terms in the claimed upper bound of Equation (S.24). It remains to get
an appropriate upper bound of the fourth term on the RHS of Equation (S.25).
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Using the bound on the derivative of the loss in Lemma H.1, we complete the proof:

∥us+1 − us∥2 =
n∑

i=1
(u(s+1)i − usi)2

=
n∑

i=1

 m∑
j=1

√
λm,jaj

(
σ

(
w⊤

(s+1)jxi
√

d

)
− σ

(
w⊤

sjxi√
d

))2

≤
n∑

i=1

 m∑
j=1

√
λm,jaj

∣∣∣∣∣σ
(

w⊤
(s+1)jxi

√
d

)
− σ

(
w⊤

sjxi√
d

)∣∣∣∣∣
2

≤
n∑

i=1

 m∑
j=1

√
λm,jaj

∣∣∣∣∣w
⊤
(s+1)jxi

√
d

−
w⊤

sjxi√
d

∣∣∣∣∣
2

≤
n∑

i=1

 m∑
j=1

√
λm,jaj√

d
∥w(s+1)j − wsj∥∥xi∥

2

≤

(
n∑

i=1
∥xi∥2

)
×

 m∑
j=1

√
λm,jaj√

d
× ∥w(s+1)j − wsj∥

2

≤ n ×

 m∑
j=1

√
λm,jaj√

d
×
∥∥∥∥η

∂Lm(Ws)
∂wsj

∥∥∥∥
2

≤ n ×

 m∑
j=1

√
λm,jaj√

d
×

η
√

λm,jn
√

d
∥y − us∥

2

≤ η2n2

d2 ∥y − us∥2

 m∑
j=1

λm,j

2

= η2n2

d2 ∥y − us∥2.

H.3 Proof of Theorem 6.1

Using the lemmas we have just shown, we will prove global convergence of gradient descent. Recall the
assumed bound C on |yi| for every i ≥ 1 in Assumption 3.1, and also

C1 = sup
c∈(0,1]

E[σ(cz)2]

where the expectation is taken over the real-valued random variable z distributed as N (0, 1/d). As shown in
Appendix G, C1 is finite.

By the argument in Appendix G again, there exists an event E1 such that E1 happens with probability at
least 1 − (δ/2) and conditioned on E1, we have

∥y − u0∥ <

√
n(C2 + C1)2

δ
. (S.26)

Meanwhile, by Proposition D.1, there is an event E2 such that E2 happens with probability at least 1 − (δ/2)
and conditioned on E2, we have

eigmin(Θ̂m(0)) >
γκn

2 . (S.27)

30



Published in Transactions on Machine Learning Research (02/2025)

Let E3 be the event that is the conjunction of E1 and E2. This event happens with probability at least 1 − δ,
and under this event, Equations (S.26) and (S.27) both hold.

Condition on E3. We prove the inequality in Equation (16) by induction on s. The base case of s = 0 is
immediate. To prove the inductive case, assume that s ≥ 1, and that the inequality in Equation (16) holds
for all s′ = 0, 1, . . . , s − 1.

Let α = ηγκn/2 and β = (1 − α)1/2 and

cm,j = ηn

1 − β

√
8λm,j(C2 + C1)

δd
.

Then,

m∑
j=1

c2
m,j =

 η2n2

(1 − β)2
8(C2 + C1)

δd

m∑
j=1

λm,j

 =
(

η2n2

(1 − β)2
8(C2 + C1)

δd

)
.

Note that for all j ∈ [m],

∥wsj − w0j∥ ≤
s−1∑
s′=0

∥w(s′+1)j − ws′j∥

≤
s−1∑
s′=0

η

∥∥∥∥∂Lm(Ws′)
∂ws′j

∥∥∥∥
≤

s−1∑
s′=0

η

√
λm,jn

d
∥y − us′∥

≤ η

√
λm,jn

d

s−1∑
s′=0

(1 − α)s′/2∥y − u0∥

≤ η

1 − β

√
λm,jn

d
∥y − u0∥

≤ η

1 − β

√
λm,jn

d

√
n(C2 + C1)2

δ

= 1
2 × ηn

1 − β

√
8λm,j(C2 + C1)

δd
= cm,j

2

where the third inequality uses the bound shown in Lemma H.1, the fourth inequality follows from the
induction hypothesis, and the sixth inequality uses the bound in (S.26). Thus, by Lemma E.4 with cm,j from
above and the lower bound on the minimum eigenvalue in Equation (S.27), we have

eigmin(Θ̂m(s))

≥ eigmin(Θ̂(1)
m (X; W0)) −

nM2γ

4d2m

m∑
j=1

c2
m,j + nMγ

d3/2m1/2

√√√√ m∑
j=1

c2
m,j


= γκn

2 −

(
nM2γ

4d2m

(
η2n2

(1 − β)2
8(C2 + C1)

δd

)
+ nMγ

d3/2m1/2

√
η2n2

(1 − β)2
8(C2 + C1)

δd

)

