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ABSTRACT

This paper explores alternative formulations of the Kolmogorov Superposition
Theorem (KST) as a foundation for neural network design. The original KST for-
mulation, while mathematically elegant, presents practical challenges due to its
limited insight into the structure of inner and outer functions and the large number
of unknown variables it introduces. Kolmogorov-Arnold Networks (KANs) lever-
age KST for function approximation, but they have faced scrutiny due to mixed
results compared to traditional multilayer perceptrons (MLPs) and practical lim-
itations imposed by the original KST formulation. To address these issues, we
introduce ActNet, a scalable deep learning model that builds on the KST and over-
comes many of the drawbacks of Kolmogorov’s original formulation. We evaluate
ActNet in the context of Physics-Informed Neural Networks (PINNs), a frame-
work well-suited for leveraging KST’s strengths in low-dimensional function ap-
proximation, particularly for simulating partial differential equations (PDEs). In
this challenging setting, where models must learn latent functions without direct
measurements, ActNet consistently outperforms KANs across multiple bench-
marks and is competitive against the current best MLP-based approaches. These
results present ActNet as a promising new direction for KST-based deep learning
applications, particularly in scientific computing and PDE simulation tasks.

1 INTRODUCTION

The Kolmogorov Superposition Theorem (KST) is a powerful and foundational result in mathe-
matics, originally developed to solve Hilbert’s 13th problem (Kolmogorov, 1961). Over time, it
has gained significant attention as a tool for function approximation, showing that any multivariate
continuous function can be represented exactly using finite sums and compositions of univariate
functions. This theoretical insight has inspired numerous applications in mathematics and computa-
tional sciences since its inception in 1957, particularly in problems requiring efficient representation
of complex functions in low-dimensional domains (Sprecher, 1996; Kŭrková, 1992; Köppen, 2002).

Recently, Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024) have renewed interest in the
practical use of KST, especially in the context of physics-informed machine learning (PIML) (Kar-
niadakis et al., 2021). Several papers have been published on this topic in the span of just a few
months (Shukla et al., 2024; Wang et al., 2024c; Howard et al., 2024; Koenig et al., 2024; Rigas
et al., 2024; Patra et al., 2024), demonstrating the current relevance of the KST for PIML research.

The KST’s strength in approximating functions aligns well with problems in scientific computing
and partial differential equation (PDE) simulation, where we often encounter functions representing
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physical fields (e.g., velocity, temperature, pressure) that live in low-dimensional domains. Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2019; Wang et al., 2023) have emerged as a
popular deep learning framework for such problems, offering a unique approach to learning latent
functions without direct measurements by minimizing PDE residuals. By exploiting the KST, KANs
offer a mathematically grounded approach to function approximation, sparking new research and
development in the area of neural networks for numerically solving PDEs.

Despite its mathematical elegance, the original KST formulation is often impractical for real-world
applications like PINNs, as the implementation of its univariate functions can be cumbersome
Shukla et al. (2024); Yu et al. (2024). As a result, alternative formulations of the KST may be
better equipped to address the challenges faced in modern approximation tasks, motivating ongoing
research into more adaptable and scalable methods.

Alternative formulations of KST, which we will collectively refer to as Superposition Theorems,
offer greater flexibility and more robust guarantees, making them better suited for modern deep
learning applications, particularly scientific computing. These variants relax some of the original
theorem’s constraints, enabling more efficient computation and training of neural networks. Su-
perposition Theorems open up new possibilities for designing deep learning architectures that can
improve performance and scalability in challenging settings like PINNs.

The summary of contributions in this paper are as follows:

• We argue for using alternative versions of the KST for building neural network architec-
tures, as shown in Table 1. Despite being the most popular iteration, Kolmogorov’s original
formula is the least suited for practical implementations.

• We propose ActNet, a novel neural network architecture leveraging the representation the-
orem from Laczkovich (2021) instead of the original KST employed in KANs. We prove
ActNet’s universal approximation properties using fixed depth and width, and propose a
well-balanced initialization scheme, which assures that the activations of the network scale
well with the size of the network, regardless of depth or width. Furthermore, ActNet does
not have vanishing derivatives, making it ideal for physics-informed applications.

• We evaluate ActNet in the context of PINNs, demonstrating its potential in a setting that
uniquely challenges current deep learning practices. Our physics-informed experiments
showcase ActNet’s ability to learn latent functions by minimizing PDE residuals, a task that
aligns well with KST’s strengths. ActNet outperforms KANs in every single experiment we
examined, and appears to be competitive against the current best MLP-based approaches,
including advanced methods such as PirateNets (Wang et al., 2024a).

Taken together, these contributions not only demonstrate the potential of ActNet as a novel architec-
ture for tackling challenging problems in scientific computing and PDE simulation, but also open up
a broader question: which formulation of the KST is most suitable for deep learning applications?
While ActNet, leveraging Laczkovich’s theorem (Laczkovich, 2021), shows promising results, it
represents just a first step in exploring this rich space of possibilities. By addressing key limita-
tions of existing KST-based approaches while maintaining their theoretical strengths, our work with
ActNet aims to pave the way for future research into optimal KST formulations for neural networks.

2 SUPERPOSITION THEOREMS FOR REPRESENTING COMPLEX FUNCTIONS

Proposed in 1957 by Kolmogorov (1961), the Kolmogorov Superposition Theorem (KST, also
known as Kolmogorov-Arnold representation theorem) offers a powerful theoretical framework for
representing complex multivariate functions using sums and compositions of simpler functions of a
single variable. This decomposition potentially simplifies the challenge of working with multivariate
functions, breaking them down into manageable components.

In its original formulation, the KST states that any continuous function f : [0, 1]d → R can be
represented exactly as

f(x1, . . . , xd) =

2d∑
q=0

Φq

(
d∑

p=1

ϕq,p(xp)

)
, (1)
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Table 1: Superposition formulas for a continuous function f(x1, . . . , xd). Kolmorogov’s original
result lead to many different versions of superpositions based on univariate functions. Although
KANs employ the original formulation, other versions suggest distinct architectures. Other than the
underlying formula, different theorems also use different assumptions about the domain of f and
regularity conditions of the inner/outter functions.

Version Formula Inner
Functions

Outer
Functions

Other
Parameters

Kolmogorov
(1957)

∑2d
q=0 Φq

(∑d
p=1 ϕq,p(xp)

)
2d2 2d N/A

Lorentz
(1962)

∑2d
q=0 g

(∑d
p=1 λpϕq(xp)

)
2d 1 λ ∈ Rd

Sprecher
(1965)

∑2d
q=0 gq

(∑d
p=1 λpϕ(xp + qa)

)
1 2d a ∈ R, λ ∈ Rd

Laczkovich
(2021)

∑m
q=1 g

(∑d
p=1 λpqϕq(xp)

)
m = O(d) 1 λ ∈ Rd×m

where Φq : R → R and ϕq,p : [0, 1] → R are univariate continuous functions known as outer
functions and inner functions, respectively.

The first version of the KST was created to address Hilbert’s 13th problem (Hilbert, 2000) on the
representability of solutions to 7th-degree equations via continuous functions of at most two vari-
ables. Since its inception in the mid-20th century, the theorem has inspired numerous connections to
approximation theory and neural networks, due to its potential for studying multivariate functions.

Over time, a multitude of different versions of KST have emerged, each with slightly different
formulations and conditions, reflecting the evolving attempts to adapt the theorem to different ap-
plications and mathematical frameworks. Some of the most important variants are outlined in Table
1. For more information, we recommend the excellent book written by Sprecher (2017), who has
worked on KST related problems for the past half century.

KST And Neural Networks. There is a substantial body of literature connecting the Kolmogorov
Superposition Theorem (KST) to neural networks (Lin & Unbehauen, 1993; Köppen, 2002), notably
pioneered by Hecht-Nielsen in the late 1980s (Hecht-Nielsen, 1987). KST was seen as promising
for providing exact representations of functions, unlike approximation-based methods such as those
of Cybenko (1989). More recently, Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024) were
proposed, attracting attention as a potential alternative to MLPs. Despite the initial enthusiasm,
KANs have faced scrutiny due to mixed empirical performance and questions about experimental
fairness (Yu et al., 2024; Shukla et al., 2024).

