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ABSTRACT

Off-policy temporal difference (TD) methods are a powerful class of reinforcement
learning (RL) algorithms. Intriguingly, deep off-policy TD algorithms are not
commonly used in combination with feature normalization techniques, despite
positive effects of normalization in other domains. We show that naive application
of existing normalization techniques is indeed not effective, but that well-designed
normalization improves optimization stability and removes the necessity of target
networks. In particular, we introduce a normalization based on a mixture of on- and
off-policy transitions, which we call cross-normalization. It can be regarded as an
extension of batch normalization that re-centers data for two different distributions,
as present in off-policy learning. Applied to DDPG and TD3, cross-normalization
improves over the state of the art across a range of MuJoCo benchmark tasks.

1 INTRODUCTION

Data and feature normalization are well established techniques in supervised learning that reduce
training times and increase the performance of deep networks (LeCun et al., 1998; Ioffe & Szegedy,
2015). Intriguingly, normalization is not very common in deep reinforcement learning.

In this paper, we first evaluate the existing and widely used batch normalization and layer normaliza-
tion in the context of off-policy TD learning methods. Results improve only little over those without
normalization and often are substantially worse. This is surprising, since according to experience in
supervised learning, normalization should improve stability. In deep off-policy TD learning, rather
target networks have been the crucial part to stabilize optimization (Mnih et al., 2015; Lillicrap et al.,
2016). Interestingly, we find that layer normalization allows us to remove target networks completely
and still ensure stable training. Nevertheless, the performance with layer normalization is on average
inferior to the variant with target networks.

In contrast to supervised learning, in off-policy TD learning there is not a single data distribution, but
two distributions: one due to actions in off-policy transitions, and one due to actions proposed by the
current policy. Consequently, we introduce a new feature normalization scheme – cross-normalization.
It is an adaptation of batch normalization that normalizes features based on a combination of these
two datasets. Reliable statistics for the normalization are ensured by computing the running sufficient
statistics. In contrast to previous normalization approaches, cross-normalization consistently improves
performance over the target network baseline. Learning is faster and empirically stable without the
use of target networks.

We demonstrate these effects for two popular, state-of-the-art off-policy learning methods: DDPG (Lil-
licrap et al., 2016) and TD3 (Fujimoto et al., 2018). Adding cross-normalization to both methods
consistently improves their performance on multiple MuJoCo benchmarks.

The paper also investigates convergence for cross-normalization in the context of linear function
approximators. This study on simpler problems gives some intuitive insights how normalization by
mean subtraction can help stabilize divergent problems.

2 BACKGROUND AND RELATED WORK

Reinforcement learning considers the problem of an agent interacting with an environment. The time
is divided into discrete time-steps t. At each step, a policy selects an action a ∈ A as a function of
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the current state (π : S → A). This results in a transition into the next environment state s′ and a
reward r. The return is the discounted sum of rewards Rt =

∑T
i=t γ

i−trt with γ ∈ [0, 1] being the
discount factor that reduces the weighting of distant rewards. Reinforcement learning optimizes the
parameters of a policy π to maximize the expected return Jt = Eπ[Rt].

During optimization, the policy constantly changes and the gathered experience from the past becomes
off-policy. For sample-efficient training, it is important to be able to learn from such data, hence the
focus of our paper is on off-policy learning.

Many RL algorithms estimate the expected return of a policy as a function of a state and an action,
called the action-value function: Q(s, a) = Eπ[R|s, a]. In the Determinstic Policy Gradient (Silver
et al., 2014) formulation used by algorithms like DDPG (Lillicrap et al., 2016), a deterministic policy
(actor) network that produces actions as a = π(s; θπ) can be trained by performing gradient ascent
over a loss defined through the θQ-parametrized critic:

∇θπJ(θπ) = Eµ
[
∇aQ(s, a; θQ)|a=π(s;θ)∇θππ(s)

]
where Eµ denotes that the expectation is taken over samples from an experience memory governed
by an off-policy distribution µ. The critic network can be optimized by sampling (s, a, r, s′) tuples
from the experience replay memory and using TD learning (Sutton, 1988) to minimize:

L(θQ) = Eµ
[
(Q(s, a; θQ)− r − γQ(s′, π(s′); ¯θQ))2

]
Here θ̄Q parametrizes the target network, a moving average that slowly tracks the critic network’s
parameters: θ̄Q ← τθQ + (1 − τ)θ̄Q, with 0 < τ � 1. DDPG also uses a target network for the
actor. Target networks are updated every time an optimization step is taken during critic training. It
is pointed out by Lillicrap et al. (2016) that “target networks are crucial” to train critics in a stable
manner.