= γκn

2 −
(

2η2n3M2γ(C2 + C1)
d3m(1 − β)2δ

+
√

8ηn2Mγ(C2 + C1)1/2

d2m1/2(1 − β)δ1/2

)
.
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Meanwhile, by Lemma H.2, the induction hypothesis, and Equation (S.26),

∥y − us+1∥2

≤
(

1 − 2η eigmin(Θ̂m(s)) + 2η2Mn3/2

d2 ∥y − us∥ + η2n2

d2

)
∥y − us∥2

≤
(

1 − 2η eigmin(Θ̂m(s)) + 2η2Mn3/2

d2 (1 − α)s/2∥y − u0∥ + η2n2

d2

)
∥y − us∥2

≤

(
1 − 2η eigmin(Θ̂m(s)) + 2η2Mn3/2

d2 (1 − α)s/2
√

n(C2 + C1)2
δ

+ η2n2

d2

)
∥y − us∥2.

Thus, we can complete the proof of this inductive case if we show that(
2η eigmin(Θ̂m(s)) − 2η2Mn3/2

d2 (1 − α)s/2
√

n(C2 + C1)2
δ

− η2n2

d2

)
≥ ηγκn

2

which is equivalent to

eigmin(Θ̂m(s)) ≥

(
ηMn3/2

d2 (1 − α)s/2
√

n(C2 + C1)2
δ

+ ηn2

2d2 + γκn

4

)
.

We will show this sufficient condition by proving the following stronger inequality (stronger because of the
lower bound on eigmin(Θ̂m(s)) that we have derived above):

γκn

2 −
(

2η2n3M2γ(C2 + C1)
d3m(1 − β)2δ

+
√

8ηn2Mγ(C2 + C1)1/2

d2m1/2(1 − β)δ1/2

)
≥

(
ηMn3/2

d2 (1 − α)s/2
√

n(C2 + C1)2
δ

+ ηn2

2d2 + γκn

4

)
,

which is equivalent to

γκn

4 ≥
(

2η2n3M2γ(C2 + C1)
d3m(1 − β)2δ

+
√

8ηn2Mγ(C2 + C1)1/2

d2m1/2(1 − β)δ1/2

+ ηMn3/2

d2 (1 − α)s/2
√

n(C2 + C1)2
δ

+ ηn2

2d2

)
.

But the four summands on the RHS of the above inequality are at most γκn/16 by the assumed upper bound
on η, the assumed lower bound on m, and the fact that (1 − α) ≤ 1. Thus, the inequality from above holds,
as desired.

I Proofs of the results of Section 7 on feature learning (smooth case)

I.1 Proofs of Section 7.2 (linear activation)

I.1.1 Proof of Theorem 7.4

Consider a linear activation σ(z) = z. The model is therefore defined as

fm(x; W) = 1√
d

m∑
j=1

√
λm,jajw⊤

j x.

The objective function in Equation (5) can be written as

Lm(W) = 1
2∥y − AW∥2 (S.28)
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where y = (y1, . . . , yn)⊤ and A is the n × md matrix defined by

A = 1√
d


√

λm,1a1x⊤
1 . . .

√
λm,mamx⊤

1
...

...√
λm,1a1x⊤

n . . .
√

λm,mamx⊤
n

 = 1√
d

(B ⊗ X),

where ⊗ denotes the Kronecker product and B = (
√

λm,1a1 . . .
√

λm,mam) ∈ R1×m. We sometimes view B
as a row vector and write B⊤ to mean the corresponding m-dimensional (column) vector. Let

X = UDV⊤

be a reduced SVD of the data matrix X, where U is a n × k matrix with orthonormal columns, D is a
diagonal k × k matrix, V is a d × k matrix with orthonormal columns, and k ≤ min(n, d) is the rank of X.
Define

V′ = 1√∑m
j=1 λm,j

(B⊤ ⊗ V) ∈ Rmd×k.

Note that V′ has orthonormal columns as

(V′)⊤V′ = 1∑m
j=1 λm,j

m∑
j=1

λm,ja2
j (V⊤V) = Ik.

Therefore,

A = U


√∑m

j=1 λm,j

√
d

D

 (V′)⊤

is the reduced SVD of A, and

AA⊤ =
∑m

j=1 λm,j

d
XX⊤ =

∑m
j=1 λm,j

d
UD2U⊤.

If k < md, let V′
⊥ be a matrix in Rmd×(md−k) that makes the md × md matrix (V′, V′

⊥) orthonormal;
otherwise, let V′

⊥ be the md dimensional zero vector.

The solution of Equation (S.28) under gradient flow or gradient descent with the initialisation W0 is given by

W∞ = A†y + V′
⊥(V′

⊥)⊤W0 =
√

d√∑
j λm,j

V′D−1U⊤y + V′
⊥(V′

⊥)⊤W0

where (−)† is the Moore-Penrose inverse operator. Also,

W0 = V′(V′)⊤W0 + V′
⊥(V′

⊥)⊤W0.