As detailed in Table 1, the KST exists in multiple versions, each with unique conditions and for-
mulations, offering significant flexibility over how functions can be decomposed and represented.
These KST variants provide a theoretical foundation for designing new neural network architectures,
rooted in well-established function approximation theory. Despite serving as the basis for KANs,
the original formulation of the KST in equation (1) offers the least information about the structure
of the superposition formula. As can be seen in Table 1, Kolmogorov’s formulation is in fact, the
only one with O(d2) unknown functions that have to be inferred, whereas other formulations scale
linearly with the dimension d. This discrepancy motivates the use of other formulas from Table 1 in
order to design neural network architectures based on superposition theorems.

Kolmogorov’s Theorem Can Be Useful, Despite Its Limitations. Previous efforts to apply
KST in function approximation have had mixed results (Sprecher, 1996; 2013; Köppen, 2002;
Kŭrková, 1992) as KST’s non-constructive nature and irregularity of the inner functions (e.g., non-
differentiability) can pose significant challenges. Vitushkin (1964) even proved that there exists
certain analytical functions f : [0, 1]d → R that are r times continuously differentiable which
cannot be represented by r times continuously differentiable functions with less than d variables,
suggesting that in certain cases, the irregularity of inner functions is unavoidable.

The limitations of KST-based representations seem to be at direct odds with the many attempts
over the past 50 years to use it as the basis for computational algorithms. The primary argument
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against the use of KST for computation is the provable pathological behavior of the inner functions,
as detailed in Vitushkin (1964). However, this impediment may not be directly relevant for most
applications for a few different reasons.

1. Approximation vs. Exact Representation: The pathological behavior of inner functions
mainly applies to exact representations, not approximations, which are more relevant in
machine learning (Kŭrková, 1992).

2. Function-Specific Inner Functions: Instead of using the same inner functions for all func-
tions as suggested by most superposition theorems, allowing them to vary for specific target
functions might address the irregularity problem in some cases.

3. Deeper Compositions: Deep learning allows for more layers of composition, which could
help alleviate the non-smoothness in approximation tasks

While further research is needed to verify these claims, they offer practical insights that motivate
continued exploration, including the work presented in this paper.

3 ACTNET - A KOLMOGOROV INSPIRED ARCHITECTURE

With renewed interest in KST and deep learning, many open questions remain about its applicability,
limitations, and effective integration. In light of these questions, we propose ActNet, a deep learning
architecture inspired by the Laczkovich (2021) version of the KST. This formulation implies several
differences from KANs and other similar methods. The basic building block of an ActNet is an
ActLayer, whose formulation is derived from the KST and can additionally be thought of as a multi-
head MLP layer, where each head has a trainable activation function (hence the name ActNet).

3.1 THEORETICAL MOTIVATION

Theorem 1.2 in Laczkovich (2021) presents the following version of Kolmogorov’s superposition
theorem, which is the basis of the ActNet architecture:
Theorem 3.1. Let C(Rd) denote the set of continuous functions from Rd → R and m > (2 +√
2)(2d− 1) be an integer. There exists positive constants λij > 0, j = 1, . . . , d; i = 1, . . . ,m and

m continuous increasing functions ϕi ∈ C(R), i = 1, . . . ,m such that for every bounded function
f ∈ C(Rd), there is a continuous function g ∈ C(R) such that

f(x1, . . . , xd) =

m∑
i=1

g

 d∑
j=1

λijϕi(xj)

 .

Using vector notation, this can equivalently be written as

f(x) =

m∑
i=1

g (λi · ϕi(x)) , (2)

where the ϕi are applied element-wise and λi = (λi1, . . . , λid) ∈ Rd.

As a corollary, we have that this expressive power is maintained if we allow the entries of λ to be
any number in R, instead of strictly positive, and do not restrict the inner functions to be increasing1.
Furthermore, if we define the matrices Φ(x)ij := ϕi(xj) and Λij := λij and let S : Ra×b → Ra

be the function that returns row sums of a matrix, or, if the input is a vector, the sum of its entries,
then equation 2 can be equivalently expressed as

f(x) =

m∑
i=1

g (λi · ϕi(x)) (3)

=

m∑
i=1

g ([S(Λ⊙Φ(x))]i) (4)

= S (g [S(Λ⊙Φ(x))]) , (5)
1An earlier version of ActNet attempted to impose these constraints to λ and ϕ, but this approach did not

seem to lead to any practical gains, and potentially limited the expressive power of the network.
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where ⊙ is the Haddamard product between matrices.

From the formulations described in Table 1, we believe this one from Laczkovich (2021) is the
best-suited for practical applications in deep learning. Some of the reasons for this are

• This version of the theorem is valid across all of Rd, as opposed to being only applicable
to the unit cube [0, 1]d, as is the case for most superposition theorems.

• It presents a flexible width size m, which yields exact representation as long as m >
(2 +

√
2)(2d− 1), which scales linearly with the dimension d.

• It requires O(d) inner functions, as opposed to O(d2) in the case of KANs.
• This formulation has other attractive interpretations in the light of recent deep learning

advances, as detailed in section 3.4.

3.2 ACTNET FORMULATION

The main idea behind the ActNet architecture is implementing and generalizing the structure of the
inner functions implied by theorem 3.1. That is, we create a computational unit called an ActLayer,
which implements the forward pass S(Λ⊙Φ(x)), and then compose several of these units sequen-
tially. This is done by parametrizing the inner functions ϕ1, . . . , ϕm as linear compositions of a set
of basis functions.

Given a set of univariate basis functions b1, . . . , bN : R → R, let B : Rd → RN×d return the basis
expansion matrix defined by B(x)ij = bi(xj). The forward pass of the ActLayer component given
an input x ∈ Rd is then defined as

ActLayerβ,Λ(x) = S (Λ⊙ βB(x)) , (6)

where the output is a vector in Rm and the trainable parameters are β ∈ Rm×N and Λ ∈ Rm×d.
The graphical representation of this formula can be seen in Figure 1. Under this formulation, we
say that the matrix Φ(x) = βB(x) ∈ Rm×d where Φ(x)ij = ϕi(xj) represent the inner function
expansion of the layer and write

Φ(x) = (ϕ1(x), . . . , ϕm(x)) = βB(x), (7)

where ϕk : R → R are real-valued functions that are applied element-wise, taking the form

ϕk(t) =

N∑
j=1

βkjbj(t). (8)

Thus, the kth entry of an ActLayer output can be written as

(
ActLayerβ,Λ(x)

)
k
=

d∑
i=1

λki

N∑
j=1

βkjbj(xi) (9)

=

d∑
i=1

λkiϕk(xi) = λk,: · ϕk(x), (10)

where λk,: = (λk1, . . . , λkd) ∈ Rd and ϕk(x) = (ϕk(x1), . . . , ϕk(xd)) ∈ Rd.

Additionally, before passing the input to ActLayers and before outputting the final result, ActNet
uses linear projections from the latent dimension used for the ActLayers. We have empirically found
this improved the performance of ActNet in some tasks by mixing the information of the different
entries of x. It is also possible to include an additive bias parameter at the end of the forward pass
of each ActLayer. A visualization of the ActNet architecture can be seen in Figure 1.

Thus, the hyperparameters of an ActNet are: the embedding dimension m ∈ N, which is used as
the input and output dimension of the ActLayers; the number N ∈ N of basis functions used at each
ActLayer; and the amount L ∈ N of ActLayers. Such a network has O(Lm(m + N)) trainable
parameters. For comparison, a KAN with L layers of width m, spline order K and grid definition
G has O(Lm2(G+K)) trainable parameters, which grows faster than ActNet. On the other hand,
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Figure 1: (left) Visual representation of an individual ActLayer. The ActLayer architecture can be
seen as a MultiHead MLP layer with tunable activations. (right) Visual representation of the ActNet
architecture. The input vector x is first projected to an embedding dimension, then passed into L
composed blocks of ActLayer, and finally linearly projected into the desired output dimension.

an MLP of L layers of width m has O(Lm2) trainable parameters. Our experiments indicate that
N can often be set as low as N = 4 basis functions, in which case the number of parameters of an
ActNet is roughly similar to that of an MLP of the same width and depth, whereas KANs typically
use G > 100, implying a much faster rate of growth. A comparison of the number of trainable
parameters and flops between ActNet, KAN and MLPs can be seen in Appendix B, and Table 5.

