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ABSTRACT

This paper proposes a representational model for image pair such as consecutive
video frames that are related by local pixel displacements, in the hope that the model
may shed light on motion perception in primary visual cortex (V1). The model
couples the following two components. (1) The vector representations of local
contents of images. (2) The matrix representations of local pixel displacements
caused by the relative motions between the agent and the objects in the 3D scene.
When the image frame undergoes changes due to local pixel displacements, the
vectors are multiplied by the matrices that represent the local displacements. Our
experiments show that our model can learn to infer local motions. Moreover, the
model can learn Gabor-like filter pairs of quadrature phases.

1 INTRODUCTION

Our understanding of the primary visual cortex or V1 (Hubel & Wiesel, 1959) is still very limited
(Olshausen & Field, 2005). In particular, the mathematical and representational models for V1 are
still in short supply. Two prominent examples of such models are sparse coding (Olshausen & Field,
1997) and independent component analysis (ICA) (Bell & Sejnowski, 1997). Although such models
do not provide detailed explanations of V1 at the level of neuronal dynamics, they help us understand
the computational problems being solved by V1.

Figure 1: Scheme of
representation

In this article, we propose a model of this sort. It is a representational model
of natural image pair that are related by local pixel displacements. The image
pair can be consecutive frames of a video sequence, where the local pixel
displacements are caused by the relative motions between the agent and the
objects in the 3D environment. Perceiving such local motions can be crucial
for inferring ego-motion, object motions, and 3D depth information.

As is the case with existing models, we expect our model to explain only
limited aspects of V1, some of which are: (1) The receptive fields of V1
simple cells resemble Gabor filters (Daugman, 1985). (2) Adjacent simple
cells have quadrature phase relationship (Pollen & Ronner, 1981). (3) The
V1 cells are capable of perceiving local motions. While existing models
can all explain (1), our model can also account for (2) and (3) naturally.
Compared to models such as sparse coding and ICA, our model serves a
more direct purpose of perceiving local motions.

Our model consists of the following two components. See Figure 1 for an illustration. The next
section explains the notation.

(1) Vector representation of local image content. The local content around each pixel is represented
by a high dimensional vector. Each unit in the vector is obtained by a linear filter. These local filters
or wavelets are assumed to form a tight frame, i.e., the image can be reconstructed from the vectors
using the linear filters as the basis functions.

(2) Matrix representation of local displacement. The change of the image from the current time frame
to the next time frame is caused by the displacements of the pixels. Each possible displacement is
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represented by a matrix that acts on the vector. When the image changes according to the displace-
ments, the vector at each pixel is multiplied by the matrix that represents the local displacement, in
other words, the vector at each pixel is rotated by the matrix representation of the displacement of
this pixel.

We train this representational model on image pairs where in each pair, the second image is a
deformed version of the first image, and the deformation is known. We learn the encoding matrices
for vector representation and the matrices that represent the pixel displacements from the training
data. Our experiments show that our method can learn V1-like units that can be well approximated
by Gabor filters with quadrature phase relationship. After learning the encoding matrices for vector
representation and the matrix representations of the displacements, we can infer the displacement
field using the learned model.

In terms of biological interpretation, the vectors can be interpreted as activities of groups of neurons,
and the matrices can be interpreted as synaptic connections. See subsections 4.3 and 4.4 for details.

2 CONTRIBUTIONS AND RELATED WORK

This paper proposes a simple representational model that couples the vector representations of local
image contents and matrix representations of local pixel displacements. The model is new and
different from existing models for V1. It explains some aspects of V1 simple cells such as Gabor-
like receptive fields and quadrature phase relationship. It adds to our understanding of V1 motion
perception in terms of a representational and relational model.

The following are two themes of related work.

(1) V1 models. Most well known models for V1 are concerned with statistical properties of natural
images or video sequences. Examples include sparse coding model (Olshausen & Field, 1997;
Lewicki & Olshausen, 1999; Olshausen, 2003), independent component analysis (ICA) (Hyvärinen
et al., 2004; Bell & Sejnowski, 1997; van Hateren & Ruderman, 1998), slowness criterion (Hyvärinen
et al., 2003; Wiskott & Sejnowski, 2002), and prediction (Singer et al., 2018). While these models
are very compelling, they do not serve a direct purpose of perceptual inference. Our model is learned
for the direct purpose of perceiving local motions caused by relative motion between the agent and
the surrounding 3D environment.