From these facts, we can derive a formula that describes the changes in weights during the training based on
gradient flow or gradient descent:

W∞ − W0 =
√

d√∑
j λm,j

(
V′D−1U⊤y

)
+ (V′

⊥(V′
⊥)⊤W0) − W0

=
(

B⊤ ⊗
√

d∑
j λm,j

(
VD−1U⊤y

))
− (V′(V′)⊤W0)

= 1∑
j λm,j

(
B⊤ ⊗

(
β∞ − VV⊤β0

))
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where β0 =
∑m

j=1
√

λm,jajw0j and

β∞ =
√

dX†y =
√

d
(
VD−1U⊤y

)
is the minimum-norm minimiser of 1

2 ∥y − 1√
d
Xβ∥2. It follows that

w∞j − w0j =
√

λm,j∑
k λm,k

aj(β∞ − VV⊤β0).

I.1.2 Proof of Theorem 7.5

First note that, under the scaling (1),
m∑

k=1
λm,k

(
σ(Zk(x; W0))

)2
→ γ

d
E
[(

x⊤w01

)2]
+ (1 − γ)

d

∞∑
k=1

λ̃k

(
x⊤w0k

)2

almost surely as m → ∞; hence the denominator in (17) is of order 1. Similarly, under the mean-field scaling,

m ×
m∑

k=1

1
m2

(
σ(Zk(x; W0))

)2
→ 1

d
E
[(

x⊤w01

)2]
almost surely as m → ∞; hence the denominator in (17) is of order 1/m. For the numerator, from
Equation (19), we have

m∑
j=1

λm,j

(
σ(Zj(x; W∞)) − σ(Zj(x; W0))

)2
= 1

d

∑m
j=1 λ2

m,j

(
∑m

k=1 λm,k)2

(
x⊤(β∞ − VV⊤β0)

)2
.

Under the scaling (1),
∑m

j=1
λ2

m,j

(
∑

k
λm,k)2 =

∑m
j=1 λ2

m,j → (1 − γ)2∑
j≥1 λ̃2

j . Hence feature learning occurs if and

only if γ < 1. Under the mean-field scaling,
∑m

j=1
λ2

m,j

(
∑

k
λm,k)2 = 1/m. Hence feature learning occurs. Additionally,

as the (λm,j)j≥1 are ordered, we have

max
j=1,...,m

λm,j

(
σ(Zj(x; W∞)) − σ(Zj(x; W0))

)2
= max

j=1,...,m

1
d

λ2
m,j

(
∑

k λm,k)2

(
x⊤(β∞ − VV⊤β0)

)2

=
λ2

m,1

d(
∑

k λm,k)2

(
x⊤(β∞ − VV⊤β0)

)2
.

Under the scaling (1), λ2
m,1 → (1 − γ)λ̃1, with λ̃1 > 0, hence non-uniform feature learning occurs if and only

if γ < 1. Under mean-field scaling, λ2
m,1/(

∑
k λm,k)2 = 1/m2 = o(1/m), hence non-uniform feature learning

does not occur. Additionally, by Equation (19) in Theorem 7.4, we have√
λm,jajw∞j =

√
λm,jajw0j + λm,j∑

k λm,k
(β∞ − VV⊤β0)

= λm,j∑
k λm,k

β∞ − VV⊤
∑
k ̸=j

√
λm,kakw0k

+
√

λm,j

(
Id − λm,j∑

k λm,k
λm,jVV⊤

)
ajw0j .

The right-hand side is the sum of two independent Gaussian random vectors, and is therefore a Gaus-
sian random vector, with mean λm,j∑

k
λm,k

β∞ and covariance matrix λ2
m,j

(
∑

k
λm,k)2 (

∑
k λm,k − λm,j)(VV⊤)2 +

λm,j

(
Id − λm,j∑

k
λm,k

VV⊤
)2

= λm,j(Id − λm,j∑
k

λm,k
VV⊤). The distributional convergence in Equation (21)

then follows from Slutsky’s theorem.
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I.1.3 Proof of Proposition 7.6

Using Markov and Cauchy-Schwarz inequalities,

Pr
(∣∣∣f̃m,ρ(x; W∞) − fm(x; W∞)

∣∣∣ > ε
)

≤ ∥x∥
ε
√

d
× E

∥∥∥∥∥∥
∑

j>⌊ρm⌋

√
λm,jajw∞j

∥∥∥∥∥∥
 .

Meanwhile, we have∥∥∥∥∥∥
∑

j>⌊ρm⌋

√
λm,jajw∞j

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

j>⌊ρm⌋

λm,j

β∞ − VV⊤
∑
k ̸=j

√
λm,kakw0k

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

j>⌊ρm⌋

√
λm,j

(
Id − λm,jVV⊤) ajw0j

∥∥∥∥∥∥
≤

∑
j>⌊ρm⌋

λm,j

∥β∞∥ +

∥∥∥∥∥∥VV⊤
∑
k ̸=j

√
λm,kakw0k

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

j>⌊ρm⌋

√
λm,j

(
Id − λm,jVV⊤) ajw0j

∥∥∥∥∥∥ .