Another advantage of the ActLayer over a KAN layer is that of simplicity in implementa-
tion. For example, using the einsum function found in packages like NumPy, PyTorch and
JAX the forward pass of the ActLayer can even be implemented using a single line of code as
out=einsum(’ij,jk,ik->k’,B(x),β,λ).

3.3 UNIVERSALITY

Definition 3.2. Given a set Ω ⊆ Rd, a neural network architecture is called a universal approximator
on Ω if for every f ∈ C(Ω) and every ε > 0 there exists a choice of hyperparameters and trainable
parameters θ such that the function fθ computed by this neural network satisfies

sup
x∈Ω

|f(x)− fθ(x)| < ε.

With this definition, we now state the universality of ActNet, with a proof presented in Appendix E.
Theorem 3.3. A composition of two ActLayers is a universal approximator for any compact set
X ⊆ Rd. In other words, for any continuous function with compact domain f : X → R and any
ε > 0, there exists a composition of two ActLayers, where |f(x)−Act(x)| < ε for all x ∈ X .

In the construction implied by this proof, the first ActLayer has output dimension m > (2 +√
2)(2d − 1), while the second ActLayer has output dimension 1. This means that we obtain uni-

versality using a width size that scales linearly with the input dimension d, potentially at the cost of
requiring a large number N of basis funcitons.

3.4 OTHER INTERPRETATIONS OF THE ACTLAYER

Although the representation formula from theorem 3.1 is the primary inspiration for the ActLayer,
this unit can also be seen through other mathematically equivalent lenses. For example, the strategy
of using several small units in parallel, followed by concatenating their outputs is exactly the idea
behind multi-head attention employed in the transformer architecture from Vaswani (2017). In the
same sense, the ActLayer can be seen as a Multi-Head MLP Layer where each head has a
different, tunable, activation function ϕi. In this analogy, each head first applies its individual
activation function ϕi, then applies a linear layer λi = Λi,: with output dimension 1. Finally, the
output of each head is concatenated together before being passed to the next layer.

Alternatively, the ActLayer can also be seen as a lighter version of a KAN layer, where each inner
function ϕpq has the form ϕpq(x) = λpqϕq(x). Assuming all inner functions are parametrized by
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the same set of basis functions, this is then equivalent to employing a KAN layer using Low-Rank
Adaptation (LoRA) from Hu et al. (2021). This comparison however, overlooks the fact that the
basis functions used for KAN are cubic B-splines, whereas ActNet employs a sinusoidal basis by
default, as described in section 3.5.

All three interpretations are mathematically equivalent, and showcase potential benefits of the Act-
Layer through different perspectives.

3.5 CHOICE OF BASIS FUNCTIONS AND INITIALIZATION

Although ActNet can be implemented with any choice of basis functions, empirically we have ob-
served robust performance using basis functions b1, . . . , bN : R → R of the form

bi(t) =
sin(ωit+ pi)− µ(ωi, pi)

σ(ωi, pi)
, (11)

where frequencies wi ∼ N(0, 1) are initialized randomly at each layer from a standard normal
distribution and phases pi are initialized at 0. We also add a small ε > 0 to the denominator in
(11) for numerical stability when σ(ωi, pi) is small. In the equation above, the constants µ(ωi, pi)
and ω(σi, pi) are defined as the mean and standard deviation, respectively, of the variable Y =
sin(ωiX + pi), when X ∼ N(0, 1). These values are expressed in closed form as

µ(ωi, pi) = E[Y ] = e
−ω2

2 sin(pi), (12)

σ(ωi, pi) =
√

E[Y 2]− E[Y ]2 =

√
1

2
− 1

2
e−2ω2

i cos(2pi)− µ(ωi, pi)2. (13)

This ensures that, if the inputs to the ActNet are normally distributed with mean 0 and variance 1 (a
common assumption in deep learning), then the value of these basis functions will also have mean
0 and variance 1. After properly initializing the β and λ parameters (detailed in Appendix D.3),
the central limit theorem then tells us that the output of an ActLayer will roughly follow a standard
normal at initialization, which results in stable scaling of the depth and width of the network.

This can be formally stated as the theorem below, which implies that the activations of an ActNet
will remain stable as depth and width increase. The proof can be seen in Appendix F.
Theorem 3.4. At initialization, if the input x ∈ Rd is distributed as N(0, Id), then each entry of
the output ActLayer(x) has mean 0 and variance 1. In the limit as either the basis size N → ∞
or the input dimension d → ∞ we get that each output is distributed as a standard normal.

4 EXPERIMENTS

We believe that the framework of Physics Informed neural networks (PINNs) (Raissi et al., 2019)
provides an ideal testbed for evaluating ActNet and other KST-inspired architectures. PINNs align
well with the strengths of the Kolmogorov Superposition Theorem in several key aspects:

1. Low-dimensional domains: PINNs often deal with functions representing physical fields
(e.g., velocity, temperature, pressure) that typically live in low-dimensional domains, where
KST’s function approximation capabilities have been better studied.

2. Derivative information: PINNs leverage derivative information through PDE residuals, a
unique aspect that aligns with KST’s ability to represent functions and their derivatives. In
particular, as detailed in Appendix C, the derivative of an ActNet is another ActNet, which
tells us the higher order derivatives of the network will not vanish, a frequent problem with
ReLU MLPs and many of its variants.

3. Complex functions: PDEs often involve highly nonlinear and complex solutions, chal-
lenging traditional neural networks but potentially benefiting from KST-based approaches.

4. Lack of direct supervision: Unlike traditional supervised learning, PINNs often learn la-
tent functions without direct measurements, instead relying on minimizing PDE residuals.
This indirect learning scenario presents a unique challenge that has posed difficulties to ex-
isting architectures (Wang et al., 2024a) and may benefit from KST-inspired architectures.
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Table 2: Best relative L2 errors and residual losses obtained by ablation experiments, as described
in section 4.1. More details can be seen in Appendix G.

Relative L2 Error (↓) Residual Loss (↓)

Benchmark ActNet KAN Siren MLP
(base) ActNet KAN Siren MLP

(base)

Poisson (w = 16) 6.3e-4 1.8e-1 9.6e-2 6.6e-2 4.6e-3 2.6e0 8.9e-1 4.8e0
Poisson (w = 32) 6.3e-2 1.1e0 1.8e-1 1.0e0 8.0e-1 1.4e+3 8.4e+1 6.2e+4
Helmholtz (w = 16) 1.3e-3 2.8e-1 1.2e-1 4.6e-2 5.0e-3 2.6e0 9.2e-1 6.1e0
Helmholtz (w = 32) 1.1e-1 1.1e0 1.3e-1 1.0e0 5.7e-1 1.5e+3 8.1e+1 6.1e+4
Allen-Cahn 5.6e-5 5.3e-4 2.1e-5 1.1e-4 1.2e-8 3.8e-8 1.9e-8 2.0e-8

By focusing our experiments on PINNs, we not only aim to demonstrate ActNet’s capabilities in a
challenging and practically relevant setting, but also explore how KST-based approaches can con-
tribute to scientific computing and PDE simulation. This choice of experimental framework allows
us to evaluate ActNet’s performance in scenarios that closely align with the theoretical strengths of
the KST, potentially revealing insights that could extend to broader applications in the future.

Motivated by these observations, several papers (Shukla et al., 2024; Wang et al., 2024c; Howard
et al., 2024; Shuai & Li, 2024; Koenig et al., 2024; Rigas et al., 2024; Patra et al., 2024) have
been published attempting to specifically exploit KANs for physics informed training, with varying
degrees of success. In the experiments that follow, we demonstrate that ActNet consistently outper-
forms KANs, both when using conducting our own experiments and when comparing against the
published literature. Additionally, we also show that ActNet can be competitive against strong MLP
baselines such as Siren (Sitzmann et al., 2020), as well as state-of-the-art architectures for PINNs
such as the modified MLP from Wang et al. (2023) and PirateNets from Wang et al. (2024a).