We want to emphasize that our model is complementary to the existing models for V1. Similar to
existing models, our work assumes a linear generative model for image frames, but our model adds
a relational component with matrix representation that relates the consecutive image frames. Our
model is also complementary to slowness criterion in that when the vectors are rotated by matrices,
the norms of the vectors may remain constant.

(2) Matrix representation. In representation learning, it is a common practice to encode the signals
or states as vectors. However, it is a much less explored theme to represent the motions, actions or
relations by matrices that act on the vectors. An early work in this theme is Paccanaro & Hinton
(2001), which learns matrices to represent relations. More recently, Jayaraman & Grauman (2015)
learns matrix representation for ego-motion. Gao et al. (2018) learns vector representation for self-
position and matrix representation for self-motion in a representational model for grid cells. Our
work constitutes a new development along this theme.

The matrix representation of local displacements in our work is partially inspired by the group
representation theory, where the group elements are represented by matrices acting on the vectors
(Fulton & Harris, 2013). In our work, local displacements belong to 2D Euclidean group. The
representation theory underlies much of modern mathematics and holds the key to the quantum
theory (Zee, 2016). Perhaps it also underlies the visual and mortar cortex, where the neuron activities
encode vectors, and the synaptic connections encode the matrices that rotate them, with the matrices
representing motions, actions, and relations.

3 REPRESENTATIONAL MODEL

Figure 1 illustrates the scheme of representation.
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3.1 VECTOR REPRESENTATION

Let (I(x), x ∈ D) be an image observed at a certain instant, where x = (x1, x2) ∈ D is the
2D coordinates of pixel. D is the image domain (e.g., 128 × 128). We represent the image I by
vectors (v(x), x ∈ D−), where each v(x) is a vector defined at pixel x, and D− may consist of a
sub-sampled set of pixels in D (e.g., sub-sampled every 8 pixels). V = (v(x), x ∈ D−) forms a
vector representation of the whole image.

We assume the vector encoding is linear and convolutional. Specifically, let I[x] be a squared patch
(e.g., 16× 16) of I centered at x. We can make I[x] into a vector (e.g., 256 dimensional). Let

v(x) = W I[x], x ∈ D−, (1)

be the linear encoder, where W is the encoding matrix that encodes I[x] into a vector v(x), and W is
the same for all x, i.e., convolutional. The rows of W are the linear filters and can be displayed as
local image patches of the same size as the image patch I[x]. We can write V = WI, if we treat I as
a vector, and the rows of W are the shifted or translated versions of W .

3.2 TIGHT FRAME AND ISOMETRY

We assume that W is an auto-encoding tight frame, i.e., I = W>V , i.e.,

I =
∑
x∈D−

W>v(x). (2)

Thus, each row of W serves as a linear filter for bottom-up encoding, as well as a basis function
for top-down decoding. Both the encoder and decoder can be implemented by convolutional linear
neural networks.

The tight frame assumption can be justified by the fact that for two images I and J, we have
〈WI,WJ〉 = I>W>WJ = 〈I,J〉, that is, the vector representation preserves the inner product,
i.e., the representation has the isometry property. As a result, ‖WI‖ = ‖I‖, ‖WJ‖ = ‖J‖, thus the
vector representation also preserves the angle.

When the image I changes from It to It+1, its vector representation V changes from Vt to Vt+1, and
the angle between It and It+1 is the same as the angle between Vt and Vt+1.

3.3 SUB-VECTORS

The vector v(x) can be high-dimensional. We further divide v(x) into K sub-vectors, v(x) =
(v(k)(x), k = 1, ...,K). Each sub-vector is obtained by an encoding sub-matrix W (k), i.e., v(k)(x) =
W (k)I[x], k = 1, ...,K, where W (k) consists of the rows of W that correspond to v(k). According
to the tight frame assumption, we have I =

∑
x∈D−

∑K
k=1W

(k)>v(k)(x).

3.4 MATRIX REPRESENTATION

Let It be the image at time frame t. Suppose the pixels of It undergo local displacements, where the
displacement at pixel x is δ(x). We assume that δ(x) is within a squared range ∆ (e.g., [−6, 6] ×
[−6, 6] pixels) that is inside the range of It[x] (e.g., 16× 16 pixels). Let It+1 be the resulting image.
Let vt(x) be the vector representation of It[x], and let vt+1(x) be the vector representation of It+1[x].
Then vt(x) = (v

(k)
t (x), k = 1, ...,K), and vt+1(x) = (v

(k)
t+1(x), k = 1, ...,K).