Also,

E

∥∥∥∥∥∥VV⊤
∑
k ̸=j

√
λm,kakw0k

∥∥∥∥∥∥
 ≤

√√√√√√E


∥∥∥∥∥∥VV⊤

∑
k ̸=j

√
λm,kakw0k

∥∥∥∥∥∥
2


=
√

(1 − λm,j) trace(VV⊤)

≤
√

d,

and

E

∥∥∥∥∥∥
∑

j>⌊ρm⌋

√
λm,j

(
Id − λm,jVV⊤) ajw0j

∥∥∥∥∥∥
 ≤

√√√√√√E


∥∥∥∥∥∥
∑

j>⌊ρm⌋

√
λm,j (Id − λm,jVV⊤) ajw0j

∥∥∥∥∥∥
2


=
√ ∑

j>⌊ρm⌋

λm,j trace
(

(Id − λm,jVV⊤)2
)

=
√ ∑

j>⌊ρm⌋

λm,j trace
(
Id − 2λm,jVV⊤ + λ2

m,jVV⊤
)

≤
√ ∑

j>⌊ρm⌋

λm,j × d × (1 − λm,j)2

≤
√

d
∑

j>⌊ρm⌋

λm,j .

By combining the above inequalities, we obtain the desired result:

Pr
(∣∣∣f̃m,ρ(x; W∞) − fm(x; W∞)

∣∣∣ > ε
)

≤ ∥x∥
ε
√

d

(∥β∞∥ +
√

d
) ∑

j>⌊ρm⌋

λm,j

+
√

d
∑

j>⌊ρm⌋

λm,j

 .
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I.2 Proofs of Section 7.3 (nonlinear activation)

I.2.1 Proof of Theorem 7.9

Our proof of Theorem 7.9 relies on the following observation on the linear combinations of continuous
independent real-valued random variables.
Lemma I.1. Let z1, . . . , zn be independent continuous real-valued random variables. Let B ⊂ R be a finite
subset of the real numbers such that B ̸= {0}. Then, almost surely,

min
b∈Bn\{0,...,0}

∣∣∣∣∣
n∑

i=1
bizi

∣∣∣∣∣ > 0.

Proof. Denote S = Bn \ {0, ..., 0}. For any b = (b1, ..., bn) ∈ S,
∑n

i=1 bizi, so that Pr(
∑n

i=1 bizi = 0) = 0.
Hence, since S is finite,

Pr
(

min
b∈S

∣∣∣∣∣
n∑

i=1
bizi

∣∣∣∣∣ = 0
)

= Pr
(⋃

b∈S

{
n∑

i=1
bizi = 0

})

≤
∑
b∈S

Pr
(

n∑
i=1

bizi = 0
)

= 0.

The proof also uses the our globally-made standard assumption that for every random variable Z ∼ N (0, s2)
for some s > 0, the expectation E[σ(Z)2] is finite and greater than 0.

Proof of Theorem 7.9. Since non-uniform feature learning implies feature learning, we prove the former
only. We start by showing that the denominator

∑m
j=1 λm,j(σ(Zj(xi; W0)))2 in the condition for non-uniform

feature learning converges to a positive finite value almost surely as m tends to ∞. To see this, note

lim
m→∞

m∑
j=1

λm,j(σ(Zj(xi; W0)))2 = lim
m→∞

m∑
j=1

(
γ · 1

m
+ (1 − γ) · λ̃j∑m

j′=1 λ̃j′

)
σ(Zj(xi; W0))2

=

γ · lim
m→∞

m∑
j=1

1
m

σ(Zj(xi; W0))2

+
(

(1 − γ) ·
limm→∞

∑m
j=1 λ̃jσ(Zj(xi; W0))2

limm→∞
∑m

j′=1 λ̃j′

)

= γ · EZ∼N (0,∥xi∥2/d)
[
σ(Z)2]+ (1 − γ) ·

∞∑
j=1

λ̃jσ(Zj(xi; W0))2.

The expectation in the first summand is positive and finite by our globally-made assumption on the activation
function σ. Also, the infinite sum in the second summand is positive almost surely because it is greater than
λ̃1σ(Z1(xi; W0))2 but λ̃1σ(Z1(xi; W0))2 is almost surely positive; λ̃1 > 0 and σ(Z1(xi; W0)) is almost surely
non-zero due to the injectivity of σ and the continuity of the random variable Z1(x; W0). Furthermore, the
sum is almost surely finite as well, because its expectation is EZ∼N (0,∥xi∥2/d)[σ(Z)2] which is finite by our
globally-made assumption on the activation function σ. Thus, the limit of the denominator is positive and
finite almost surely.

