
Zero-Shot Fact Verification via Natural Logic and Large Language Models

Anonymous ACL submission

Abstract

The recent development of fact verification sys-001
tems with natural logic has enhanced their ex-002
plainability by aligning claims with evidence003
through set-theoretic operators, providing faith-004
ful justifications. Despite these advancements,005
such systems often rely on a large amount006
of training data annotated with natural logic.007
To address this issue, we propose a zero-shot008
method that utilizes the generalization capabil-009
ities of instruction-tuned large language mod-010
els. To comprehensively assess the zero-shot011
capabilities of our method and other fact ver-012
ification systems, we evaluate all models on013
both artificial and real-world claims, includ-014
ing datasets in Danish and Mandarin Chinese.015
We compare our method against other fact ver-016
ification systems in two setups. First, in the017
zero-shot generalization setup, our approach018
outperforms other systems that were not specif-019
ically trained on natural logic data, achieving an020
average accuracy improvement of 8.61 points021
over the best-performing baseline. Second, in022
the zero-shot transfer setup, we demonstrate023
that current natural-logic-based systems do not024
generalize well to other domains. Our method025
performs better on all datasets with real-world026
claims compared to systems that were trained027
on datasets with artificial claims.028

1 Introduction029

In the context of fact-checking, fact verification030

(FV) is a process of verifying whether a textual hy-031

pothesis holds based on retrieved evidence. While032

many improvements have been made in this field033

due to the recent rapid growth in NLP (Mubashara034

et al., 2023; Guo et al., 2022; Nakov et al., 2021),035

FV systems often employ pipelines with black-box036

components that hide the underlying reasoning.037

One line of research attempts to improve explain-038

ability with attention-based methods (Shu et al.,039

2019; Popat et al., 2018) and post-hock summariza-040

tions (Atanasova et al., 2020; Kotonya and Toni,041

2020). However, these approaches do not provide 042

faithful justifications — explanations that accu- 043

rately reflect the model’s decision-making process 044

and the data it used (Jacovi and Goldberg, 2020). 045

In contrast, systems such as NaturalLI (Angeli 046

and Manning, 2014) and ProoFVer (Krishna et al., 047

2022) provide faithful justifications by expressing 048

semantic relations between claim/evidence pairs. 049

Modeling these logical relations and their aggrega- 050

tion explicitly with natural logic (NatLog) allows 051

for handling phenomena such as double-negation 052

and has resulted in more accurate and robust fact- 053

checking systems. 054

However, a limitation of natural logic-based FV 055

systems is the necessity for large amounts of train- 056

ing data annotated with entire natural logic proofs. 057

For example, ProoFVer (Krishna et al., 2022) was 058

trained on 145K instances artificially obtained from 059

structured knowledge bases such as PPDB (Gan- 060

itkevitch et al., 2013) and Wikidata (Vrandečić and 061

Krötzsch, 2014). While recent work (Aly et al., 062

2023) attempts to alleviate this issue by proposing 063

a few-shot learning method trained on as few as 064

32 instances, human annotation of even a small 065

number of proofs can be impractical and expensive, 066

as it requires substantial linguistic knowledge and 067

familiarity with natural logic. Moreover, few-shot 068

systems require additional training data in order 069

to generalize effectively to new domains, further 070

increasing the costs. 071

To this end, we propose Zero-NatVer1, a zero- 072

shot fact verification approach for constructing 073

natural logic proofs that leverages prompting and 074

question-answering with instruction-tuned large 075

language models (LLMs). Zero-NatVer’s proof 076

generation process is illustrated in Figure 1, con- 077

sisting of a claim’s chunking into smaller units of 078

information, the alignment of claim chunks to rel- 079

evant parts of the evidence, and the assignment 080

1Code is available at: https://github.com/TBD
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REFUTED

Oliver Twist, a novel by Dickens, was published before The
Pickwick Papers.

The Pickwick Papers, published in 1836, is a novel by Charles
Dickens that follows the humorous adventures and
misadventures of Samuel Pickwick and his companions in the
Pickwick Club. Oliver Twist, published in 1837, is a novel by
Charles Dickens that tells the story of an orphan boy who...
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Figure 1: Proof generation with natural logic in Zero-NatVer. Initially, the claim and evidence texts are chunked
and aligned. Zero-NatVer then assigns natural logic operators (NatOps), using a QA framework and alignment
signals parsed from the previous step. This process produces a proof sequence comprising (claim, evidence, NatOp)
triples. Lastly, NatOps act as transitions in the DFA, with the final state (here Refuted) determining the verdict.