The transition from It to It+1 is illustrated by the following diagram:

v
(k)
t (x)

M(k)(δ(x))×
−−−−−→ v

(k)
t+1(x)

W (k) ↑ ↑ ↑W (k)

It
δ(x)

−−−−−→ It+1

(3)

Specifically, we assume that

v
(k)
t+1(x) = M (k)(δ(x))v

(k)
t (x), ∀x ∈ D−, k = 1, ...,K. (4)
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That is, when I changes from It to It+1, v(k)(x) undergoes a linear transformation, driven by
a matrix M (k)(δ(x)), which depends on the local displacement δ(x). In terms of the whole
vector v(x) = (v(k)(x), k = 1, ...,K), we have vt+1(x) = M(δ(x))vt(x), where M(δ(x)) =
diag(M (k)(δ(x)), k = 1, ...,K) is the matrix representation of the local displacement δ(x).

3.5 DISENTANGLED ROTATIONS

The linear transformations of the sub-vectors v(k)(x) can be considered as rotations. Here we use
the word “rotation” in the loose sense without strictly enforcing M (k)(δ) to be orthogonal. v(x) is
like a multi-arm clock, with each arm v(k)(x) rotated by M (k)(δ(x)). The rotations of v(k)(x) for
different k and x are disentangled. Here disentanglement means that the rotation of a sub-vector does
not depend on other sub-vectors.

The disentanglement between different positions x is the key feature of our model. Recall the change
of image I is caused by the displacement of pixels, yet the rotations of sub-vectors v(k)(x) at different
pixels x are disentangled. This enables the agent to sense the displacement of a pixel only by sensing
the rotations of the sub-vectors at this pixel without having to establish the correspondences between
the pixels of consecutive frames.

3.6 PARAMETRIZATION

We can discretize the displacement δ(x) into a finite set of possible values {δ}, and we learn a separate
M (k)(δ) for each δ. We can also learn a parametric version of M (k)(δ) as the second order Taylor
expansion of a matrix-valued function of δ = (δ1, δ2), M (k)(δ) = I +B

(k)
1 δ1 +B

(k)
2 δ2 +B

(k)
11 δ

2
1 +

B
(k)
22 δ

2
2 + B

(k)
12 δ1δ2, where I is the identity matrix, and B(k) = (B

(k)
1 , B

(k)
2 , B

(k)
11 , B

(k)
22 , B

(k)
12 ) are

matrices of coefficients of the same dimensionality as M (k)(δ).

3.7 LOCAL MIXING

If δ(x) is large, v(k)
t+1(x) may contain information from adjacent image patches of It in addition to

It[x]. We can generalize the motion model in Equation (4) to allow local mixing of encoded vectors.
Let S be a local support centered at 0. We assume that

v
(k)
t+1(x) =

∑
dx∈S

M (k)(δ(x), dx)v
(k)
t (x+ dx) (5)

In the learning algorithm, we discretize dx and learn a separate M (k)(δ, dx) for each dx.

4 LEARNING AND INFERENCE

The input data consist of the triplets (It, (δ(x), x ∈ D−), It+1), where (δ(x)) is the given displace-
ment field. The learned model consists of matrices (W (k),M (k)(δ), k = 1, ...,K, δ ∈ ∆), where ∆
is the range of δ. In the case of parametric M (k), we learn the B matrices in the second order Taylor
expansion in subsection 3.6.

4.1 LOSS FUNCTIONS FOR LEARNING

We use the following loss functions:

(1) Rotation loss

L1,x,k =
∥∥∥W (k)It+1[x]−M (k)(δ(x))W (k)It[x]

∥∥∥2

. (6)

For local mixing generalization,L1,x,k =
∥∥W (k)It+1[x]−

∑
dx∈SM

(k)(δ(x), dx)W (k)It(x+ dx)
∥∥2

.

(2) Reconstruction loss

L2 =

∥∥∥∥∥∥It −
∑
x∈D−

W>W It[x]

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥It+1 −
∑
x∈D−

W>W It+1[x]

∥∥∥∥∥∥
2

. (7)
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In the learning algorithm, we learn the model by a weighted sum of the expectations of∑K
k=1

∑
x∈D− L1,x,k and L2, where the expectations are taken over the training pairs of images and

the corresponding displacement fields.