Since the denominator in the condition of non-uniform feature learning converges to a positive finite value
almost surely, the condition holds if

lim inf
m→∞

(
max
j∈[m]

λm,j (σ(Zj(xi; W1)) − σ(Zj(xi; W0)))2
)

> 0 almost surely. (S.29)
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Note that the limit here is not redundant since W1 depends on m. The new condition in Equation (S.29)
can be simplified further. It holds whenever

lim inf
m→∞

(
Z1(xi; W1) − Z1(xi; W0)

)2
> 0. (S.30)

To see this, note that by the assumption of the theorem and the inverse function theorem, σ−1 is a well-
defined continuous function and also that Z1(xi; W0) does not depend on m. As a result, the inequality in
Equation (S.30) implies

lim inf
m→∞

(
σ(Z1(xi; W1)) − σ(Z1(xi; W0))

)2
> 0, (S.31)

because otherwise some subsequence of (σ(Z1(xi; W1)))m would converge to σ(Z1(xi; W0)) as m tends to
∞, but then by the continuity of σ−1, the corresponding subsequence of (Z1(xi; W1))m would converge to
Z1(xi; W0), which contradicts Equation (S.30). Now using Equation (S.31), the assumption γ > 0, and the
fact that λ̃1 > 0, we can prove the condition in Equation (S.29) as follows:

lim inf
m→∞

max
j∈[m]

λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2
≥ lim inf

m→∞
λm,1

(
σ(Z1(xi; W1)) − σ(Z1(xi; W0))

)2

≥ lim inf
m→∞

(1 − γ)λ̃1

(
σ(Z1(xi; W1)) − σ(Z1(xi; W0))

)2

> 0.

We now show that Equation (S.30) holds almost surely. Note that(
Z1(xi; W1) − Z1(xi; W0)

)2
=
(

w⊤
11xi√

d
− w⊤

01xi√
d

)2

= 1
d

(
η
(

∇wtj L(Wt)
∣∣
t=0

)⊤ xi

)2

= η2

d

(
n∑

i′=1
yi′
√

λm,1a1σ′

(
w⊤

0jxi′
√

d

)
x⊤

i′ xi√
d

)2

= η2λm,1

d2

(
n∑

i′=1
yi′

(
σ′

(
w⊤

0jxi′
√

d

)
x⊤

i′ xi

))2

≥ η2(1 − γ)λ̃1

d2

(
n∑

i′=1
yi′

(
σ′

(
w⊤

0jxi′
√

d

)
x⊤

i′ xi

))2

.

Since the lower bound from above does not depend on m, we have

lim inf
m→∞

(
Z1(xi; W1) − Z1(xi; W0)

)2
≥ η2(1 − γ)λ̃1

d2

(
n∑

i′=1
yi′

(
σ′

(
w⊤

0jxi′
√

d

)
x⊤

i′ xi

))2

.

Since η2(1 − γ)λ̃1/d2 is positive, this lower bound is positive almost surely whenever the summation inside
the square is positive almost surely.

Conditioning on w0j and noting that σ′
(

w⊤
0jxi√

d

)
∥xi∥2 > 0, we have by Lemma I.1 that almost surely

n∑
i′=1

yi′

(
σ′

(
w⊤

0jxi′
√

d

)
x⊤

i′ xi

)
> 0.

We may use this lemma since the yi′ ’s are independent from w0j and so their distributions are unaffected by
the conditioning. Now note that this almost-sure positivity of the summation holds regardless of which value
the conditioned w0j takes. Thus, the summation is positive almost surely without the conditioning. This
completes the proof.
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I.2.2 Proof of Theorem 7.10

The proof of the theorem uses the following lemma on quadratic combinations of continuous independent
random variables.
Lemma I.2. Let z1, . . . , zn be continuous independent real-valued random variables. Let B be an n-by-n
real-valued matrix such that Bii ̸= 0 for some i ∈ [n]. Then, almost surely,∣∣∣∣∣

n∑
i=1

n∑
i′=1

zizi′Bii′

∣∣∣∣∣ > 0.

Proof. Let i ∈ [n] such that Bii ̸= 0. Then, when viewed as a polynomial on zi,
n∑

i=1

n∑
i′=1

zizi′Bii′

is a quadratic polynomial with a non-zero coefficient for the term z2
i . As a result, the zero set of this

polynomial on zi has measure zero with respect to Lebesgue measure, that is, the Lebesgue measure of the set{
zi

∣∣∣∣∣
n∑

i=1

n∑
i′=1

zizi′Bii′ = 0
}

⊆ R

is zero (because the zero set of any analytic function has zero Lebesgue measure). Furthermore, zi is a
continuous random variable, and so we have

E
[

1{
∑n

i=1

∑n

i′=1
zizi′ Bii′ =0}

∣∣∣ {zi′ | i′ ∈ [n], i′ ̸= i}
]

= 0.

As a result,

Pr
(

n∑
i=1

n∑
i′=1

zizi′Bii′ = 0
)

= E
[
1{
∑n

i=1

∑n

i′=1
zizi′ Bii′ =0}

]
= E

[
E
[

1{
∑n

i=1

∑n

i′=1
zizi′ Bii′ =0}

∣∣∣ {zi′ | i′ ∈ [n], i′ ̸= i}
]]

= E[0] = 0.