4.1 ABLATIONS STUDIES

We compare the effectiveness of ActNet, KANs and MLPs in minimizing PDE residuals. In order to
focus on PDE residual minimization, we enforce all initial and boundary conditions exactly, follow-
ing Sukumar & Srivastava (2022), which removed the necessity for loss weight balancing schemes
(Wang et al., 2022b), and thereby simplifies the comparisons. For all experiments, we train networks
of varying parameter counts2, and for each parameter size, with 12 different hyperparemeter con-
figurations for each architecture. Additionally, for the sake of robustness, for each hyperparameter
configuration we run experiments using 3 different seeds and take the median result. This means
that for each PDE, 144 experiments were carried out per architecture type. We do this as our best
attempt at providing a careful and thorough comparison between the methods.

Additionally, for the Poisson and Helmholtz PDEs, we consider 6 different forcing terms, with
frequency parameters w ∈ {1, 2, 4, 8, 16, 32}. This means that for the Poisson PDE alone, 3,456
networks were trained independently, and similarly for Helmholtz. As the frequency parameter
w increases, solving the PDE becomes harder, as the model needs to adapt to very oscillatory PDE
solutions. This is intended to showcase how ActNet’s expressive power and training stability directly
translate to performance in approximating highly oscillatory functions.

Table 2 summarizes the results of these ablations, where we find that ActNet outperforms KANs
across all benchmarks, often by several orders of magnitude, and also outperforms both traditional
MLPs as and strong MLP baselines like Siren (Sitzmann et al., 2020) on most cases.

Poisson Equation. We consider the 2D Poisson PDE on [−1, 1]2 with Dirichlet boundary and
forcing terms which yield exact solution u(x, y) = sin(πwx) sin(πwy) for w in {1, 2, 4, 8, 16, 32},
which are shown in Appendix G.3 as Figure 6, along with a full description of the PDE. ActNet
consistently outperforms the other two types of architectures for all frequencies w. In particular, the
difference in performance between methods becomes starker as the frequency w increases. For the
highest two frequencies of w = 16 and w = 32, ActNet can outperform KAN and Siren by as much
as two orders of magnitude. The full results comparing ActNet, KANs, Siren and traditional MLPs
can be seen on the table in Figure 8 of the Appendix.

2{10k, 20k, 40k, 80k} for Poisson and Helmholtz PDEs, and {25k, 50k, 100k} for Allen-Cahn.
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Figure 2: Example predictions for the Helmholtz equation using w = 16. The relative L2 errors for
the ActNet, Siren and KAN solutions above are 1.04e-03, 8.82e-2 and 2.64e-1, respectively.

Table 3: Relative L2 errors of ActNet versus state-of-the-art results for PINNs.

Benchmark ActNet JaxPi
(Wang et al., 2023)

PirateNet
(Wang et al., 2024a)

Advection (c = 80) 9.50e-5 6.88e-4 5.48e-4
Kuramoto–Sivashinsky (first time window) 1.34e-5 1.42e-4 1.23e-5
Kuramoto–Sivashinsky (full solution) 8.53e-2 1.61e-1 2.11e-1

Inhomogeneous Helmholtz Equation. We consider the inhomogeneous Helmholtz PDE on
[−1, 1]2 with Dirichlet boundary condition, which is fully described in Appendix G.4. Similarly
to what was done for the Poisson problem, we set forcing terms so this PDE has exact solution
u(x, y) = sin(wx) sin(wy), which can be seen in Figure 6 for different values of w and κ = 1.
Once again, ActNet outperforms both KANs and MLPs, across all frequencies (full details can be
seen in Figure 10 in the Appendix), with a starker discrepancy for high values of w.

Allen-Cahn Equation On the Allen-Cahn PDE (fully described in Appendix G.5), ActNet outper-
forms KANs by around one order of magnitude across all network sizes. ActNet and Siren perform
comparably, with ActNet yielding better results for smaller network sizes, and Siren performing bet-
ter for larger network sizes, as can be seen in Figure 13. However, for larger networks, the relative
L2 error is close to what can be achieved with single-precision computation for neural networks,
so it is possible that the discrepancy arises due to floating-point error accumulation during training.
Despite yielding slightly larger error in some cases, ActNet achieves the lowest final PDE residual
loss across all network sizes compared to both Siren and KAN, as can be seen in Figure 14.

4.2 COMPARISONS AGAINST CURRENT STATE-OF-THE-ART

The goal of this section is to compare the performance of ActNet against some of the state-of-the-art
results such as the modified MLP from the JaxPi library (Wang et al., 2023) and PirateNets (Wang
et al., 2024a). As can be seen in Table 3, ActNet is capable of improving the best results available
in the literature for two very challenging PINN problems.

Advection Equation. We consider the 1D advection equation with periodic boundary conditions,
which has been extensively studied in Wang et al. (2023); Daw et al. (2022); Krishnapriyan et al.
(2021) and is further described in Appendix G.6. Following Wang et al. (2023), we use initial
conditions g(x) = sin(x) and the high transport velocity constant c = 80. This yields a challenging
problem for PINNs, with highly oscillatory solution function. We compare ActNet against results

9
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Figure 3: ActNet predictions for the advection equation (c = 80). The relative L2 error is 9.50e-5,
whereas the best result found in the literature is 6.88e-4 (Wang et al., 2023).
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Figure 4: ActNet predictions for the chaotic Kuramoto–Sivashinsky PDE. The relative L2 error is
8.53e-2, whereas the best result found in the literature is 1.61e-1 (Wang et al., 2023).

from Wang et al. (2023), obtaining a relative L2 error of 9.50×10−5, compared to their 6.88×10−4

result, see Figure 3. On this same benchmark, PirateNet obtains a relative L2 error of 5.48× 10−4.

Kuramoto–Sivashinsky Equation. The Kuramoto–Sivashinsky equation (fully described in Ap-
pendix G.7) is a chaotic fourth-order non-linear PDE that models laminar flames. Due to its chaotic
nature, slight inaccuracies in solutions quickly lead to diverging solutions. Training PINNs for this
PDE usually requires splitting the time domain into smaller windows, sequentially solving one win-
dow at a time. Considering only the first window t ∈ [0, 0.1], ActNet obtains a relative L2 error an
order of magnitude lower than what is reported in Wang et al. (2023). For the full solution, ActNet
also improves on the current best results from Wang et al. (2023) and PirateNet, see Figure 4.

5 CONCLUSION

Summary. We explore alternative formulations of the Kolmogorov Superposition Theorem (KST)
to develop neural network architectures, and introduce ActNet. This architecture is inspired by
Laczkovich’s version of KST and is faster and simpler than Kolmogorov-Arnold Networks (KANs).
We prove ActNet’s universality for approximating multivariate functions and propose an initializa-
tion scheme to maintain stable activations. In physics-informed experiments, ActNet consistently
outperforms KANs and is competitive with leading MLP architectures, even surpassing state-of-the-
art models such as as PirateNet and the modified MLP of Wang et al. (2023) in some benchmarks.

Limitations. The primary limitation of ActNet and other KST-based approaches to deep learning is
the slower computational speed compared to plain MLPs, although ActNet mitigates this to a con-
siderable degree compared to KANs. Additionally, further optimizations may be possible, including
hardware-level implementations tailored to ActNet’s forward pass, similar to recent advances like
FlashAttention for Transformers (Dao et al., 2022).

Future Work. Potential future directions in this field are determining the performance of ActNet and
other KST-based architectures on data-driven problems, as well as studying the effect of replacing
MLPs with these architectures inside larger neural networks such as transformers and U-Nets. We
believe further study into KST-based architectures and specifically ActNet have the potential to
advance not only scientific machine learning applications, but deep learning as a whole.
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Mario Köppen. On the training of a kolmogorov network. In José R. Dorronsoro (ed.), Artificial
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Appendix

A MATHEMATICAL NOTATION

Table 4 summarizes the symbols and notation used in this work.

Table 4: Summary of the symbols and notation used in this paper.