of natural-logic operators to each aligned claim-081

evidence pair. The proofs are executed on a finite082

state automaton (DFA) as defined in natural logic083

inference. Contrary to previous works, our method084

uses a single language model for all stages of the085

proof generation pipeline. Zero-NatVer uses con-086

strained decoding to prevent hallucinations during087

the chunking and alignment process. The align-088

ment step further produces alignment justifications089

which are used in combination with QA ensembles090

to assign natural logic operators to claim-evidence091

pairs to reduce the variability of predictions and092

to account for missing context from the pair’s re-093

stricted scope.094

We evaluate our method on real-world and ar-095

tificial FV datasets, including Climate-FEVER096

(Diggelmann et al., 2020), PubHealth (Kotonya097

and Toni, 2020), SciFact (Wadden et al., 2020), and098

Hover (Jiang et al., 2020). We also demonstrate099

that Zero-NatVer can generalize to non-English100

datasets by evaluating the system on the Dan-101

ish dataset DanFever (Nørregaard and Derczyn-102

ski, 2021) and the Mandarin Chinese dataset CHEF103

((Hu et al., 2022)). In a zero-shot setup, where mod-104

els have not been trained on any data labeled with105

natural logic, our approach outperforms all NatLog106

baselines by 8.61 accuracy points when averaged107

across all tested datasets. It is also competitive108

with the direct QA approach, where the model is109

prompted directly for an answer, achieving higher110

accuracy on all but two datasets and an average 111

accuracy improvement of 3.16 points. Thus, our 112

method, which is based on natural logic, provides 113

both improved performance on unseen domains 114

and explainability via faithful justifications. 115

2 Related Work 116

Natural logic (Van Benthem, 1986; Sanchez, 1991) 117

and NaturalLI (Angeli and Manning, 2014), com- 118

poses full inference proofs that operate directly 119

on natural language, capable of expressing more 120

complex logical relationships between claim and 121

evidence, such as double-negation. Krishna et al. 122

(2022) train natural logic inference systems for fact 123

verification, achieving competitive performance 124

while remaining faithful and more explainable than 125

its entirely neural counterpart. While these neural- 126

symbolic approaches require substantial training 127

data to perform well, Aly et al. (2023) explore nat- 128

ural logic inference in a few-shot setting by casting 129

natural logic operators into a question-answering 130

framework, subsequently making use of the gener- 131

alization capabilities of instruction-tuned language 132

models. While our work also uses question answer- 133

ing to predict natural logic operators, we further 134

address prediction calibration issues frequently en- 135

countered in a zero-shot setting (Kadavath et al., 136

2022; Jiang et al., 2023). Other neuro-symbolic 137

reasoning systems for FV use simple logical rules 138

to aggregate veracity information on a claim’s com- 139
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ponents to provide simple faithful explanations140

(Stacey et al., 2022, 2023; Chen et al., 2022), how-141

ever, these rules lack the expressiveness of natural142

logic and thus cannot inherently express more com-143

plex phenomena such as double negation.144

Previous work on zero-shot FV is limited and145

largely relies on the generation of weakly super-146

vised training samples and on knowledge of the147

target domain (Pan et al., 2021; Wright et al., 2022).148

Pan et al. (2023b) observe that typical FV systems149

fail when transferred to unseen domains in a zero-150

shot setting and propose a data augmentation tech-151

nique to improve generalizability. However, none152

of the aforementioned zero-shot methods produces153

(faithful) explanations. In a few-shot setting, sev-154

eral recent works have explored the use of large155

language models that produce explanations along-156

side the verdict. Pan et al. (2023a) define a reason-157

ing program consisting of a sequence of subtasks158

to verify complex claims. Yao et al. (2023) pro-159

poses chain-of-thought prompting complemented160

by action operations to support the model’s reason-161

ing and its explanation generation. Li et al. (2023)162

propose to edit rationales generated via chain-of-163

thought prompting by querying knowledge sources.164

Yet, in contrast to this work, these approaches still165

rely on in-context examples.166

3 Zero-NatVer167

Given a claim c and evidence sentences168

e1, e2, ..., ek ∈ E, our system determines169

the veracity label y, which denotes whether the170

information from E supports c, refutes c, or171

whether there is not enough information to reach172

a verdict. Zero-NatVer obtains the verdict in four173

steps, executed by an instruction-tuned LLM.174

In the first two steps, Zero-NatVer segments c175

into several chunks (Sec. 3.1) and aligns each such176

chunk with relevant information from E (Sec. 3.2).177

This process results in a sequence of l claim-178

evidence alignment pairs A = a1, a2, ..., al. As179

part of this alignment process, we also generate180

alignment explanations that are parsed for support-181

ing/refuting signals. These signals are used in the182

third stage of the pipeline where Zero-NatVer deter-183

mines semantic relations of aligned pairs in terms184

of natural logic. Thus, it generates a sequence of185

natural logic operators O = o1, o2, ..., ol, which186

correspond to alignment pairs in A (Sec. 3.3). Fi-187

nally, O is used in the last stage to traverse a deter-188

ministic finite automaton (DFA), which determines189

the claim’s veracity. The following sections de- 190

scribe each step in more detail. 191

3.1 Chunking 192

"Oliver Twist, a novel by Dickens":
"Oliver Twist, published in 1837, is a novel by Charles
Dickens"
+ Supports the expression

"was published before":
"The Pickwick Papers, published in 1836,... Oliver Twist,
 published in 1837"
+ Refutes the expression, as Oliver Twist was published
   after The Pickwick Papers

"The Pickwick Papers":
"The Pickwick Papers, published in 1836, is a novel by
 Charles Dickens"
+ Refers to the same entity

Figure 2: Claim-evidence alignments with explana-
tions. The blue text indicates provided claim chunks,
the purple text represents generated evidence align-
ments, and the black text denotes alignment explana-
tions, which are parsed for signals in the NatOp assign-
ment stage.