This proves the claim of the lemma.

Proof of Theorem 7.10. We first compute a lower bound of the squared norm of the gradient, which does
not depend on m.

∥∥∇wtj L(Wt)
∣∣
t=0

∥∥2 =

∥∥∥∥∥
n∑

i=1
yi

√
λm,jajσ′

(
w⊤

0jxi√
d

)
xi√

d

∥∥∥∥∥
2

= λm,j

d

∥∥∥∥∥
n∑

i=1
yiσ

′

(
w⊤

0jxi√
d

)
xi

∥∥∥∥∥
2

≥ (1 − γ)λ̃j

d

∥∥∥∥∥
n∑

i=1
yiσ

′

(
w⊤

0jxi√
d

)
xi

∥∥∥∥∥
2

= (1 − γ)λ̃j

d

∣∣∣∣∣
d∑

k=1

n∑
i=1

n∑
i′=1

yiyi′σ′

(
w⊤

0jxi√
d

)
σ′

(
w⊤

0jxi′
√

d

)
xikxi′k

∣∣∣∣∣
= (1 − γ)λ̃j

d

∣∣∣∣∣
n∑

i=1

n∑
i′=1

yiyi′

(
x⊤

i xi′σ′

(
w⊤

0jxi√
d

)
σ′

(
w⊤

0jxi′
√

d

))∣∣∣∣∣ .
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Thus,

lim inf
m→∞

∥∥∇wtj
L(Wt)

∣∣
t=0

∥∥2 ≥ (1 − γ)λ̃j

d

∣∣∣∣∣
n∑

i=1

n∑
i′=1

yiyi′

(
x⊤

i xi′σ′

(
w⊤

0jxi√
d

)
σ′

(
w⊤

0jxi′
√

d

))∣∣∣∣∣ .
But by assumption, ((1 − γ)λ̃j)/d is positive. The other factor in the lower bound is also positive with
probability one. To see this, note that the yi’s in the factor are continuous independent random variables,
independent also from w0j , and

∥xi∥2σ′

(
w⊤

0jxi√
d

)2

> 0 for all i ∈ [n],

due to Assumption 3.1 and the assumption that σ′ > 0. As a result, conditioned on w0j , by Lemma I.2, the
factor is positive almost surely with respect to the conditional distributions of the yi’s, which are the same
as the original unconditional distributions of them due to the independence of the yi’s with respect to w0j .
Since this positivity holds regardless of which value w0j takes, it also holds without the conditioning on w0j .
This completes the proof.

J Proofs of the results of Appendix A.2 on feature learning (ReLU case)

J.1 Proof of Theorem A.2

Our proof relies on a few lemmas.
Lemma J.1. Assume Assumption 7.7. If the activation function σ is ReLU, we have

∇wtj L(Wt)
∣∣
t=0 =

(
−
√

λm,j

d
aj

m∑
i=1

yiσ
′(Zj(xi; W0))xi

)
=
(

−
√

λm,j

d
aj

m∑
i=1

1{w⊤
0j

xi≥0}yixi

)

Proof. The lemma follows from a straightforward calculation using the fact that fm(x; W0) = 0 for all
x ∈ Rd.

Lemma J.2. Assume Assumptions 3.1, 7.7 and 7.8. Then, we have that for all m, j ∈ [m], and i ∈ [n],

λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2
≥ 1{w⊤

0j
xi≥0} · min

{
η2c2(1 − γ)2λ̃2

j

d2 ,
(1 − γ)λ̃j(w⊤

0jxi)2

d

}

where c depends only on the inputs/outputs (in particular, not depending on m) and is almost surely strictly
positive (almost surely, with respect to the input/output).

Proof. Using Lemma J.1, we can compute

σ(Zj(xi; W1)) − σ(Zj(xi; W0))
= σ(Zj(xi; W1)) − σ(Zj(xi; W0))

= σ

 1√
d

(
w0j + η

√
λm,j

d
aj

n∑
i′=1

1{w⊤
0j

xi′ ≥0}yi′xi′

)⊤

xi

− σ

(
w⊤

0jxi√
d

)

= σ

(
w⊤

0jxi√
d

+ η

√
λm,j

d
aj

n∑
i′=1

(
1{w⊤

0j
xi′ ≥0}x⊤

i′ xi

)
yi′

)
− σ

(
w⊤

0jxi√
d

)
.

39



Published in Transactions on Machine Learning Research (02/2025)

Denoting δi = ((η
√

λm,jaj)/d)
∑n

i′=1(1{w⊤
0j

xi′ ≥0}x⊤
i′ xi)yi′ , we have that

|σ(Zj(xi; W1)) − σ(Zj(xi; W0))| =

∣∣∣∣∣σ
(

w⊤
0jxi√

d
+ δi

)
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.

We then get
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xi≥0}λm,j min
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.