2.1 TARGET NETWORKS

Target networks are a prominent ingredient in Deep RL algorithms that use off-policy bootstrapping.
However, it is argued that the delayed credit assignment slows down learning, and that removing this
dependency would be valuable (Plappert et al., 2018).

There have been several attempts at stabilizing off-policy Deep RL. Focusing on discrete action
spaces (and extending DQN), Durugkar & Stone (2018) try to modify the TD update rule to prevent
over-generalization amongst states. Kim et al. (2019) replace the max operator in DQN with
a mellowmax operator (Asadi & Littman, 2017) and demonstrate that the resulting updates are
contractions, and provide encouraging empirical results. In continuous control, Achiam et al. (2019)
use the Neural Tangent Kernel (Jacot et al., 2018) to derive a new TD algorithm that is empirically
shown to be stable without target networks.

Unlike these approaches, in this paper we make no changes to the underlying TD algorithms beyond
inserting normalization layers in the neural network. We show that a careful usage of normalization
is sufficient to eliminate the need for target networks.

2.2 FEATURE NORMALIZATION

The most common feature normalization for deep networks in supervised learning is Batch Normal-
ization (Ioffe & Szegedy, 2015). During training it uses the mean and variance moments from a
single batch for normalization; during inference, normalization is based on fixed moments, which
are moving averages computed during training. Batch normalization has been shown to significantly
smooth the optimization landscape stabilizing gradient estimation and to increase the speed of train-
ing (Santurkar et al., 2018). Batch re-normalization (Ioffe, 2017) is a subsequent improvement of
batch-normalization, which uses the moving averages of the mean and variance during both training
and inference of the network.

Layer-normalization (Ba et al., 2016) normalizes over the features in a layer. This makes results
independent of the batch size and enables the application to recurrent layers. Layer normalization
has been applied to D4PG (Barth-Maron et al., 2018). In algorithms like PPO (Schulman et al.,
2017) and HER (Andrychowicz et al., 2017) a normalization by running moments was applied to the
observations as a data pre-processing step.

2



Under review as a conference paper at ICLR 2020

DDPG DDPG + LayerNorm DDPG + BatchNorm

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Re
tu

rn

0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6)

250

500

750

1000

1250

1500

1750

Av
er

ag
e 

Re
tu

rn

(a) HalfCheetah-v2 (b) Hopper-v2
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(c) Walker2d-v2 (d) Ant-v2

Figure 1: BatchNorm and LayerNorm applied to DDPG (all with target networks). Neither method
improves performance consistently. Evaluation on OpenAI gym continuous control tasks, showing
average returns and half standard deviations computed over 10 runs, curves are uniformly smoothed.

The original implementation of DDPG by Lillicrap et al. (2016) used batch normalization. However,
it has not been widely used in DDPG implementations as direct application of batch normalization to
off-policy learning is problematic. While training the critic, the action-value function is evaluated two
times (Q(s, a) and Q(s′, π(s′))). Both S and S′ come from the same distribution of states present in
the experience replay. However, the actions come from different distributions: one is produced by
the current policy π(S′) and the other was produced by previous policy iterations in the experience
replay. This results in different mean features in the forward pass for Q(s, a) and Q(s′, π(s′)).

The dynamics of these distributions are very different: off-policy actions a are expected to change
very slowly, while the action distribution of the current policy π(s′) changes quickly during training.
Batch normalization also distinguishes between a training and an evaluation mode. Using the
evaluation mode for the target calculation would result in a normalization bias due to the different
action distributions. At the same time using the training mode in the target calculation would result
in different mean subtractions of the Q function and its target.

The use of target networks in off-policy TD learning further complicates batch normalization. The
target network’s weights are a temporally delayed version of the training network resulting in feature
distributions different from both of the above distributions.