FV systems based on natural logic split claims 193

into smaller, more manageable pieces, also called 194

chunks (Krishna et al., 2022). These chunks, typ- 195

ically consisting of only a few words, represent 196

a single atomic piece of information that can be 197

independently verified and linked to relevant infor- 198

mation in the evidence text. 199

We perform this task by prompting an LLM to 200

"Split the claim text into smaller chunks that can 201

be individually fact-checked." We then use con- 202

strained decoding to ensure the desired output for- 203

mat. Specifically, the model is allowed to either 204

generate consecutive characters from the provided 205

text or insert a special token (e.g., a newline charac- 206

ter) to denote the start of a new chunk. This process 207

is executed as follows: 208

1. The claim text c is pre-processed as a queue 209

of tokens QC . 210

2. The decoding is prefixed with an initial phrase 211

to encourage the generation of claim chunks. 212

3. The model is constrained to sample only one 213

of two outputs - the next token from QC or a 214

newline character. 215

4. Repeats step 3 until QC is empty (i.e., all 216

claim tokens are consumed). 217

Given the constraints at each decoding step, the 218

model cannot hallucinate new words, skip words, 219

or alter information in the claim. 220
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3.2 Alignment221

In the second stage of the pipeline, each previously222

generated claim chunk is aligned with the corre-223

sponding information in the provided evidence sen-224

tences. We use an LLM to perform this alignment225

by prompting it with c, E, and all claim chunks (see226

details in Appendix D). Furthermore, we prompt227

the model to also generate alignment explanations228

for each generated alignment. 2 shows an example229

of the model’s output.230

To enforce the expected output format, we231

use constrained decoding, switching between232

three decoding modes: claim, evidence, and233

alignment-explanation. In the claim mode, we sim-234

ply insert the chunk text, and no further text is235

generated. In the evidence mode, the model gen-236

erates the alignment and is constrained so that it237

cannot use tokens that occur only in C and not in E.238

This constraint is meant to reduce hallucinations239

and prevent the model from aligning chunks with240

claim tokens. Lastly, the inference process is not241

constrained in the alignment-explanation mode be-242

cause explanations are only searched for keywords243

and are not used in the following stages or as part244

of the proof.245

Although constraint decoding helps mitigate hal-246

lucinations, it is important to note that the model247

could still hallucinate in evidence mode, as it is248

allowed to generate words not present in either249

C or E. Indeed, we analysed all alignments and250

found out that 12.4% of chunks contained at least251

one token absent from E. To solve this issue, we252

post-process the alignments and remove all text253

that does not form sequences of tokens in evidence254

sentences E. This post-processing step ensures255

that the alignment process is faithful and that only256

information from the evidence is used to verify the257

claim. Alternatively, we could constrain the de-258

coding process to generate only tokens present in259

the evidence text. However, our empirical findings260

showed that this approach struggles in situations261

where it needs to combine two or more pieces of262

information that are not adjacent in the evidence263

text.264

Lastly, the alignment explanations are parsed for265

supporting and refuting signals, which are used by266

the NatOp assigner. A simple keyword search was267

sufficient to effectively determine the signals while268

prioritizing precision over recall.269

3.3 NatOp Assignment via QA Ensembles 270

Once the claim and evidence are aligned, the next 271

step is to determine a single NatOp for each claim- 272

evidence pair, which represents the semantic rela- 273

tion between the corresponding chunks. 274

We start by preparing the list of NatOp candi- 275

dates for each alignment pair, considering five ba- 276

sic operators, as shown in Table 1. This process 277

is guided by alignment signals from the previous 278

stage, and we define the candidate lists as follows: 279

• For a supporting signal, we use operators that 280

indicate the evidence chunk entails the claim 281

chunk: [≡,⊑]. 282

• For a negative signal, we use operators that 283

indicate the claim chunk is not entailed by the 284

information in the evidence chunk: [¬,⊒, ⇃↾]. 285

• In case of no signal, the full set of NatOps is 286

used: [≡,¬,⊑,⊒, ⇃↾]. 287

This process allows for transferring some global 288

information from the aligner, which has access to 289

the full claim and evidence texts, to the NatOp as- 290

signer, which only sees chunks and thus has limited 291

knowledge. For example, in Figure 1, the aligner 292

aligns "was published before" with corresponding 293

years for each publication, describing the ordering 294

of events. While this alignment is reasonable for 295

a reader with access to the entire claim and evi- 296

dence texts, it becomes challenging to determine 297

its meaning if we only see the aligned sub-strings. 298

For each aligned pair, we then consider opera- 299

tors in the corresponding candidate lists, and this 300

process is detailed in Figure 3. Similar to Aly et al. 301

(2023), we treat these operators as relations that can 302

be inferred via questions over claim-evidence spans. 303

Thus, we prompt our model with Yes/No questions 304

to determine whether a relation can be expressed 305

NatOp Definition Template Example
Equivalence

(≡)
x = y Is X a paraphrase of Y?

Forward
Entailment

(⊑)
x ⊂ y

Given the premise X does
the hypothesis Y hold?

Reverse
Entailment

(⊒)
x ⊃ y

Does the expression Y en-
tail X?

Negation
(¬)

x ∩ y = ∅ ∧
x ∪ y = U

Is the phrase X a negation
of Y?

Alternation
(⇃↾)

x ∩ y = ∅ ∧
x ∪ y ̸= U

Does X exclude Y?

Table 1: Natural logic operators (NatOps) with set-
theoretic definitions and template examples.
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SUPPORT SIGNAL

Proof Selection

Oliver Twist, ... a novel by
Charles Dickens

Oliver Twist, a novel by Dickens

QA Prompt Ensembles
(10 questions / NatOp)Aligned claim/evidence pairs

Q: Does "was published before"
exclude "...published in

1836...published in 1837"?

Q: Is "Oliver Twist, a novel by Dickens"
a paraphrase of "Oliver Twist, ... a novel

by Charles Dickens"?

Q: Does the phrase "...published in
1836...published in 1837" logically

imply "was published before" ?