}

Now, notice that
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(
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where S = Bn \ {0, ..., 0} and B is given by

B =
{

u · v | u ∈ {0, 1}, v ∈
{

x⊤
1 xi, . . . , x⊤

n xi

}}
Note that the yi’s are continuous and independent random variables by Assumption 7.8. Thus, by Lemma I.1,
with probability one,

c = min
b∈S

∣∣∣∣∣
n∑

i′=1
bi′yi′

∣∣∣∣∣ > 0.

Putting everything together, we finally get
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}
,

which concludes the proof.

Proof of Theorem A.2. Note that the condition for non-uniform feature learning in Equation (S.2) implies
that for feature learning in Equation (S.1). Thus, we will prove only the former condition.

By our setup, we have that λm,1 ≥ . . . ≥ λm,k ≥ (1 − γ)λ̃k > 0 for all m. Also, by Lemma J.2, we have that
for 1 ≤ j ≤ k,

λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))
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.
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Thus, for all m ≥ k,

max
j∈[m]

(
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which implies
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. (S.32)

We will show that for all δ ∈ (0, 1/2), with probability at least 1−(1/2+δ)k, the lower bound in Equation (S.32)
is positive and

0 <

∞∑
j=1

λm,jσ(Zj(xi; W0))2 < ∞. (S.33)

This will prove the claim of the theorem.

Pick δ ∈ (0, 1/2). Let E be the event {c > 0}. Then, Pr(E) = 1 by Lemma I.1. Note that the first argument
of the minimum in the lower bound of Equation (S.32) is positive on the event E. Let ϵ > 0 be a positive
constant such that

Pr(w⊤
0jxi ≥ ϵ) ≥ 1

2 − δ for all j ≤ k, (S.34)

which is possible since each w⊤
0jxi is a centred normal random variable with variance ∥xi∥2 > 0. Define

E′
δ be the event

⋃k
j=1{w⊤

0jxi ≥ ϵ}. Then, since w⊤
01xi, . . . , w⊤

0kxi are independent and the lower bound in
Equation (S.34) holds, we have

Pr(E ∩ E′
δ) ≥ 1 − (1/2 + δ)k.

Now condition on E ∩ E′
δ. Then, there exists some j ≤ k such that w⊤

0jxi ≥ ϵ. Thus, the lower bound in
Equation (S.32) is positive as shown below:
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j′∈[k]

(
1{w⊤

0j′ xi≥0
} · min

{
η2c2(1 − γ)2λ̃2

j′

d2 ,
(1 − γ)λ̃j′(w⊤

0j′xi)2

d

})

≥ 1{w⊤
0j

xi≥0} · min
{

η2c2(1 − γ)2λ̃2
j

d2 ,
(1 − γ)λ̃j(w⊤

0jxi)2

d

}

≥ min
{

η2c2(1 − γ)2λ̃2
j

d2 ,
(1 − γ)λ̃jϵ2

d

}
> 0.

Thus, with probability at least 1 − (1/2 + δ)k, we have

lim inf
m→∞

(
max
j∈[m]

λm,j

(
σ(Zj(xi; W1)) − σ(Zj(xi; W0))

)2
)

> 0.
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Also, under the same conditioning, we have
∞∑
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> 0.

Furthermore, without any conditioning, we have
∞∑

j′=1
λm,j′ · σ(Zj′(xi; W0))2 < ∞

almost surely, because again without any conditioning, the usual expectation of the right-hand side of the
above inequality is finite as shown below:

E
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2d
< ∞.

Thus, Equation (S.33) holds with probability at least 1 − (1/2 + δ)k. This completes the proof of the theorem.

J.2 Proof of Theorem A.4

We first compute a lower bound for the squared norm of the gradient, which does not depend on m.
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But by assumption, the factor ((1 − γ)λ̃j)/d in the lower bound is always positive. The claim of the theorem
follows from the property that the other factor in the lower bound is also positive with probability at least
1/2. In the rest of the proof, we will show why this is so.

Note that
∥xi∥21{w⊤

0j
xi≥0} > 0.

if and only if w⊤
0jxi ≥ 0.

Condition on w0j and recall that the yi’s are continuous independent real-valued random variables which are
also independent from w0j , thus their distributions are unaffected by the conditioning. If w⊤

0jxi ≥ 0, the
inequality ∣∣∣∣∣

n∑
i=1

n∑
i′=1

yiyi′

(
x⊤

i xi′1{w⊤
0j

xi≥0}1{w⊤
0j

xi′ ≥0}

)∣∣∣∣∣ > 0

holds almost surely. Since w⊤
0jxi holds with probability 1/2, the above inequality holds unconditionally with

probability at least 1/2, as desired.

K Additional experimental results (smooth activation)

We provide here additional results for the experiments described in Section 8.

K.1 Regression

In Figures 2, 3, 4 and 5 we respectively provide the detailed results for the datasets concrete, energy,
airfoil and plant.

K.2 Classification

We provide in Figure 6 detailed results for the MNIST dataset, and in Figure 7 results for the CIFAR–10
dataset. In Figure 8, we provide further details on the individual impact of the parameter γ ∈ [0, 1]. Recall
that the smaller the value of γ, the more asymmetry is introduced, where γ = 1 recovers the iid model. We
can see from the experiments that pruning performance is improved as γ becomes smaller.