Symbol Meaning

x A vector x = (x1, . . . , xd) in Rd

C(Ω) The set of continuous functions from a set Ω to R
g Outer function implied by a superposition theorem (see table 1)
ϕi Inner functions implied by a superposition theorem (see table 1)
Φ(x) Inner function expansion matrix with ij entry equal to ϕi(xj) ∈ R
bi Basis function from R to R
B(x) Basis expansion matrix with ij entry equal to bi(xj) ∈ R
Λ Matrix with ij entry equal to λij ∈ R
S Function that returns row sums of a matrix, or the sum of entries of a vector
⊙ Hadamard (element-wise) product between vectors/matrices
θ Parameters of a neural network model
Id The identity matrix of size d
E Expectation operand

B COMPARISON ON PARAMETERS & FLOPS

From equation (9), each of the k = 1, . . .m outputs of an ActLayer with input dimension d, output
dimension m and N basis functions is defined as

(
ActLayerβ,Λ(x)

)
k
=

d∑
i=1

N∑
j=1

λkiβkjbj(xi).

This sum entails O(dN) operations per output. Since there are m outputs total, the computational
complexity of this ActLayer is O(mdN). This means that this algorithmic complexity is a little
slower than that of the traditional dense layer of an MLP (which is O(dm)), but around the same
order of magnitude for low values of N . In our experiments, we have observed that the basis size
N usually does not need to be large, with N = 4 usually yielding the best results. In particular,
in all experiments where ActNet beats state-of-the-art results, we do so by setting N = 4 basis
function, as can be seen in section 4.2. This setting makes an ActNet around ≈2-3 times slower
than an MLP of the same size. To see this phenomena in practical terms, we direct the reader to table
9, where computational times for the Allen-Cahn PDE are compared for setting N in {4, 8, 16}.

In the case of a KAN layer, the algorithmic complexity is O(mdK(G + K)) Yu et al. (2024),
where G is the grid size hyper-parameter, and K is the spline order (usually taken to be K = 3).
Unlike ActNet, however, typical values of G can range from around 5 to several hundred, with
the original KAN paper (Liu et al., 2024) using experiments with as high as G = 1000, which
makes the architecture impractical for realistic values of widths and depths. Once again, to see this
phenomena in practical terms, we direct the reader to table 9, where we set G = N in {4, 8, 16}.
This comparison showcases another advantage of ActNets over KANs.

A summary of the hyperparameters of ActNet, KAN and MLP, along with their implied parameter
count and flops of a forward pass can be seen in table 5.
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Table 5: Table comparing parameter and algorithmic complexity of ActNet, KAN and MLP. Since
the typical value of N is low, ActNet performs at slower, but comparable speed to MLPs, whereas
KANs become very slow as the value of G increases.

Architecture Hyperparameters Parameter Count FLOPs

ActNet
depth L

hidden dim. m
basis size N

O(Lm(m+N)) O(Lm2N)

KAN

depth L
hidden dim. m

grid size G
spline order K

O(Lm2(G+K)) O(Lm2K(G+K))

MLP depth L
hidden dim. m O(Lm2) O(Lm2)

C THE DERIVATIVE OF AN ACTNET IS ANOTHER ACTNET

From equation (9), we get that the partial derivative of the kth output of an ActLayer with respect to
xl is

∂

∂xl

(
ActLayerβ,Λ(x)

)
k
=

∂

∂xl

 d∑
i=1

λki

N∑
j=1

βkjbj(xi)


= λkl

N∑
j=1

βkj
∂

∂xl
bj(xl)

= λkl

N∑
j=1

βkjb
′
j(xl)

= λklϕ
′
k(xl),

where ϕ′
k(t) =

∑N
j=1 βkjb

′
j(xl) is the derivative of the kth inner function ϕk(t) =

∑N
j=1 βkjbj(xl).

This formula then tells us that the Jacobian JActLayerβ,Λ
(x) of an ActLayer is

JActLayerβ,Λ
(x) = Λ⊙Φ′(x), (14)

where Φ′(x) ∈ Rm×d is the matrix defined by Φ′(x)ij = ϕ′
i(xj). This formulation is precisely

what we compute in the forward pass ActLayerβ,Λ(x) = S(Λ ⊙ Φ(x)), with the caveat that this
Jacobian is now a matrix instead of a single vector.

If the basis functions b1, . . . , bN are picked so that their derivatives do not deteriorate, as is the case
with the sinusoidal basis proposed in section 3.5, then the universality result of theorem 3.3 tells us
that a sufficiently large ActNet will be able to approximate derivatives up to any desired precision
ε > 0. This statement once again makes the case for the potential of ActNet for Physics Informed
Machine Learning, where a network needs to learn to approximate derivatives of a function, instead
of point values.

D ACTNET IMPLEMENTATION DETAILS

Our implementation of ActNet is carried out in Python using JAX (Bradbury et al., 2018) and Flax
(Heek et al., 2023), although the architecture is also easily compatible with other deep learning
frameworks such as PyTorch (Ansel et al., 2024) and TensorFlow Abadi et al. (2015). The code is
available at https://github.com/PredictiveIntelligenceLab/ActNet.

D.1 FREQUENCY PARAMETER ω0

In a manner analogous to what is done in Siren (Sitzmann et al., 2020) and random Fourier features
(Tancik et al., 2020), we have observed that ActNet benefits from having a ω0 > 0 parameter that
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Table 6: Initialization schemes for an ActLayer with input dimension d, output dimension m and
N basis functions. Each entry of a parameter is sampled in an i.i.d. manner.

Trainable
Parameter Dimension Mean

of Entries
Std. Dev.
of Entries Distribution

β Rm×N 0 1√
N

Gaussian/uniform

Λ Rm×d 0 1√
d

Gaussian/uniform

ω RN 0 1 Gaussian

p RN 0 0 constant

bias (optional) Rm 0 0 constant

multiplies the original input to the network. Using such a parameter better allows the architecture
to create solutions that attain to a specific frequency content, using higher values of ω0 for approx-
imating highly oscillatory functions and smaller values for smoother ones. This parameter can be
trainable, but we generally found it best to set it to a fixed value, which may be problem dependent,
much like the case with Siren and Fourier Features.

D.2 TRAINING FREQUENCIES AND PHASES

Additionally, it is possible to allow the frequencies ωi and phases pi of that basis functions bi from
equation (11) to be trainable parameters themselves, making the basis functions at each layer cus-
tomizable to the problem at hand. However, the parameters ωi and pi of the basis functions appear
to be very sensitive during training, and optimization via stochastic gradient-based methods some-
times lead to unstable behavior. This issue, however, can be mitigated by using Adaptive Gradient
Clipping (AGC) proposed in Brock et al. (2021), where each parameter unit has a different clip de-
pending on the magnitude of the parameter vector. We empirically observe that a hyperparameter of
1e− 2 works well for training basis functions of an ActNet.

D.3 INITIALIZATION SCHEME

The parameters of an ActLayer are initialized according to table 6. As will be shown later in the
proof of theorem 3.4, using these initializations and applying the central limit theorem then tells
us that the output of an ActLayer, as defined in (6), will be normally distributed with mean 0 and
variance 1, as long as either N or d are sufficiently large. This same argument can then be applied
inductively on the composed layers of the ActNet to get a statement on the stability of the statistics
of activations throughout the entire network.

The β and Λ parameters can be initialized using either a Gaussian or uniform distribution. Having
said that, for the sake of consistency we use uniform distributions for initializing these parameters
for all experiments in section 4.

D.4 CHOICE OF HYPERPARAMETERS

Results from the ablation studies from section 4 can also be used to gain information over reasonable
hyperparameter choices for the ActNet architecture. A representative plot of the choice of hyper-
parameters for the Allen-Cahn PDE can be seen in figure 5. Overall, our the main “rule-of-thumb”
heuristics we have learned are:

• The basis size N does not need to be large for accurate results. In fact, except for small
parameter counts and shallow depths, we don’t see accuracy gains for increasing the value
of N beyond 4 or so. At the same time, as detailed in appendix B, the computational com-
plexity of the model increases for larger N (even when network size is fixed). Therefore,
we recommend first setting the basis size to around N = 4, and increasing this value only
if needed.

• As is often the case for deep learning, we find that composing more layers and increasing
network width generally improves performance by increasing network capacity. Under
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fixed network size, choosing to increase depth implies a decrease in width, and vice versa.
While choosing the right combination of depth/width is likely problem dependent (as is the
case with MLPs), we recommend setting the number of ActLayers in an ActNet at least
≥ 2. Not only do we empirically observe a large performance boost over using a single
ActLayer, this is also the minimum required depth for the theoretical guarantee of universal
approximation, as described by theorem 3.3.

