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1 Datasets

Both DexYCB [3] and HO3D v2 [6] datasets are for non-commercial purpose only. The licenses for
them can be found in the below links.

• DexYCB: https://dex-ycb.github.io/.
• HO3D v2: https://files.icg.tugraz.at/d/5224b9b16422474892d7/files/?p=
%2FREADME.txt.

2 More Implementation Details

2.1 DeepSim Architecture

MLP. We flatten the initial hand mesh M̂h and object mesh M̂o = R̂oMo + t̂o, both normalized
by the hand root joint, into a 1D vector. We then concatenate them with the two signed distance
vectors ĉh and ĉo as an input feature F ∈ R7172 for the DeepSim. The DeepSim is a 6 layer MLP,
where the linear layer dimensions are [1024, 1024, 1024, 512, 256, 128] and the activation function
is ReLU [1]. Its output is the scalar replicated stability loss L̂s. We observe this simple MLP is
sufficiently accurate for stability regression and has numerically stable gradient, which benefits the
back-propagation and refinement.

LSTM. In the ablation study, we adopt a LSTM [7] as an alternative architecture, which auto-
regressively estimates the residual object center displacements at every S = 10 simulation steps

h1 = LSTM(F,0)

hi = LSTM(MLPe(hi−1),hi−1), i = 2, 3, · · · , N (1)

∆t̂i = MLPd(hi), i = 1, 2, · · · , N ,

where N = T/S = 10, MLPe and MLPd represent learnable MLP encoder and decoder, with
linear layer dimensions [1024, 1024, 1024] and [1024, 512, 256, 128] respectively, and hi ∈ R1024

represents the hidden state. The output ∆t̂i ∈ R3 represents the residual object center displacement
at each step, so that the final replicated stability loss can be written as

L̂s = ||
N∑
i=1

∆t̂i|| . (2)

To train such DeepSim network, we impose an approximation loss as

La = ||
N∑
i=1

∆t̂i −∆ti|| , (3)
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where ∆ti represents the residual object center displacement returned by the simulator. In practice,
we observe that the success rate inferred by the LSTM DeepSim is roughly three times of the actual
success rate evaluated by the simulator, which indicates an overfit that the LSTM DeepSim tends to
predict small displacements. Hence this architecture does not outperforms the MLP counterpart.

2.2 Direct Gradient Calculation

Finite Difference. We use the MuJoCo [9] official implementation mjd_transitionFD to calculate
the state gradient ∂st+1/∂st, where st = [qt, q̇t]. The gradient of the final state with respect to the
initial state is therefore the multiplication of each state gradient matrix. We set the perturbation at
each component of the state as ϵ = 1× 10−4. Since the hand is static, we only perturb object states.

NimblePhysics. NimblePhysics [10] provides slightly different functions compared to the MuJoCo
simulator. In particular, for physics modeling, we adopt the MANO [8] URDF model from [4]. We
further set the object mass and inertia following the previous annotations1. Note that NimblePhysics
does not provide analytical gradient for penetration resolving and implementation for adhesion force.
Hence it favors inter-penetration between the hand and the object to achieve stability. In addition,
NimblePhysics takes around 120 hours for an epoch on the DexYCB training set, while MuJoCo
takes only 2 hours thanks to the underlying concurrent implementation. In consequence it is both
numerically unstable and computationally intractable to apply NimblePhysics in our method.

3 Joint Refinement for Base and DeepSim Network

Akin to the discriminator in GAN [5], the DeepSim network determines the stability of the initial
estimation from the base network (acts as a generator) by learning from the simulator. However,
as there is no adversary relationship between the base and DeepSim network, joint training both
networks can be made much simpler. Specifically, we train the base and DeepSim network in an
alternating order as shown in Algorithm 1 (for one sample). To avoid overfitting and misleading by
incorrect regression, we additionally perform data augmentation and loss masking as described in
below. For clarification, tt ∈ qt represents the object center position at time t (as a component of the
full configuration), where q0 is the initial configuration and qT = fs(q0) is the final configuration
after the simulation. We set the threshold S = 0.01, which classifies if the sample is stable or not.

Algorithm 1 Joint training of the base and DeepSim network.
for number of training iterations do

for sample in minibatch do
// Train DeepSim network
Evaluate initial configuration: q0 = fb(I)
Perform random augmentation: qr

0 = q0 +∆q, ∆q ∼ N (0, I)
Merge all data: qa

0 = {q0,q
r
0,q

gt
0 } ▷ qgt

0 represents ground truth pose for I
Evaluate stability loss: La

s = ||taT − ta0 ||
Regress replicated stability loss: L̂a

s = fd(F
a) ▷ Fa represents the feature for qa

0 (Section 2.1)
Update DeepSim network with approximation loss: La = ||La

s − L̂a
s ||

// Train base network
Re-evaluate replicated stability loss: L̂s = fd(F) ▷ F is the feature for q0

Extract relevant stability loss: Ls = ||tT − t0||, Lgt
s = ||tgtT − tgt0 ||

if (L̂s < S and Ls < S or L̂s ≥ S and Ls ≥ S) and (Lgt
s < S) then

Update base network with replicated stability loss L̂s

end if
end for

end for

4 More Results

In this section, we show more results in Figure 1 of the refined pose estimations and the corresponding
simulation results. We observe that our method can produce physically stable results covering various

1We obtain physics properties of YCB objects from two open source projects (i) and (ii).

2

https://github.com/eleramp/pybullet-object-models
https://github.com/ChenEating716/pybullet-URDF-models


After Sim.Camera ViewInput Sim. Diff.Rotated Views

Figure 1: More qualitative results. We render with object textures2 in the YCB [2] dataset and
compare the resulting estimation (transparent, zoom in) and its corresponding configuration after
simulation in the last column. The results are physically stable as the simulation displacements are
small. More samples with complete simulation processes can be found in the supplementary video.
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object categories and grasping approaches. When forwarding the estimations to the simulator,
we observe minor simulation displacement (in the last column), indicating desired pose stability.
Rotated views also show that the estimated poses are physically plausible. We additionally include a
supplementary video that records the entire simulation processes for selected samples.

In addition, we show in Figure 2 that our method can generalize to various types of hand-object
interaction, such as holding the object on the palm. Furthermore, our method can be applied to
non-grasping samples without biasing towards predicting firm grasping, thanks to the joint accuracy-
stability training.
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Figure 2: More qualitative results. Our methods can generalize to various forms of interaction, e.g.
holding, and even non-grasping samples, without biasing towards firm grasping.

5 Failure Cases

We show in Figure 3 to illustrate the example of failure cases. Due to the occlusion ambiguity, our
method may reach sub-optimum where the hand-object pose is stable but do not align with the ground
truth on the contact points. Such cases can affect the estimation accuracy. Furthermore, due to
imperfect simulation, especially in the collision detection, some outcomes reported to be stable by
the simulator may not appear to be perfect stable in real-world. We encourage future researches to
explore on enhanced physics simulation to tackle this limitation.

Input GTOurs Ours Rotated GT Rotated

Input

Figure 3: Failure case of our method. While our method can produce stable grasping, due to the
occlusion ambiguity the grasping may not align with the ground truth (GT). The generated grasping
may also not be the most natural way to grasp the target object.

2We find the HO3D dataset using a different object texture to the official YCB dataset (e.g. the second last
sample). However, this does not affect the pose estimation (see in the Camera View).
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