L Experimental results for the ReLU activation function

We provide here additional experimental results, as in Appendix K, but with a different activation function.
The experimental setting is the same as described in Section 8, except that the swish activation function is
replaced by the ReLU function. Although our theory does not cover the convergence of GD with the ReLU,
the experimental results obtained in this section are quantitatively similar to those obtained with the swish
function.

L.1 Regression

In Figures 9, 10, 11 and 12 we respectively provide detailed results for the datasets concrete, energy,
airfoil and plant.

L.2 Classification

We provide in Figures 13, 14 and 15 detailed results for respectively the MNIST, CIFAR10 and CIFAR100
experiments.
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Figure 2: Results for the concrete dataset (swish). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 3: Results for the energy dataset (swish). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 4: Results for the airfoil dataset (swish). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 5: Results for the plant dataset (swish). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 6: Results for the MNIST dataset (swish). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
accuracies for pruning, 7) test accuracies for pruning, 8) training accuracies for transfer learning, and 9) test
accuracies for transfer learning.
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Figure 7: Results for the CIFAR–10 dataset (swish). From left to right and top to bottom, 1) test accuracies
through training, 2) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 3) test risks of the pruned models, and 4) test accuracies of the pruned
models.
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Figure 8: Results for the CIFAR–10 dataset (swish). Impact of the parameter γ. From left to right and top to
bottom, 1) test accuracies through training, 2) differences in weight norms ∥wtj − w0j∥ with j’s being the
neurons having the maximum difference at the end of the training, 3) test risks of the pruned models, and 4)
test accuracies of the pruned models.
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Figure 9: Results for the concrete dataset (ReLU). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 10: Results for the energy dataset (ReLU). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 11: Results for the airfoil dataset (ReLU). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 12: Results for the plant dataset (ReLU). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
risks for transfer learning, and 7) test risks for transfer learning.
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Figure 13: Results for the MNIST dataset (ReLU). From left to right and top to bottom, 1) training risks,
2) test risks, 3) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 4) difference in NTG matrices, 5) minimum NTG eigenvalues, 6) training
accuracies for pruning, 7) test accuracies for pruning, 8) training accuracies for transfer learning, and 9) test
accuracies for transfer learning.
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Figure 14: Results for the CIFAR–10 dataset (ReLU). From left to right and top to bottom, 1) test accuracies
through training, 2) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 3) test risks of the pruned models, and 4) test accuracies of the pruned
models.
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Figure 15: Results for the CIFAR–100 dataset (ReLU). From left to right and top to bottom, 1) test accuracies
through training, 2) differences in weight norms ∥wtj − w0j∥ with j’s being the neurons having the maximum
difference at the end of the training, 3) test risks of the pruned models, and 4) test accuracies of the pruned
models.
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Figure 16: Visualisation of features for MNIST data. We use the top two PCA components to plot the points
on a 2D space.

Figure 17: Visualisation of features learnt for the Cifar10 experiment. The models are trained by taking as
input the hidden representation of a ResNet18 trained on ImageNet (first figure on the left). We use the top
two PCA components to plot the points on a 2D space.

M Visualisation of the learned features.

This section aims at visualizing the main features learned in the MNIST and CIFAR experiments reported
in the main text. Inspired by (Yang and Hu, 2021), we plot the first two PCA components of the learned
features for MNIST (Figure 16) and CIFAR10 (Figure 17) datasets. For the MNIST dataset, as in (Yang
and Hu, 2021), the figures show that the features are quasi-random with the symmetric NTK setting, while
there is more separation under the asymmetric scaling. For the CIFAR10 experiment, which uses pre-trained
features on ImageNet, the features of the symmetric NTK are similar to those of the pre-trained features.
The features obtained by PCA better differentiates between the class.

N Hyper-parameter transfer.

When scaling-up neural networks, hyper-parameters tuning becomes prohibitively expensive. In practice, one
performs hyper-parameter optimization on a smaller version of the model, and uses (transfers) the found
values for training the larger model. However, this requires stability of the optimal parameters. As identified
in (Yang et al., 2022), the standard pytorch implementation is not stable as the width increases, which
can be a major challenge to scale-up models. In this section, we empirically show that the asymmetrical
parameterization enjoys stability of the optimal learning rate. We train FFNN with a single hidden layer
on Cifar10 for different width P = 1024, 2048, 4096. We compare the standard Pytorch parameterization
with the asymmetrical one (γ = 0.2, α = 0.5). The results are reported in 18. As expected, in the standard
parameterization, the optimal learning rate shifts; as the width increases, the optimal learning rate becomes
smaller. On the other hand, with the asymmetrical scaling, the optimal learning rate remains stable as the
width increases
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Figure 18: Stability of the optimal learning rate as the width increases. Training error in terms of (top) accuracy
(bottom) cross-entropy for (left) standard parameterisation and (right) asymmetrical parameterisation.
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