4.2 INFERENCE OF MOTION

After learning (W (k),M (k)(δ),∀k, ∀δ), for a testing pair (It, It+1), we can infer the pixel displace-
ment field (δ(x), x ∈ D−) by minimizing the rotation loss: δ(x) = arg maxδ∈∆ L1,x(δ), where

L1,x(δ) =

K∑
k=1

∥∥∥W (k)It+1[x]−M (k)(δ)W (k)It[x]
∥∥∥2

= ‖W It+1[x]−M(δ)W It[x]‖2. (8)

This algorithm is efficient because it can be parallelized for all x ∈ D− and for all δ ∈ ∆.

If we learn a parametric model for M (k)(δ), we can infer the displacement field (δ(x),∀x) by
minimizing

∑
x L1,x(δ(x)) using gradient descent with an initialization of (δ(x)) from random

small values. To encourage the smoothness of the displacement field, we can add the penalty term
‖Oδ(x)‖2.

4.3 BIOLOGICAL INTERPRETATIONS OF CELLS AND SYNAPTIC CONNECTIONS

The learned (W (k),M (k)(δ)),∀k, δ) can be interpreted as synaptic connections. For each k, W (k)

corresponds to one set of connection weights. Suppose δ ∈ ∆ is discretized, then for each δ, M (k)(δ)
corresponds to one set of connection weights, and (M (k)(δ), δ ∈ ∆) corresponds to multiple sets of
connection weights. After computing v(k)

t,x = W (k)It[x], M (k)(δ)v
(k)
t,x is computed simultaneously

for every δ ∈ ∆. Then δ(x) is inferred by max pooling according to Equation (8).

v
(k)
t,x can be interpreted as activities of simple cells, and ‖v(k)

t,x ‖2 can be interpreted as activity of a

complex cell. If we enforce norm stability so that ‖v(k)
t,x ‖ ≈ ‖v

(k)
t+1,x‖, then the complex cell response

is invariant to the local motion and is related to the slowness property (Hyvärinen et al., 2003; Wiskott
& Sejnowski, 2002), which is a by-product of our model if M (k)(δ) is a rotation matrix, which is
covariant with the local motion.

4.4 SPATIOTEMPORAL FILTERS AND RECURRENT IMPLEMENTATION

If we enforce norm stability or the orthogonality of M (k)(δ), then minimizing ‖vt+1,x−M(δ)vt,x‖2
over δ ∈ ∆ is equivalent to maximizing 〈vt+1,x,M(δ)vt,x〉, which in turn is equivalent to maximizing
‖vt+1,x + M(δ)vt,x‖2 so that vt+1,x and M(δ)vt,x are aligned. This alignment criterion can be
conveniently generalized to multiple consecutive frames, so that we can estimate the velocity at x by
maximizing the m-step alignment score ‖u‖2, where

u =

m∑
i=0

M(δ)m−ivt+i,x =

m∑
i=0

M(δ)m−iW It+i[x] (9)

consists of responses of spatiotemporal filters, and ‖u‖2 corresponds to the energy of motion δ in
the motion energy model (Adelson & Bergen, 1985) for direction selective cells. Thus our model
is connected with the motion energy model. Moreover, our model enables a recurrent network for
computing u by ui = vt+i,x+M(δ)ui−1 for i = 0, ...,m, with u−1 = 0, and u = um. This recurrent
implementation is much more efficient and biologically plausible than the plain implementation of
spatiotemporal filtering which requires memorizing all the It+i for i = 0, ...,m. See Pachitariu &
Sahani (2017) for a discussion of biological plausibility of recurrent implementation of spatiotemporal
filtering in general.

5 EXPERIMENTS

We learn our model (W (k),M (k)(δ), k = 1, ...,K) from image pairs (It, (δ(x)), It+1). The number
of sub-vectors K = 40, and the number of units in each sub-vector v(k)(x) is 2. We also try other
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dimensionalities of sub-vector, e.g., 4 and 6. See supplementary materials. Each row of the encoding
matrix W (k) is a filter. The size of the filter is 16 × 16, with a sub-sampling rate of 8 pixels in order
to get D−. We learn the model using stochastic gradient descent implemented by Adam (Kingma &
Ba, 2014), with learning rate 0.0008.

5.1 SELF-SUPERVISED LEARNING

The training data consist of (It, (δ(x),∀x ∈ D−), It+1), where (δ(x),∀x ∈ D−) is the field of
displacements. We obtain the training data by collecting static images for (It) and simulate the
displacement field (δ(x)). The simulated displacement field is then used to deform It to obtain It+1.
We refer to this method as self-supervised learning, in the sense that we can generate displacement
fields by ourselves and we have the access to the ground truth displacement fields during training.