REFUTE SIGNAL

was published before

...published in 1836

...published in 1837

NO SIGNAL

The Pickwick Papers

The Pickwick Papers, ... a novel
by Charles Dickens

Figure 3: Proof generation process of Zero-NatVer. First, we utilize alignment signals, where available, to
identify the set of potential NatOp candidates (represented by orange blocks). Next, we apply prompt ensembles
and NatOp priority to select the final NatOp (depicted as green blocks).

by one of the NatOps. If none of these operators is306

successfully determined by the QA framework, we307

assign the independence operator #, which implies308

that there is no semantic relation.309

In order to reduce the variability of outcomes,310

we use a large number of Yes/No questions to311

prompt the model, thereby obtaining several micro-312

judgements per NatOp, which are then aggregated313

as a weighted average. In our experiments, we314

employ 10 templates for each NatOp. Rather than315

manually hand-crafting these question templates,316

we employ the LLM to generate them. Conse-317

quently, this approach allows for easy generation318

of additional templates as needed.319

For a given claim-evidence alignment pair a and320

operator o, we compute a NatOp score so,a as a321

weighted average over all micro-judgments:322

so,a =

N∑
i=1

wi QA(Yes|Ti, a) (1)323

where T is a collection of prompt templates, and324

w represents confidence weights for each template,325

with
∑N

i=1wi = 1.326

We compute wi by iterating over the entire327

dataset in a single pass and capturing the log-328

likelihood scores for each template. For each in-329

stance, we always capture only the Yes/No option,330

which has the higher log-likelihood score (i.e., the331

option that the model favors more).332

Using Equation 1, we then compile a list of333

NatOps candidates C, considering only so,a > α,334

where α can be seen as a confidence threshold for 335

the model. Since we are not using any validation 336

data to determine hyper-parameters, we set α = 0.5 337

as we are considering two output classes. 338

Due to the ambiguity of natural language and 339

the complexity of alignments, it frequently occurs 340

that |C| > 1. However, we want to minimize the 341

chance of incorrectly choosing NatOps that leads 342

to the Not Enough Evidence state, from which 343

there are no outgoing transitions to other states. 344

Thus, we use a NatOp priority approach and se- 345

lect from the operators in C in the following order: 346

[≡,¬,⊑,⊒, ⇃↾].We defined the NatOp order by con- 347

sidering the difficulty of each task. For instance, in 348

a scenario where the candidate list C consists of 349

equivalence (≡) and alternation (⇃↾), we postulate 350

that identifying equivalence (i.e., assessing textual 351

similarity) is a simpler task compared to identify- 352

ing alternation (i.e., recognizing non-exhaustive 353

exclusion). We decided on this order before our 354

experiments and did not optimize this order. 355

4 Experimental Methodology 356

4.1 Zero-shot Setups 357

To better assess the zero-shot capabilities of our 358

approach, we differentiate between two types of 359

zero-shot setups– zero-shot generalization and 360

zero-shot transfer. We define zero-shot general- 361

ization as a model’s ability to handle entirely new 362

tasks or domains it has not encountered during 363

training. Conversely, zero-shot transfer refers to 364
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training a model on a specific task or dataset and365