Figure 5: ActNet performance (relative L2 error) on the Allen-Cahn PDE under different hyperpa-
rameter settings. After selecting network depth L and number of basis functions N , the width m of
networks was computed in order to satisfy the required parameter size. As such, for a given network
size, larger values of deph imply smaller widths, and vice-versa. The values plotted for each hyper-
parameter configuration is the median from 3 runs using different seeds.

E PROOF OF THEOREM 3.3

Proof of theorem 3.3. By KST (theorem 3.1), we know that for any m > (2 +
√
2)(2d − 1), the

function f : Rd → R has a representation of the form

f(x) =

m∑
q=1

g

(
d∑

p=1

λpqϕq(xp)

)
,

where g : R → R and ϕ1, . . . , ϕm : R → R are continuous univariate functions and λpq > 0 are
positive scalars.

Now, let Y :=
{∑d

p=1 λpqϕq(xp)|x ∈ X, q = 1, . . . ,m
}

be the set of possible inputs to g. Since
X is compact and each of the ϕq is continuous, this means that Y must be compact as well.

Now let ε′ := ε/m. Since g is continuous and its inputs are confined to a compact domain Y ,
it must be uniformly continuous. That is, there exists some δ > 0 such that for all y, z ∈ Y , if
|z − y| < δ then |g(z) − g(y)| < ε′/2. Additionally, due to Weierstrass theorem3 we know that
there exists a polynomial polyg : R → R of degree Ng such that for any y ∈ Y we have that
|g(y)− polyg(y)| < ε′/2. Therefore, we get that

|g(z)− poly(y)| = |g(z)− g(y) + g(y)− polyg(y)|
≤ |g(z)− g(y)|+ |g(y)− polyg(y)|
< ε′/2 + ε′/2 = ε′.

3Weierstrass theorem states that polynomials are dense in C(X) for any compact X ⊂ R.
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Which implies that if z1, . . . , zm and y1, . . . , ym are scalars such that |zq − yq| < δ for all q =
1, . . . ,m, then we have

∣∣∣∣∣
m∑
q=1

g(zq)−
m∑
q=1

polyg(yq)

∣∣∣∣∣ ≤
m∑
q=1

|g(zq)− polyg(yq)|

<

m∑
q=1

ε′ = mε′ = ε.

Therefore, if we can approximate the inner functions ϕq(t) using polynomials polyq(t) and make
sure that

∑d
p=1 λpqϕq(xp) is at most δ far from the approximation

∑d
p=1 λpqpolyq(xp) for all q =

1, . . . ,m, we can finish the proof of universality for ActNet.

To prove this final statement, we first set M := max{λpq|p = 1, . . . , d; q = 1, . . . ,m} and then
note that by Weierstrass’ Theorem, for each ϕq there exists a polynomial polyq of degree Nq such
that |ϕq(z)− polyq(z)| < δ

dM for all z ∈ Y . Thus, we have that

∣∣∣∣∣
d∑

p=1

λpqϕq(xp)−
d∑

p=1

λpqpolyq(xp)

∣∣∣∣∣ ≤
d∑

p=1

λpq |ϕq(xp)− polyq(xp)|

<

d∑
p=1

λpq
δ

dM

≤
d∑

p=1

δ

d

= δ,

which completes the proof.

F PROOF OF STATISTICAL STABILITY OF ACTIVATIONS THROUGH LAYERS

Before proving theorem 3.4, we prove the following lemma, where we compute the formulas stated
in equations (12-13)

Lemma F.1. Let ω, p ∈ R be fixed real numbers and X ∼ N(0, 1) be a random variable distributed
as a standard normal. Then the random variable Y = sin(ωX + p) has mean and variance as
follows:

E[Y ] = e
−ω2

2 sin(p), (15)

V ar[Y ] =
1

2
− 1

2
e−2ω2

cos(2p)− e−ω2

sin(p)2. (16)

Proof. First, we note that for any a > 0 and b ∈ C we have that

∫ ∞

−∞
e−ax2+bx =

π

a
e

b2

4a . (17)
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Now, using this fact and the complex representation sin(θ) = eiθ−e−iθ

2i we have that

E[Y ] =

∫ ∞

−∞
sin(ωx+ p)

(
1√
2π

e
−x2

2

)
dx

=
1√
2π

∫ ∞

−∞

ei(ωx+p) − e−i(ωx+p)

2i
e

−x2

2 dx

=
1

2i
√
2π

∫ ∞

−∞

(
ei(ωx+p)− x2

2 − e−i(ωx+p)− x2

2

)
dx

=
1

2i
√
2π

(∫ ∞

−∞
e−

1
2x

2+iωx+ipdx−
∫ ∞

−∞
e−

1
2x

2−iωx−ipdx

)
=

1

2i
√
2π

(
eip
∫ ∞

−∞
e−

1
2x

2+iωxdx− e−ip

∫ ∞

−∞
e−

1
2x

2−iωxdx

)
=

1

2i
√
2π

(
eipe

−w2

2

√
2π − e−ipe−

w2

2

√
2π
)

=
1

2i

(
eipe

−w2

2 − e−ipe−
w2

2

)
= e−

w2

2
eip − e−ip

2i

= e−
w2

2 sin(p),

which proves the claim for the expectation of Y . As for the variance, we first compute

E[Y 2] =

∫ ∞

−∞
sin(ωx+ p)2

(
1√
2π

e
−x2

2

)
dx

=
1√
2π

∫ ∞

∞

e2i(ωx+p) + e−2i(ωx+p) − 2

−4
e

−x2

2 dx

= − 1

4
√
2π

∫ ∞

−∞

(
e2i(ωx+p)e

−x2

2 + e−2i(ωx+p)e
−x2

2 − 2e
−x2

2

)
dx

= − 1

4
√
2π

(∫ ∞

−∞
e2i(ωx+p)e

−x2

2 dx+

∫ ∞

−∞
e−2i(ωx+p)e

−x2

2 dx−
∫ ∞

−∞
2e

−x2

2 dx

)
= − 1

4
√
2π

(∫ ∞

−∞
e−

1
2x

2+2iωx+2ipdx+

∫ ∞

−∞
e−

1
2x

2−2iωx−2ipdx− 2
√
2π

)
= − 1

4
√
2π

(
e2ip

∫ ∞

−∞
e−

1
2x

2+2iωxdx+ e−2ip

∫ ∞

−∞
e−

1
2x

2−2iωxdx

)
+

1

2

= − 1

4
√
2π

(
e2ipe

−4ω2

2

√
2π + e−2ipe

−4ω2

2

√
2π
)
+

1

2

= −e−2ω2

(
e2ip + e−2ip

4

)
+

1

2

= −e−2ω2 cos(2p)

2
+

1

2

=
1

2
− 1

2
e−2ω2

cos(2p),

which means that

V ar[Y ] = E[Y 2]− E[Y ]2

=
1

2
− 1

2
e−2ω2

cos(2p)− e−w2

sin(p)2,

thus completing the proof.
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We are now ready to prove the main result of this section.

Proof of theorem 3.4. The kth output of an ActLayer is computed as(
ActLayerβ,Λ(x)

)
k
=

d∑
i=1

N∑
j=1

λkiβkjbj(xi).

Therefore, by linearity of expectation and then lemma F.1 we have

Ex∼N(0,I)

[(
ActLayerβ,Λ(x)

)
k

]
=

d∑
i=1

N∑
j=1

λkiβkjEx∼N(0,I) [bj(xi)]

=

d∑
i=1

N∑
j=1

λkiβkj .

Since Λ and β are independent and all entries have mean 0, this means that the kth output has mean
0. As for the variance σ2

k, we now compute

σ2
k = E

[(
ActLayerβ,Λ(x)

)2
k

]
(18)

= E


 d∑

i=1

N∑
j=1

λkiβkjbj(xi)

2
 (19)

= E

 d∑
i=1

N∑
j=1

d∑
a=1

N∑
b=1

λkiβkjbj(xi)λkaβkbbb(xa)

 (20)

=

d∑
i=1

N∑
j=1

d∑
a=1

N∑
b=1

E [λkiβkjbj(xi)λkaβkbbb(xa)] (21)

=

d∑
i=1

N∑
j=1

E
[
λ2
kiβ

2
kjbj(xi)

2
]

(22)

=

d∑
i=1

N∑
j=1

E
[
λ2
ki

]
· E
[
β2
kj

]
· Ex∼N(0,I)

[
bj(xi)

2
]

(23)

=

d∑
i=1

N∑
j=1

1

d
· 1

N
· 1 (24)

= 1. (25)
In the deduction above, to go from line (21) to line (22) we use the fact that the expectation of
products of independent variables is the product of expectations, then recall that E [bj(xi)] = 0,
which allows us to cancel the terms where i ̸= a and j ̸= b.