We generate data by applying smooth deformation to natural images. Specifically, we retrieve natural
images as It from MIT places365 dataset (Zhou et al., 2016). The images are scaled to 128 × 128.
We sub-sample the pixels of images into a m×m grid (m = 4 in the experiments), and randomly
generate displacements on the grid points, which serve as the control points for deformation. Then
δ(x) for x ∈ D can be obtained by spline interpolation of the displacements on the control points.
We get It+1 by warping It using δ(x) (Jaderberg et al., 2015). Specifically, the pixel value of It+1

is obtained by bilinear interpolation of the 4 nearest pixels around the corresponding pixel of It .
When generating a displacement δ = (δ1, δ2), both δ1 and δ2 are randomly sampled from a range of
[−6,+6]. We generate 20, 000 pairs for training and 3, 000 pairs for testing. We name this dataset
V1Deform.

Self-supervised learning is biologically plausible because the agent can control its self-motion and
has knowledge of depth of nearby objects. The agent can also displace nearby objects. All these
provide information for pixel displacements.

5.2 LEARNED GABOR-LIKE UNITS WITH QUADRATURE PHASE RELATIONSHIP

We learn the system based on the generated data. Figure 2(a) displays the learned units, i.e., rows
of W (k), learned on V1Deform. The units are learned with non-parametric M(δ), i.e., we learn a
separate M(δ) for each displacement. δ(x) is discretized with an interval of 0.5. Similar patterns
can be obtained by using parametric version of M(δ). Please refer to the supplementary B and C
for more results, including animation of filters, filters learned with local mixing motion model (eqn.
(5)) and with different block sizes. V1-like patterns emerge from the learned units. Moreover, within
each sub-vector, the orientations and frequencies of learned units are similar, while the phases are
different.

To further analyze the spatial profile of the learned units, we fit every unit by a two dimensional Gabor
function (Jones & Palmer, 1987): h(x′, y′) = A exp(−(x′/

√
2σx′)

2− (y′/
√

2σy′)) cos(2πfx′+φ),
where (x′, y′) is obtained by translating and rotating the original coordinate system (x0, y0): x′ =
(x − x0) cos θ + (y − y0) sin θ, y′ = −(x − x0) sin θ + (y − y0) cos θ. The fitted Gabor patterns
are shown in Figure 2(b), with the average fitting r2 equal to 0.96 (std = 0.04). The average
spatial-frequency bandwidth is 1.13 octaves, with range of 0.12 to 4.67. Figure(c) shows the
distribution of the spatial-frequency bandwidth, where the majority falls within range of 0.5 to 2.5.
The characteristics are reasonably similar to those of simple-cell receptive fields in the cat (Issa et al.,
2000) (weighted mean 1.32 octaves, range of 0.5 to 2.5) and the macaque monkey (Foster et al.,
1985) (median 1.4 octaves, range of 0.4 to 2.6). To analyze the distribution of the spatial phase φ,
we follow the method in Ringach (2002) to transform the parameter φ into an effective range of 0 to
π/2, and plot the histogram of the transformed φ in Figure 2(c). The strong bimodal with phases
clustering near 0 and π/2 is consistent with those of the macaque monkey (Ringach, 2002).

In the above experiment, we fix the size of the convolutional filters (16 × 16 pixels). A more
reasonable model is to have different sizes of convolutional filters, with small size filters capturing
high frequency content and big size filters capturing low frequency content. For fixed size filters,
they should only account for the image content within a frequency band. To this end, we smooth
every image by two Gaussian smoothing kenels (kernel size 8, σ = 1, 4), and take the difference
between the two smoothed images as the input image of the model. The effect of the two smoothing
kernels is similar to a bandpass filter, so that the input images are constrained within a certain range
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(a) Learned units (b) Fitted Gabor patterns (c) Frequency and phase

Figure 2: Learned results on V1Deform. (a) Learned units. Each block shows two learned units within
the same sub-vector. (b) Fitted Gabor patterns. (c) Distributions of spatial-frequency bandwidth (in
octaves) and spatial phase φ.

of frequencies. The learned filters on V1Deform are shown in 3(a). Again for every unit, we fit it by
a two dimensional Gabor function, resulting in an average fitting r2 = 0.83 (std = 0.12). Following
the analysis of (Ringach, 2002; Rehn & Sommer, 2007), a scatter plot of nx = σxf versus ny = σyf
is constructed in Figure 3(b) based on the fitted parameters, where nx and ny represent the width
and length of the Gabor envelopes measured in periods of the cosine waves. Compared to Sparsenet
(Olshausen & Field, 1996; 1997), the learned units by our model have more similar structure to the
receptive fields of macaque monkey.