subsequently applying it to a different but related366

task or dataset without further training. For exam-367

ple, consider a model trained on a broad spectrum368

of general data (e.g., BART, T5, or Llama) that did369

not include proofs with natural logic. Applying this370

model to FV with natural logic then exemplifies371

zero-shot generalization according to our defini-372

tion. In contrast, if the same model is fine-tuned373

on a dataset annotated with natural logic proofs374

and then applied to perform FV with natural logic375

on a different dataset, this would be an instance of376

zero-shot transfer.377

4.2 Datasets378

Previous studies on NLI-based FV models have379

primarily focused on evaluating performance us-380

ing artificial claims from FEVER-like datasets (Kr-381

ishna et al., 2022; Aly et al., 2023; Chen et al.,382

2023). However, these datasets typically encom-383

pass only general topics, and artificial claims tend384

to be structurally simple. To achieve a more com-385

prehensive assessment of zero-shot capabilities, we386

have evaluated our models on both artificial and387

natural claims, including non-English datasets.388

For artificial claims, we evaluated models on389

claims from the multi-hop dataset Hover (Jiang390

et al., 2020) and the Danish dataset DanFEVER391

(Nørregaard and Derczynski, 2021). For real-392

world claims, we included English datasets393

Climate-FEVER (Diggelmann et al., 2020), Pub-394

Health (Kotonya and Toni, 2020), and Scifact (Wad-395

den et al., 2020), as well as the Chinese dataset396

CHEF (Hu et al., 2022). For datasets that pro-397

vide knowledge bases for retrieval, we used BM25398

(Robertson and Walker, 1994) to retrieve evidence.399

Further details are provided in Appendix A.400

4.3 Baselines401

Our natural-logic-based baselines consist of402

ProoFVer (Krishna et al., 2022) and QA-NatVer403

(Aly et al., 2023). We always try to use the largest404

possible backbone LLMs to make our results more405

comparable. However, both baseline models have406

specific limitations given by their current imple-407

mentation.408

ProoFVer currently supports only models from409

the Fairseq1 toolkit2, and the largest supported410

model is BART (Lewis et al., 2019). For zero-411

shot transfer setups, we use ProoFVer with BART412

2https://github.com/facebookresearch/fairseq

trained on 145K FEVER instances. For non- 413

English datasets, we have use mBART (Liu et al., 414

2020) instead. 415

QA-NatVer can use larger LLMs such as Flan-T5 416

(Chung et al., 2022), but its implementation cur- 417

rently only supports training for encoder-decoder 418

model architectures. Thus, we were unable to fine- 419

tune QA-NatVer with Llama3 for zero-shot trans- 420

fer experiments and used Flan-T5 trained on 64 421

instances instead. For experiments on DanFEVER, 422

we used the mT0 (Muennighoff et al., 2022) back- 423

bone. The zero-shot generalization setup does not 424

require any training, so we were able to use Llama3- 425

8B for inference. 426

We also include results reported by Pan et al. 427

(2023b) as an additional baseline for zero-shot 428

transfer experiments. More details about our base- 429

lines can be found in Appendix B. 430

4.4 Implementation Details 431

We conducted our main experiments with the 432

Llama3-8B model (AI@Meta, 2024). Crucially, we 433

did not fine-tune the model on any specific dataset, 434

and we did not tune any hyperparameters. The only 435

exposure to fact-checking datasets was when we 436

were designing our prompts. For this purpose, we 437

used a separate dataset, Symmetric-Fever (Schus- 438

ter et al., 2019). We selected a small subset of 439

100 claims and tested that our prompts generated 440

responses in the desired format. For hyperparam- 441

eters, we have adopted the recommendations of 442

Perez et al. (2021) and did not rely on hyperparam- 443

eters from prior works (details in Appendix C). 444

5 Results 445

Zero-shot Generalization We report the main 446

results for zero-shot generalization in Table 2. We 447

can see that Zero-NatVer outperforms other Nat- 448

Log baselines across all datasets, covering artifi- 449

cial claims, real-world claims, and non-English 450

datasets. Moreover, Zero-NatVer leverages a single 451

multilingual model, offering broader applicability 452

compared to QA-NatVer, whose chunker does not 453

currently support Chinese. Consequently, we could 454

not obtain results for the CHEF dataset. 455

Averaging results across all datasets, 456

Zero-NatVer achieves an average accuracy 457

of 59.25 points, outperforming ProoFVer by 19.42 458

accuracy points on average. Excluding the CHEF 459

dataset, which QA-NatVer could not process, our 460

system outperforms QA-NatVer by 17.62 accuracy 461
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System Model
C-FEVER SciFact PubHealth Hover DanFEVER CHEF

En En En En Da Zh
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

ProoFVer BART/mBART 26.63 34.75 25.58 34.67 38.15 39.27 47.13 49.76 29.8 41.97 20.16 38.57
QA-NatVer Flan-T5/mT0 22.20 36.86 23.56 40.67 44.42 48.73 35.65 50.85 35.68 37.05 - -
QA-NatVer Llama3-8B 32.6 36.5 37.18 43.67 63.66 68.79 49.95 54.93 48.92 55.35 - -
Zero-NatVer Llama3-8B 46.02 51.12 54.58 58.33 69.21 70.01 60.26 60.27 53.9 62.55 47.94 53.2
Direct-QA Llama3-8B 51.27 58.58 52.76 57.00 78.18 78.18 55.34 57.00 52.77 61.7 19.5 24.04

Full Supervision - 75.7 - 71.1 - 85.88 86.93 - 81.2 90.2 - 67.62 -

Table 2: Zero-shot generalization results. Macro-F1 and accuracy scores for systems that were not specifically
trained on FV datasets. Where possible, we also report available SOTA results with fully-supervised models trained
on in-domain data as a reference.

System Model Train size
(FEVER)

C-FEVER SciFact PubHealth Hover DanFEVER CHEF
En En En En Da Zh

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
Pan et al. BERT 800 40.60 - 50.71 - 60.06 - - - - - - -
ProoFVer (m)BART 145K 40.70 43.35 45.57 49.16 57.78 61.22 57.08 57.89 36.12 55.22 20.18 37.72
QA-NatVer Flan-T5/mT0 64 44.74 47.43 52.02 56.67 61.8 61.8 70.27 70.5 63.64 68.41 - -
Zero-NatVer Llama3-8B None 46.02 51.12 54.58 58.33 69.21 70.01 60.26 60.27 53.9 62.55 47.94 53.2

Table 3: Zero-shot transfer results. Macro-F1 and accuracy scores for systems trained on the FEVER dataset. For
each system, we report the provided language model and the size of the training data. Results from Pan et al. (2013)
do not include accuracy scores and results for some of the datasets.