This proves the first part of the theorem (outputs have mean 0 and variance 1 at initialization). Now
to prove the second part (outputs are distributed normally as either N or d go to infinity), we note
that from the deduction above, for any fixed i = 1, . . . , d, the random variable Xd

i ∈ R defined by

Xd
i :=

N∑
j=1

λkiβkjbj(xi),

has mean 0 and variance 1
d .

Therefore, by the central limit theorem, we have that(
ActLayerβ,Λ(x)

)
k
=

d∑
i=1

Xd
i ,

will be distributed as a standard normal N(0, 1) as d → ∞. An analogous argument can be made,
swapping the role of d and N , which finishes the proof for the theorem.
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G EXPERIMENTAL DETAILS

We dedicate the remaining of the appendix for detailing the experimental setup used to produce the
results indicated in section 4. As a general rule, we used large batch sizes whenever possible, as
this has been shown to improve training in PINNs Sankaran et al. (2022), and enforced boundary
conditions exactly when possible, following the strategy in Sukumar & Srivastava (2022).

We would also like to highlight that while we focus our experiments on the data-free paradigm of
Physics Informed Neural Networks, other methods exist for learning solutions of PDEs from data
(Gin et al., 2021; Lusch et al., 2018). Notably, methods in the field of operator learning such as (Li
et al., 2021a; Lu et al., 2021; Kissas et al., 2022; Li et al., 2020; Wang et al., 2022a; Guilhoto &
Perdikaris, 2024) allow for predicting entire families of PDEs using a single model, and may even
be trained with the aid of a physics informed loss (Li et al., 2021b; Wang et al., 2021). While we
used PINNs as a first testbed for ActNet, we believe the architecture has potential application to
data-driven methods as well, and leave further exploration as future research.

G.1 KAN IMPLEMENTATION DETAILS

All experiments were conducted in Python using JAX (Bradbury et al., 2018). Since the original
implementation of KANs is not GPU-enabled and therefore very slow, we instead reference the
“Efficient KAN” code found in https://github.com/Blealtan/efficient-kan.git.
Since Efficient KANs were implemented originally in PyTorch (Ansel et al., 2024), we translated
the code to Flax (Heek et al., 2023). This implementation can be found at https://github.
com/PredictiveIntelligenceLab/ActNet.

G.2 HYPERPARAMETER ABLATION FOR POISSON, HELMHOLTZ AND ALLEN-CAHN PDES

For every architecture, we disregard the parameters used in the first and last layers, as the input di-
mension of 2 and output dimension of 1 make them negligible compared to the number of parameters
used in the intermediate layers. For all architectures and problems, we consider {1, 2, 4, 6} inter-
mediate layers (not considering first and last layers), as well as three different architecture-specific
hyperparameters, as detailed below. All model widths were then inferred to satisfy the model
size at hand. This results in each architecture having 12 possible hyperparameter configurations for
each parameter size (4 for depth, times 3 for architecture-specific hyperparameter).

Poisson & Helmholtz: For ActNet, we use {8, 16, 32} values of N and for KAN grid resolutions
of {3, 10, 30}. For Siren we consider ω0 in {πw

3 , πw, 3πw}. For MLP we consider activations
in {tanh,sigmoid,GELU}, where GELU is the Gaussian Error Linear Unit from (Hendrycks &
Gimpel, 2020).

Allen-Cahn: For ActNet, we use {4, 8, 16} values of N and for KAN grid resolutions of
{4, 8, 16}. For Siren we consider ω0 in {10, 30, 90}. For MLP we consider activations in
{tanh,sigmoid,GELU}, where GELU is the Gaussian Error Linear Unit from (Hendrycks & Gim-
pel, 2020).

G.3 POISSON

We consider the 2D Poisson PDE with zero Dirichlet boundary condition, defined by

∆u(x, y) = f(x, y), (x, y) ∈ [−1, 1]2,

u(x, y) = 0, (x, y) ∈ δ[−1, 1]2.

We use forcing terms of the form f(x, y) = 2π2w2 sin(πwx) sin(πwy) for values of w in
{1, 2, 4, 8, 16}. Each of these PDEs has exact solution u(x, y) = sin(πwx) sin(πwy), which are
shown in Figure 6.

Each model was trained using Adam (Kingma & Ba, 2017) for 30,000 iterations, then fine tuned
using LBFGS Liu & Nocedal (1989) for 100 iterations. We use a batch size of 5,000 points uni-
formly sampled at random on [0, 1]2 at each step. For training using Adam, we use learning rate
warmup from 10−7 to 5 × 10−3 over 1,000 iterations, then exponential decay with rate 0.75 every
1,000 steps, and adaptive gradient clipping with parameter 0.01 as described in Brock et al. (2021).
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Furthermore, to avoid unfairness from different scaling between the residual loss and the boundary
loss, we enforce the boundary conditions exactly for all problems by multiplying the output of the
neural network by the factor (1− x2)(1− y2), in a strategy similar to what is outlined in Sukumar
& Srivastava (2022).

The final relative L2 errors can be seen in figure 8, while the final residual losses can be seen in
figure 9. An example solution is plotted in figure 7 and sample computational times are reported in
table 7.

Figure 6: Visualization of the different target functions for the Poisson and Helmholtz PDEs. As
the frequency w increases, the magnitude of gradients become larger and the laplacian ∆u(x, y) =
2π2w2 sin(wx) sin(wy) = 2π2w2u(x, y) scales as ∝ w2, thus creating a challenging problem for
PINNs.

Figure 7: Example predictions for the Poisson equation using w = 32. The relative L2 errors for the
ActNet, and Siren solutions above are 6.42e-02, 1.91e-1, respectively. Predictions for KANs are not
plotted here, as they did not converge for this example.

G.4 HELMHOLTZ

The inhomogeneous Helmholtz PDE with zero Dirichlet boundary condition is defined by

∆u(x, y) + κ2u(x, y) = f(x, y, ) (x, y) ∈ [−1, 1]2,

u(x, y) = 0, (x, y) ∈ δ[−1, 1]2.

If we set κ = 1 and the forcing term to be f(x, y) = (κ − 2π2w2) sin(πωx) sin(πωy), then this
PDE has exact solution u(x, y) = sin(wx) sin(wy), which is pictured in figure 6.
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Figure 8: Results for the 2D Poisson problem using PINNs. For each hyperparameter configuration,
3 different seeds were used for initialization, and the median result was used. For each square,
the best hyperparameter configuration (according to the median) is reported. The best performing
method for each frequency w and each number of parameters is underlined.

Figure 9: Final residual loss for the Poisson problem using PINNs. For each hyperparameter con-
figuration, 3 different seeds were used for initialization, and the median result was used. For each
square, the best hyperparameter configuration (according to the median) is reported. The best per-
forming method for each number of parameters is underlined.

Each model was trained using Adam (Kingma & Ba, 2017) for 30,000 iterations, then fine tuned
using LBFGS Liu & Nocedal (1989) for 100 iterations. We use a batch size of 5,000 points uni-
formly sampled at random on [0, 1]2 at each step. For training using Adam, we use learning rate
warmup from 10−7 to 5 × 10−3 over 1,000 iterations, then exponential decay with rate 0.75 every

Table 7: Average computational time per Adam training iteration for the Poisson problem on a
Nvidia RTX A6000 GPU. All times are reported in milliseconds. Each cell averages across three
seeds and four different widths and depths hyperparameters as reported on G.2.