We also show profile of the learned units within each sub-vector in Figure 3(c). Within each sub-
vector, the frequency f and orientation θ of the paired units tends to be the same. More importantly,
most of the paired units differ in phase φ by approximately π/2, consistent with the quadratic phase
relationship between adjacent simple cells (Pollen & Ronner, 1981; Emerson & Huang, 1997).

(a) Learned units

(b) Gabor envelope shapes of the learned units

(c) Profile of paired units within each sub-vector

Figure 3: Learned results on band-pass image pairs from V1Deform. (a) Learned units. Each block
shows two learned units within the same sub-vector. (b) Distribution of the Gabor envelope shapes in
the width and length plane. (c) Difference of frequency f , orientation θ and phase φ of paired units
within each sub-vector.

5.3 INFERENCE OF DISPLACEMENT FIELD

We then test the learned representations in terms of inferring the displacement field (δ(x)) between
pairs of frames (It, It+1). To get valid image patches for the inference, we leave out those displace-
ments at image border (8 pixels at each side). Figure 4 displays several examples of the inferred
displacement field, learned with non-parametric M(δ), using the local mixing motion model (eqn.
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(5)), where the local support S is in a range of [−4,+4], and dx is taken with a sub-sampling
rate of 2. We also show the inferred results from pre-trained FlowNet 2.0 (Ilg et al., 2017) model
as a comparison. In Table 1, we report the average endpoint error (EPE) of the inferred results,
which is the standard error measure for optical flow estimation. The performance is improved by
introducing local mixing. We also compare with some baseline methods, such as the FlowNet and its
variants (Dosovitskiy et al., 2015; Ilg et al., 2017), by obtaining the pre-trained models and testing on
V1Deform testing data. We also try to train the baseline models on our V1Deform dataset, which
gives worse performance compared to the pre-trained models, probably due to the small amount of
data. Note that those methods train deep and complicated neural networks with large scale datasets to
predict optical flows in supervised manners, while our model can be treated as a simple one-layer
network, accompanied by weight matrices representing motions.

It It+1 Gt FN2 Ours It It+1 Gt FN2 Ours

Figure 4: Examples of inference of displacement field on V1Deform. For each block, from left to
right are It, It+1, ground truth displacement field and inferred displacement field by pre-trained
FlowNet 2.0 model and our learned model respectively. The displacement fields are color coded. See
supplementary for the color code (Liu et al., 2010).

Table 1: Average endpoint error of the inferred displacement fields learned on V1Deform. (FN stands
for FlowNet)

FNC FNS FNSD FNCS FN2 Ours (no mixing) Ours (mixing)

EPE 1.324 1.316 0.799 0.713 0.686 0.884 0.444

We did not use existing optical flow datasets (Dosovitskiy et al., 2015; Butler et al., 2012; Geiger et al.,
2012; Mayer et al., 2016) because those datasets, which are also simulated and synthetic, contain
motions that tend to be too large for our model which focuses on local motions. The focus of this
paper is on a simple representational model that is relevant to V1, instead of optical flow estimation.

5.4 UNSUPERVISED LEARNING

Assume there is a dataset of frame sequences, where the ground truth displacement fields are
unknown. We can learn the model by the following steps: (1) first we take the frames as static
images and use the self-supervised learning to initialize the model; (2) then we infer the displacement
fields between adjacent pair of frames as the initialization; (3) using adjacent pair of frames as
training data, we alternatively update the model parameters and re-infer displacement fields. In this
task, we use the parametric M and infer the displacement field by gradient descent on a weighted
sum of

∑
x L1,x(δ(x)) and ‖Oδ(x)‖2. At each iteration, we start the inference from the inferred

displacement field from the last iteration.

We test the unsupervised learning on 200 video sequences sampled from MUG Facial Expression
dataset (Aifanti et al., 2010). Since the image size reduces to 64, we use kernel size 8 with a
sub-sampling rate of 4 pixels. In the self-supervised learning, we set the range of displacement to
[−3,+3]. Displacements at image border are leaved out. Figure 5 shows some examples of inferred
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displacement fields by the unsupervised learning. The inference results are reasonable, which capture
the motions around eyes, eyebrows, chin or mouth. See supplementary C and F for the learned filters
and more inferred examples.