points when QA-NatVer utilizes the Flan-T5462

backbone and by 8.61 points when it employs the463

Llama3-8B backbone.464

We also reported SOTA results for each dataset465

to highlight the performance gap between models466

fully supervised on in-domain data and zero-shot467

approaches. The reported metrics, which include468

F1 and Accuracy scores where available, represent469

the best results to our knowledge.470

Our results show that Zero-NatVer moves to-471

wards closing this gap while maintaining the sig-472

nificant advantage of utilizing a single model that473

does not require fine-tuning. In contrast, the re-474

sults from SOTA involve six different models, each475

specifically fine-tuned to a particular dataset.476

Direct-QA Table 2 also reports results for the477

Direct-QA setup, in which the Llama3 model was478

prompted to directly assign a verdict (i.e., Sup-479

ported, Refuted, Not Enough Information) based480

on the provided claim and evidence texts. See List-481

ing 3 for prompting details.482

Zero-NatVer outperforms Direct-QA on all but483

two datasets, demonstrating its competitive perfor-484

mance while improving the model’s explainability485

via generated proofs. Additionally, the results for486

Direct-QA might be overly optimistic. Given that487

Llama3 was trained on 15 trillion tokens, it is likely488

that some of the datasets were included in its train-489

ing data. Since Zero-NatVer does not use Llama3 490

to directly predict the verdicts and the final ver- 491

dict is derived from other tasks, its performance is 492

likely to be more representative. 493

Zero-shot Transfer We report the main results 494

for zero-shot transfer in Table 3. Zero-NatVer 495

consistently outperforms both ProoFver and the 496

results reported by Pan et al. (2023b) across all 497

datasets, despite these baselines being trained on 498

NatLog data and ProoFver’s substantial training set 499

of 145K instances. These findings highlight the 500

robust generalization capabilities of Llama3, which 501

our method effectively leverages. 502

When considering only datasets with natural 503

claims (excluding CHEF), Zero-NatVer outper- 504

forms QA-NatVer by an average of 4.52 accuracy 505

points. This indicates that while NatLog base- 506

lines trained on FEVER data generalize effectively 507

to similar domains like Hover and DanFEVER 508

(both predominantly featuring artificial claims from 509

Wikipedia), their performance does not extend well 510

to other domains. Therefore, in practical applica- 511

tions, it may be more advantageous to allocate com- 512

putational resources to more powerful language 513

models rather than training smaller models. 514

Ensemble size To assess the impact of the 515

prompt ensemble size (Section 3.3), we run an 516

experiment measuring performance for various en- 517
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System
C-FEVER SciFact PubHealth Hover DanFEVER CHEF

En En En En Da Zh
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Zero-NatVer 46.02 51.12 54.58 58.33 69.21 70.01 60.26 60.27 53.9 62.55 47.94 53.2
- weighted templates 45.72 50.40 54.28 58.00 68.51 69.30 60.22 60.22 53.93 62.39 47.10 52.20
- QA templates 40.60 49.89 46.49 52.00 68.20 69.20 57.17 57.50 41.44 48.67 45.39 50.50
- constrained decoding 41.85 45.69 52.65 57.00 65.26 66.46 59.26 59.30 48.9 57.55 48.68 53.91
- alignment signals 40.62 43.66 52.27 55.00 54.94 55.22 58.72 58.73 48.15 52.91 43.27 49.22

Table 4: Ablation study of Zero-NatVer.

1 2 3 4 5 6 7 8 9 10
Ensamble Size per NatOp

49

50

51

52

53

54

55

M
ac

ro
-F

1

Figure 4: The averaged Macro-F1 scores for different
ensemble sizes, calculated from 20 independent runs.

semble sizes. For each measured ensemble size S,518

we randomly sample S prompts for each NatOp519

from our prompt bank. We repeat this process 20520

times and report means and standard deviations for521

each ensemble size in Figure 4.522

The results indicate that the size of prompt en-523

sembles significantly influences the variability of524

outcomes. When using only one question per525

NatOp and sampling different prompts, we obtain526

Macro-F1 scores with a standard deviation of 3.53527

points. However, an ensemble of just four prompts528

significantly reduces this variation by more than529

half. Additionally, the performance consistently530

improves as the ensemble size increases.531

Macro-F1 Accuracy
Llama2-7B 20.57 41.67
Llama2-13B 30.96 42.16
Llama2-70B 57.47 60.33
Llama3-8B 54.58 58.33
GPT-3.5-Turbo 49.21 53.00

Table 5: SciFact results for LLMs of various sizes.

Model size Table 5 compares the performance532

of our method across different sizes and versions533

of Llama models, demonstrating a significant im-534

provement as the model scales up. We also eval-535

uated our method using the proprietary model536

ChatGPT-3.5 (OpenAI, 2023). Although ChatGPT-537

3.5 is allegedly larger than Llama3-8B, our method 538

achieved better performance. This discrepancy may 539

be attributed to API limitations, which prevented 540

us from using constrained decoding and weighted 541

prompting (see Appendix D for prompting details). 542

Ablation Study As reported in Table 4, we also 543

perform four ablation studies to assess the impor- 544

tance of individual components in Zero-NatVer. 545

First, we assess the performance without using 546

weighted ensemble prompts and observe a slight 547

decline of 0.49 accuracy points on average. Sec- 548

ond, we ablate our method by omitting prompt 549

ensembles and using a single randomly sampled 550

prompt instead. We observe a substantial drop 551

in performance of 4.62 accuracy points, which 552

agrees with our previous findings regarding ensem- 553

ble sizes. Third, we ablate Zero-NatVer by using 554

unconstrained generation in decoding, observing 555

an average accuracy drop of 2.6 points. Last, we 556

ablate our method by removing alignment signals, 557

observing a substantial drop of 6.79 average accu- 558

racy points. 559

6 Conclusion 560

We have presented Zero-NatVer, a zero-shot fact 561

verification method grounded in natural logic. Our 562

method leverages the generalization capabilities of 563

instruction-tuned LLMs and generates faithful justi- 564

fications for proofs without relying on training data 565

annotated with natural logic. We have evaluated 566

Zero-NatVer in two zero-shot setups, outperform- 567

ing our baselines on most datasets. The ablation 568

study shows the importance of individual design 569

choices, and our comparison with the direct non- 570

NatLog approach shows that natural logic provides 571

competitive performance while providing explain- 572

ability via faithful justifications. We hope that the 573

methods and analyses presented here enable fur- 574

ther progress toward improving the efficiency and 575

explainability of fact verification systems. 576
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Limitations577