Model
Size

ActNet
(N = 8)

ActNet
(N = 16)

ActNet
(N = 32)

KAN
(G = 3)

KAN
(G = 10)

KAN
(G = 30) Siren

10k 5.10 7.17 9.59 6.87 10.7 13.0 1.32

20k 7.37 10.8 15.3 10.3 16.3 18.5 1.66

40k 10.7 16.7 26.2 17.1 25.1 25.6 2.49

80k 16.2 26.5 43.4 23.6 40.0 37.4 3.60
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Figure 10: Results for the 2D Helmholtz problem using PINNs. For each hyperparameter configura-
tion, 3 different seeds were used for initialization, and the median result was used. For each square,
the best hyperparameter configuration (according to the median) is reported. The best performing
method for each frequency w and each number of parameters is underlined.

Table 8: Average computational time per Adam training iteration for the Helmholtz problem on a
Nvidia RTX A6000 GPU. All times are reported in milliseconds. Each cell averages across three
seeds and four different widths and depths hyperparameters as reported on G.2.

Model
Size

ActNet
(N = 8)

ActNet
(N = 16)

ActNet
(N = 32)

KAN
(G = 3)

KAN
(G = 10)

KAN
(G = 30) Siren

10k 5.03 7.12 9.53 6.84 10.7 13.0 1.31

20k 7.33 10.8 15.2 10.2 16.2 18.5 1.67

40k 10.6 16.6 26.0 17.1 25.0 25.7 2.50

80k 16.2 26.3 43.1 23.6 40.0 37.4 3.57

1,000 steps, and adaptive gradient clipping with parameter 0.01 as described in Brock et al. (2021).
Furthermore, to avoid unfairness from different scaling between the residual loss and the boundary
loss, we enforce the boundary conditions exactly for all problems by multiplying the output of the
neural network by the factor (1− x2)(1− y2), in a strategy similar to what is outlined in Sukumar
& Srivastava (2022).

The final relative L2 errors can be seen in figure 10, while the final residual losses can be seen in
figure 11. An example solution is plotted in figure 2 and sample computational times are reported in
table 8.

G.5 ALLEN-CAHN

We consider the Allen-Cahn equation with Dirichlet boundary and initial condition u(x, 0) =
x2 cos(πx), defined as

∂u

∂t
(x, t)−D

∂2u

∂x2
(x, t) + 5(u3(x, t)− u(x, t)), (x, t) ∈ [−1, 1]× [0, 1],

u(x, 0) = x2 cos(πx), x ∈ [−1, 1],

u(−1, t) = u(1, t) = −1, t ∈ [0, 1].

Each model was trained using Adam (Kingma & Ba, 2017) for 100,000 iterations and batch size
of 10,000 points uniformly sampled at random each step on [−1, 1] × [0, 1]. We use learning rate
warmup from 10−7 to 5 × 10−3 over 1,000 iterations, then exponential decay with rate 0.9 every
1,000 steps, stopping the decay once the learning rate hits 5× 10−6. We also use adaptive gradient
clipping with parameter 0.01 as described in Brock et al. (2021). Furthermore, to avoid unfairness
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Figure 11: Final residual loss for the Helmholtz problem using PINNs. For each hyperparameter
configuration, 3 different seeds were used for initialization, and the median result was used. For
each square, the best hyperparameter configuration (according to the median) is reported. The best
performing method for each number of parameters is underlined.

Table 9: Average computational time per Adam training iteration for the Allen-Cahn problem on
a Nvidia RTX A6000 GPU. All times are reported in milliseconds. Each cell averages across three
seeds and four different widths and depths hyperparameters as reported on G.2.

Model
Size

ActNet
(N = 4)

ActNet
(N = 8)

ActNet
(N = 16)

KAN
(G = 4)

KAN
(G = 8)

KAN
(G = 16) Siren

25k 4.16 6.29 10.8 9.01 24.5 56.5 2.04

50k 5.94 10.2 18.2 12.3 35.5 84.1 2.76

100k 9.65 16.9 30.1 17.1 48.8 122.9 4.30

from different scaling between the residual loss and the boundary loss, we enforce the initial and
boundary conditions exactly by setting the output of the model to (1 − t)(x2 cos(πx)) + t[(1 −
x2)uθ(x, t) − 1], where uθ is the output of the neural network, in a strategy similar to what is
outlined in Sukumar & Srivastava (2022).

Finally, we also employ the causal learning strategy from Wang et al. (2024b), updating the causal
parameter every 10,000 steps according to the schedule [10−1, 100, 101, 102, 103, 103, 103, 104,
104, 104].

The final relative L2 errors can be seen in figure 13, while the final residual losses can be seen in
figure 14. An example solution is plotted in figure 12 and sample computational times are reported
in table 9.

Figure 12: ActNet predictions for the Allen-Cahn equation. The relative L2 error is 4.51e-05.
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Figure 13: Results for the Allen-Cahn problem using PINNs. For each hyperparameter configura-
tion, 3 different seeds were used for initialization, and the median result was used. For each square,
the best hyperparameter configuration (according to the median) is reported. The best performing
method for each number of parameters is underlined.

Figure 14: Final residual loss for the Allen-Cahn problem using PINNs. For each hyperparameter
configuration, 3 different seeds were used for initialization, and the median result was used. For
each square, the best hyperparameter configuration (according to the median) is reported. The best
performing method for each number of parameters is underlined.
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G.6 ADVECTION

The 1D advection equation is defined by

∂u

∂t
+ c

∂u

∂x
= 0, t ∈ [0, 1], x ∈ (0, 2π),

u(0, x) = g(x), x ∈ (0, 2π),

with initial condition g(x) = sin(x) and transport velocity constant c = 80.

For our implementation, we use the JaxPi library from Wang et al. (2023; 2024a). We copy over the
configuration of their sota.py config file, along with their learnable periodic embedding, changing
the architecture to an ActNet with 5 layers, embedding dimension of 256 and ω0 value of 5. We train
using Adam for 300,00 iterations with adaptive gradient clipping (Brock et al., 2021) with parameter
0.01. We use a starting learning rate of 10−3 and exponential rate decay of 0.9 every 5,000 steps.
Each step took on average 40.0ms on a Nvidia RTX A6000 GPU.

For the PirateNet implementation, we used the code from the public GitHub repository https:
//github.com/PredictiveIntelligenceLab/jaxpi/tree/pirate and once again
adapted the sota.py config file from (Wang et al., 2023), as was done with ActNet. For a com-
parable network size to the ActNet and modified MLP considered in (Wang et al., 2023), we set the
network with two blocks of 3 layers each, totaling 6 layers, all with width 200. Each step took on
average 11.9ms on a Nvidia RTX A6000 GPU.

G.7 KURAMOTO–SIVASHINSKY

The Kuramoto–Sivashinsky equation we considered is defined by

∂u

∂t
+ αu

∂u

∂x
+ β

∂2u

∂x2
+ γ

∂4u

∂x4
= 0 t ∈ [0, 1], x ∈ [0, 2π]

u(0, x) = u0(x) x ∈ [0, 2π]

with periodic boundary conditions and constants α = 100/16, β = 100/162 and γ = 100/164,
along with initial condition u0(x) = cos(x)(1 + sin(x)).

For our implementation, we use the JaxPi library from Wang et al. (2023; 2024a). We copy over the
configuration of their sota.py config file, changing the architecture to an ActNet with 5 layers,
embedding dimension of 256 and ω0 value of 5. We train using Adam (this time without adaptive
gradient clipping) using a starting learning rate of 10−3 and exponential rate decay of 0.8 every
3,500 steps.

We split the time domain [0, 1] into 10 windows of equal length. Since the precision of the solution
matters most in the initial time steps (most of the error from the latter windows is due to propagated
error in the initial conditions), we train the first window for 250k steps, the second and third for
200k steps, and all other for 150k steps. This results in 15% less steps than what was done in JaxPi,
where each window is trained for 200k steps. Each step took on average 66.7ms on a Nvidia RTX
A6000 GPU.

For the PirateNet implementation, we used the code from the public GitHub repository https:
//github.com/PredictiveIntelligenceLab/jaxpi/tree/pirate and once again
adapted the sota.py config file from (Wang et al., 2023), as was done with ActNet. For a com-
parable network size to the ActNet and modified MLP considered in (Wang et al., 2023), we set the
network with two blocks of 3 layers each, totaling 6 layers, all with width 200. Each step took on
average 22.2ms on a Nvidia RTX A6000 GPU.
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