Figure 5: Examples of inferred displacement fields by unsupervised learning. The top row shows the
observed image sequences, while the bottom row shows the inferred color coded displacement field
(Liu et al., 2010).

5.5 MULTI-STEP FRAME ANIMATION

Given the starting frame I0(x) and a sequence of displacement fields {δ1(x), ..., δT (x),∀x}, we can
animate the subsequent multiple frames {I1(x), ..., IT (x)} using the learned model. We use the
model with local mixing with the same setting as in section 5.3. We introduce a re-encoding process
when performing multi-step animation. At time t, after we get the next animated frame It+1, we take
it as the observed frame at time t+ 1, and re-encode it to obtain the latent vector vt+1 at time t+ 1.

Figure 6 displays several examples of 6-step animations, learned with non-parametric version of M
on V1Deform. The animated frames match the ground truth frames well. As a quantitative evaluation,
we compute the per pixel distance between the predicted frames and observed frames, which is 9.032
in the V1Deform testing dataset.

gt
sy

n
gt

sy
n

Figure 6: Examples of multi-step animation, learned with non-parametric version of M . For each
block, the first row shows the ground truth frame sequences, while the second row shows the animated
frame sequences.

5.6 FRAME INTERPOLATION

Inspired by the animation and inference results, we show that our model can also perform frame
interpolation, by combining the animation and inference together. Specifically, given a pair of starting
frame I0 and end frame IT , we want to derive a sequence of frames (I0, I1, ..., IT−1, IT ) that changes
smoothly. Let v0(x) = W I0[x] and vT (x) = W IT [x] for each x ∈ D. At time step t+ 1, like the
inference, we can infer displacement field δt+1(x) by

v̂
(k)
t+1(x, δ) =

∑
dx∈S

M (k)(δ, dx)v
(k)
t (x+ dx),∀x ∈ D,∀δ ∈ ∆,∀k (10)

δt+1(x) = arg min
δ∈∆

K∑
k=1

∥∥∥v(k)
T − v̂

(k)
t+1(x, δ)

∥∥∥2

,∀x ∈ D (11)

9



Under review as a conference paper at ICLR 2020

Like the animation, we get the animated frame It+1 by decoding v̂t+1(x, δt+1(x)), and then re-encode
it to obtain the latent vector vt+1(x).

The algorithm stops when It is close enough to IT (mean pixel error < 10). Figure 7 shows several
examples, learned with non-parametricM on V1Deform. For 96.0% of the testing pairs, the algorithm
can accomplish the frame interpolation within 10 steps. With this algorithm, we are also able to infer
displacements larger than the acceptable range of δ.

Figure 7: Examples of frame interpolation, learned with non-parametric M . For each block, the first
frame and last frame are given, while the frames between them are interpolated frames.

We perform ablation studies to analyze the effect of two components of the proposed model: (1)
dimensionality of sub-vectors; (2) sub-sampling rate. Please refer to supplementary D for the details.

6 CONCLUSION

This paper proposes a simple representational model that couples vector representations of local
image contents and matrix representations of local motions. Unlike existing models for V1 that focus
on statistical properties of natural images or videos, our model serves a direct purpose of perception
of local motions caused by the relative motions between the agent and the 3D environment. Our
model learns Gabor-like units with quadrature phases. We also give biological interpretations of the
learned model and connect it to the spatiotemporal energy model. Our model is novel, and it is our
hope that it adds to our understanding of motion perception in V1 in terms of modeling and inference.

In our future work, we shall study the inference of ego-motion, object motions and 3D depth
information based on local pixel displacements by expanding our model. We shall also extend our
model to stereo in binocular vision by allowing separate encoding matrices for the pair of input
images to the two eyes related by pixel displacements caused by depths.

Unlike regular recurrent neural network (RNN) model that uses a fixed weight matrix for transition
over time, our modeling scheme let the transition matrix depend on the motion non-linearly or
non-parametrically. In our future work, we shall explore vector representations of states and matrix
representations of motions, actions, relations and changes in general.
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A COLOR CODE OF DISPLACEMENT FIELD

Figure 8 shows the color map for the color coded displacement fields used in this paper (Liu et al.,
2010).