Natural logic is useful for explainability but is less578

expressive than semantic parsing methods such as579

lambda calculus (Zettlemoyer and Collins, 2005).580

This paper doesn’t address natural logic’s limita-581

tions. Furthermore, our method generates proofs,582

which are meant to be processed by the DFA from583

left to right. Nevertheless, natural logic-based in-584

ference is not constrained to such execution.585

Ethics Statement586

Intended Use and Misuse Potential. Our mod-587

els can potentially captivate a wider audience and588

significantly reduce the workload for human fact-589

checkers. Nevertheless, it is crucial to acknowledge590

the possibility of their exploitation by malicious591

actors. As such, we strongly advise researchers to592

approach them with caution.593

Accuracy and Infallibility. Our approach im-594

proves the clarity of FV models, enabling indi-595

viduals to make better-informed decisions about596

trusting these models and their assessments. How-597

ever, it is crucial for users to remain critical while598

interpreting the results of these systems and not599

mistake explainability for accuracy. We clarify that600

our evaluations do not determine the factual ac-601

curacy of a statement in the real world; instead,602

we use sources like Wikipedia as the basis for evi-603

dence. Wikipedia is a great collaborative resource,604

yet it has mistakes and noise of its own, similar to605

any encyclopedia or knowledge source. Therefore,606

we advise against using our verification system to607

make definitive judgments about the veracity of the608

assessed claims, meaning it should not be relied609

upon as an infallible source of truth.610
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A Dataset Processing 836

To effectively assess the zero-shot capabilities of 837

FV systems, it is important to evaluate the perfor- 838

mance on real-life claims and consider domains 839

requiring various domain expertise. We evaluated 840

all models on datasets covering natural claims and 841

domains such as climate change, biomedical sub- 842

jects, government healthcare policies, and scien- 843

tific literature. We chose datasets that mainly focus 844

on three-way classification, i.e., using three labels 845

Suppports, Refutes, or Not Enough Information: 846

Climate-FEVER (Diggelmann et al., 2020) 847

dataset comprises 1535 real-life climate change 848

claims, each annotated with five evidence sentences 849

retrieved from Wikipedia. Each evidence sentence 850

was labeled by five human annotators as support- 851

ing, refuting, or inconclusive regarding the claim’s 852

veracity, resulting in 5 votes for each evidence sen- 853

tence. These votes were then aggregated to micro- 854

verdicts for each retrieved evidence sentence, and 855

micro-verdicts were further aggregated to a single 856

macro-label for the claim. In our data processing, 857

we combined all evidence sentences into a single 858

paragraph and paired them with the macro-label as- 859

sessment. Besides the standard three labels, some 860

claims in the datasets are labeled as DISPUTED 861

if they are paired with both supporting and refut- 862

ing micro-verdicts. Since our work focuses on 863

three-label class prediction, we removed those 154 864

claims from the dataset. 865

PubHealth (Kotonya and Toni, 2020) is a dataset 866

with natural claims in the public health domain. 867

These claims are accompanied by evidence that 868

requires subject matter expertise, along with expert 869

explanations (judgments). The dataset contains 870

four labels True, False, Unproven, and Mixture. 871

However, the classes are heavily unbalanced and 872

the labels Unproven and Mixture cover less than 873

10% of the data in total. Therefore, we use test set 874

claims with only True and False labels, resulting 875

in 987 claims paired with expert explanations as 876

evidence. 877

SciFact (Wadden et al., 2020) is a dataset of 878

expert-written scientific claims paired with evi- 879

dence that was extracted from academic papers. 880

We collect the claims with supporting and refuting 881

rationale and construct claim-evidence pairs with 882

SUPPORT and REFUTE labels. Claims lacking a 883

specific rationale are categorized as NEI, and we 884
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CLAIM: {C}
EVIDENCE: {E}

−−−−−
Align the following claim expressions with relevant substrings from the evidence text:
* {CH−1}
* {CH−2}
...
* {CH−N}

The aligned substrings should either support the expression, refute it, or simply refer to the same entity.
Where possible, provide an explanation following each alignment.
If no relevant alignment exists, write "None".

Listing 1: Prompt template for the alignment task. Placeholders {E} and {C} get replaced by corresponding evidence
and claim texts, respectively. Placeholders {CH-1} to {CH-N} get replaced by corresponding claim chunks, which
were generated in the previous chunking step.