B ANIMATION OF LEARNED UNITS: MOVING V1-LIKE UNITS

We have M (k)(δ)v
(k)
t (x) = M (k)(δ)W (k)I[x], where each row of the encoding matrix W (k) serves

as a filter. Let W (k)(δ) = M (k)(δ)W (k). By changing values of δ, we can animate W (k) to make it
move. Figure 9 shows several examples of the animation. Each block shows a certain W (k) animated
by a fixed δ. Each column shows the units in the same W (k)(δ). As δ changes, the orientations
of learned units remain the same, while the phases change, and the units belonging to the same
sub-vector tend to have similar movements.
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Figure 8: Color map for the color coded displacement fields. The displacement of every pixel in this
map is the vector from the center of the square to this pixel. The center pixel does not move. The
range of color is taken according to the maximum length of flows in each displacement field.

Figure 9: Animation of the learned filters

C LEARNED FILTERS

Figure 10 shows the learned filters under different settings, including learned with parametric M ,
learned with local mixing model (eqn 5) and learned unsupervisedly.

(a) Parametric M (b) Local mixing (c) Unsupervised learning

Figure 10: Filters learned under different settings: (a) filters learned with parametric M ; (b) filters
learned with non-parametric M and local mixing motion model (model used in section 5.3); (c) filters
learned on MUG Facial expression dataset with unsupervised learning (model used in section 5.4).

Figure 11 shows the learned filters with higher dimensions of sub-vectors (e.g. 4 or 6). Within each
block, the orientations of learned patterns tend to be similar but the phases are different, which may
be related to the orientation columns in V1 (Hubel & Wiesel, 1959; Sharma et al., 2000). For fair
comparison, we fix the total number of units in the whole vector to 96, and change the number of
units in each sub-vector.

D ABLATION STUDY

We perform an ablation study to analyze the effect of several components of the proposed model. All
the models in the ablation study are trained with non-parametric M(δ) on V1Deform.

Dimensionality of sub-vectors. In the experiments, we assume that the number of units in each
sub-vector v(k)(x) is 2, so that within each sub-vector, a pair of V1-like patterns are learned. However,
we show that the dimensionality of sub-vectors does not have to be 2. Figure 12 shows the learned
filters with the dimensionality equal to 4 or 6. Within each block, the orientations of learned patterns
tend to be similar but the phases are different, which may be related to the orientation columns in V1
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Figure 11: Filters learned with higher dimension of sub-vectors. The total number of units in the
whole vector is fixed to 96. Each block shows the learned units within the same sub-vectors.

(Hubel & Wiesel, 1959; Sharma et al., 2000). For fair comparison, we fix the total number of units in
the whole vector to 96, and change the number of units in each sub-vector. Table 2 summarizes the
quantitative analysis of the models learned with different dimensionalities of sub-vectors, in terms of
the performances of multi-step animation and inference of displacement field. As the dimensionality
of sub-vectors increases, the error rates of the two tasks decrease first and then increase.

(a) Dimensionality = 4 (b) Dimensionality = 6

Figure 12: Learned V1-like units with different dimensionalities of sub-vectors.

Table 2: Quantitative analysis of the models learned with different dimensionalities of sub-vectors.
Sub-vector dim 2 4 6 8 12

animation MSE 8.684 8.387 7.486 7.926 8.412

inference EPE 0.554 0.520 0.496 0.500 0.528

Sub-sampling rate. Another factor that may affect the learned model is the sub-sampling rate in
order to get D−. In the experiments, we use sub-sampling rate 8, which is half of the filter size. We
can also increase or decrease the sub-sampling rate to make the adjacent image patches connected
with each other more loosely or tightly. Table 3 summarizes the performance of learned models with
different sub-sampling rates, in terms of multi-step animation and inference of displacement field.

E INFERENCE OF DISPLACEMENT FIELD: MORE RESULTS

See Figure 13 for more results of inference of displacement field.

F UNSUPERVISED LEARNING: MORE RESULTS

See Figure 14 for more inference results by unsupervised learning.
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Table 3: Quantitative analysis of the models learned with different sub-sampling rates.
Sub-sampling rate 4 8 16

animation MSE 7.492 8.094 10.808

inference EPE 0.658 0.505 0.565

It It+1 Gt FN2 Ours It It+1 Gt FN2 Ours

Figure 13: More examples of inference of displacement field on V1Deform. For each block, from left
to right are It, It+1, ground truth displacement field and inferred displacement field by pre-trained
FlowNet 2.0 model and our learned model respectively. The displacement fields are color coded.

Figure 14: More examples of inferred displacement fields by unsupervised learning. The top
row shows the observed image sequences, while the bottom row shows the inferred color coded
displacement field.
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