pair them with the entire abstract text. We evalu-885

ate our pipeline on a test set that consists of 300886

claims.887

Hover (Jiang et al., 2020) is an open-domain,888

multi-hop FV dataset, containing artificial claims889

built from the Wikipedia corpus. Its claims890

are labeled as either SUPPORTED and NOT-891

SUPPORTED. We use the development set, which892

consists of 4000 claims. In order to obtain evi-893

dence for all claims, we use the BM25 retriever894

(Robertson and Walker, 1994).895

DanFEVER (Nørregaard and Derczynski, 2021)896

is a Danish dataset of counterfactual claims con-897

structed from Danish Wikipedia. It consists of 6407898

instances and provides gold evidence for Supported899

and Refuted claims. To obtain evidence for NEI900

claims, we use the BM25 retriever (Robertson and901

Walker, 1994).902

CHEF (Hu et al., 2022) is a Chinese dataset of903

real-world claims. We use their development set,904

which consists of 703 claims.905

B Baselines906

ProoFVer (Krishna et al., 2022) is a seq2seq907

FV model that generates natural logic proofs as908

sequences of (claim, evidence, NatOp) triples.909

ProoFVer is based on GENRE (De Cao et al., 2020),910

an end-to-end entity linking model that was ob-911

tained by fine-tuning the BART language model912

(Lewis et al., 2019). ProoFVer was trained on a913

large collection of 145,449 claims from FEVER914

that were heuristically annotated with natural logic915

proofs.916

QA-NatVer (Aly et al., 2023) is also based on 917

natural logic but uses a question-answering frame- 918

work to determine proofs. As a few-shot method, 919

QA-NatVer was trained only on a small subset of 920

FEVER data. It uses 64 training instances, which 921

were further manually annotated with natural logic 922

proofs. 923

QA-NatVer currently supports BART0 (Lin et al., 924

2022), Flan-T5 (Chung et al., 2022) and mT0 925

(Muennighoff et al., 2022) backbones. 926

Pan et al. Pan et al. (2023b) recently published 927

an extensive analysis of zero-shot FV over 11 FV 928

datasets. In their work, they experimented with 929

different combinations of datasets for training and 930

testing. While Pan et al. (2023b) consider their ex- 931

periments as zero-shot generalization tasks, in our 932

work, we consider them as zero-shot transfer be- 933

cause they train their models on other FV datasets. 934

Their results show useful zero-shot baselines over 935

most of our datasets, providing a comparison with 936

FV models that are not based on natural logic. 937

C Models 938

Llama models For experiments with Llama3 939

(AI@Meta, 2024), we ran the 8B parameter model 940

in 16-bit precision for inference. For experiments 941

with Llama2, we locally ran the 7B, 13B, and 70B 942

parameter models and used the GPTQ (Frantar 943

et al., 2022) version of these models with 4-bit 944

quantization to reduce computational requirements 945

and accelerate inference. 946

Hyperparameters When decoding with Llama 947

models, we did not tune any hyper-parameters and 948

used the values described in Touvron et al. (2023). 949
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Specifically, in the question-answering task for950

NatOPs, we set temperature to 1.0 and use nucleus951

sampling (Holtzman et al., 2019) with top-p set to952

0.9. For all other tasks, we change temperature to953

0.1.954

Experimental Setup All experiments using955

Llama3 as the instruction-finetuned LLM were run956

on a machine with a single Quadro RTX 8000 with957

49GB memory and 64GB RAM memory.958

D Prompting959

Listings1 show prompt templates for the evidence-960

rephrasing task, and the chunking and alignment961

task, respectively. These prompt templates were962

used for all experiments with Llama3 and ChatGPT963

models.964

NatOp assignment Listing 2 shows the prompt965

templates used in the question-answering task for966

NatOps. Given a claim-evidence pair, we gener-967

ated 10 distinct questions for each NatOp in sepa-968

rate prompts, replacing X with the claim text and969

Y with the evidence text. Additionally, we added970

the phrase "Answer Yes or No." at the end of each971

prompt to encourage the Yes/No output format.972

Lastly, we used the default system prompt "You973

are a helpful assistant." for all prompts.974

ChatGPT We used OpenAI’s API (Brockman975

et al., 2020) to query gpt-3.5-turbo-1106 and used976

the same hyperparamteres as with Llama3 models.977

Due to the API limitations, we were unable to use978

constrained decoding for rephrasing, chunking, and979

alignment. Moreover, we could not use weighted980

prompt ensembles due to the inability to access981

the model’s log-likelihood scores. Otherwise, we982

could replicate all the steps of our method with983

ChatGPT.984
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Equivalence
Is X a paraphrase of Y?
Are X and Y semantically equivalent in meaning?
Is the meaning of X effectively the same as Y?
Do X and Y function as synonyms or paraphrases of each other?
Does X serve as a paraphrase or an alternative expression for Y?
Are X and Y synonymous or nearly synonymous in meaning?
Do X and Y mean the same, without using external knowledge or assumptions?
Are X and Y semantically identical when considered independently of external knowledge?
Considering just X and Y, do these expressions have the same meaning?
Comparing X with Y, are they semantically equivalent based solely on their respective content?

Entailment
Given the premise Y does the hypothesis X hold?
Does the expression Y entail X?
Does the phrase Y logically imply X?
Is it true that if Y then X?
Is X a valid inference from Y?
Can X be inferred from the statement Y?
Given just the statements Y and X, does the first statement logically and necessarily imply the second without any external
information?
Is it true that the statement Y logically entails X based solely on the information within the statements?
Does Y imply X when only the information within these statements is considered?
Is it accurate to say that Y categorically entails X, without external interpretations?

Negation
Is the phrase X a negation of Y?
Do X and Y represent mutually exclusive states, where the presence of one negates the possibility of the other?
Is the relationship between X and Y binary, such that if X is true, Y must necessarily be false, and vice versa?
Do X and Y negate each other completely?
Are X and Y in a dichotomous relationship, where the existence of one implies the non−existence of the other?
Is there a mutually exclusive relationship between X and Y, indicating that only one can be true at any given time?
In the context of X and Y, does the affirmation of one mean the automatic negation of the other?
Do X and Y form a binary opposition, where one categorically negates the other?
Are X and Y opposites in such a way that they cannot be true simultaneously?
Is the relationship between X and Y characterized by a strict either/or dichotomy?

Alternation
Does X exclude Y?
Do X and Y represent distinct alternatives, but not the only possibilities in their category?
Are X and Y exclusively different without negating the existence of additional states or options?
Do X and Y denote exclusive but not exhaustive options within a larger set of possibilities?
In comparing X and Y, are they distinct yet not limiting the possibility of other variations or alternatives?
Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?
Are X and Y different entities or states, but not in a way that negates the possibility of other, different entities or states?
Are X and Y distinct entities or states that exclude each other without forming a complete, exhaustive set?
In comparing X and Y, are they exclusive in nature but not necessarily covering all possible alternatives?
Do X and Y define separate, non−intersecting options, while not encompassing all possible scenarios?

Listing 2: Template questions for determining NatOps.

Given the claim "{C}" and the evidence "{E}", determine if the evidence supports, contradicts, or is insufficient to conclude about
the claim.

Choices:
(A): Supports
(B): Refutes
(C): Not Enough Information

Listing 3: Prompt template for FV experiments in a direct multiple-choice setup. Placeholders {E} and {C} get
replaced by corresponding texts.
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