2.3 BASELINE EXPERIMENTS

We evaluated the performance of layer and batch normalization in combination with DDPG on
the standard continuous-control OpenAI gym MuJoCo tasks: HalfCheetah, Hopper, Walker and
Ant (Brockman et al., 2016). We did our evaluations in the same way as Fujimoto et al. (2018).
Both normalizations were applied to each layer of the critic after the activation function and to the
observation layer, except in the case of LayerNorm where applying normalization to the input layer
produces worse results. Batch normalization was used separately for Q(s, a) and Q(s′, π(s′)) in
training mode. Other possible variants, like using the evaluation mode for the target computation,
resulted in worse performance.
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Figure 1 shows that LayerNorm works well on HalfCheetah and BatchNorm works well on Ant. This
indicates that normalization can be potentially useful, however neither method produces consistent
gains in performance over all four environments, as seen on Walker

3 CROSS-NORMALIZATION

To address the problems of batch normalization in combination with Q-learning, we propose a simple
new feature normalization strategy, which we call cross-normalization. It calculates the mean feature
subtraction based on a mixture of features induced by on- and off-policy state-action pairs 1. First,
at each layer, the mean values for each feature of the critic network features are calculated over the
batch2: E(f(s, a)) and E(f(s′, π(s′)). Then a mixture of both mean values is used to normalize the
features:

µ̂α = α ·E(f(s, a)) + (1− α) ·E(f(s′, π(s′))) (1)
and analogously for the second order moments of the variance.

The hyperparameter α determines the relative weighting of on- and off-policy samples. Fairly
balancing both distributions (α = 0.5) is an intuitive choice. In this case normalization can be applied
by concatenating the two batches as s̃ = (s, s′) and ã = (a, π(s′)) and running a single forward pass
of (s̃, ã) tuples through the critic and using an existing BatchNorm implementation. Figure 2 shows
that his approach consistently improves performance over all environments. Even though the training
was performed without target networks, the normalization allowed for stable training. We call this
variant CrossNorm.

DDPG DDPG w/o TN DDPG + LayerNorm w/o TN DDPG + CrossNorm
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(c) Walker2d-v2 (d) Ant-v2

Figure 2: DDPG CrossNorm does not require target networks and outperforms other methods.
Evaluation on OpenAI gym continuous control tasks, showing average returns and half standard
deviations computed over 10 runs; curves are uniformly smoothed.

For TD3 this approach did not consistently improve performance, as seen in Figure 3. We believe this
happens due to inaccurate mean and variance estimates. To verify this hypothesis we repeated the
experiment with the same hyperparameters, but used a very large batchsize of 2048 to ensure precise

1Off-policy pairs are entierly from the replay-buffer (s, a), whereas on-policy pairs make use of the current
policy (s′, π(s′)).

2The feature value indices are omitted to simplify the notation and µ̂ is a vector.
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mean and variance estimates. After the mean and variance were obtained from the large batchsize,
the training step was concluded with the original batchsize of 256 as in the previous CrossNorm
experiment. The result is shown in Figure 3 in dark red. As expected, with the better normalization
parameters, performance improved.

A large batchsize for the forward pass is considerably slower computationally. To continue using
a smaller batch we apply two strategies that increase mean and variance estimate stability. Firstly
we also consider unbalanced weightings of α. As the distribution of the off-policy actions from
the experience replay changes considerably slower than the action distribution of the constantly
changing current policy, the mean features of the off-policy data are more stationary. We find
experimentally that α = 0.99 produces the best results, as shown in Figure. 7. Secondly we apply
batch re-normalization, which uses the running mean and variance values computed over several
batches. We call this variant CrossRenorm and summarize it in Algorithm 1. It achieves similar
performance as a large batchsize for the forward pass, but is considerably faster, making it the better
option for feature normalization.

TD3 TD3 + LayerNorm TD3 + CrossNorm TD3 + CrossNorm 2048 TD3 + CrossRenorm
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Figure 3: TD3 CrossRenorm outperforms TD3, all experiments are run with batch size 256. Evalua-
tion on OpenAI gym continuous control tasks, showing average returns and half standard deviations
computed over 10 runs; curves are uniformly smoothed.

3.1 RESULTS FOR DDPG AND TD3

The results for DDPG are shown in Figure 2. For CrossNorm the performance is improved across
all four tasks, especially in the beginning. Moreover, the training is stable despite the missing target
network. In comparison, the original DDPG without target network is not able to learn in any of
the tasks. The best α value for CrossNorm was α = 0.5. Following the success of training DDPG
CrossNorm, which does not use target networks, we also tried training DDPG with LayerNorm
without target networks. This combination resulted in stable training, a fact that is not widely known.
This shows that that different normalization methods can be use to enable training without target
networks. Again we see faster improvement, especially in the beginning.

Further we evaluated cross-normalization applied to the state-of-the-art algorithm TD3 (Fujimoto
et al., 2018). TD3 is an improved version of DDPG, which accounts for the over-estimation bias by
training two critics and by using the minimum of the predicted return. Again we removed the target
network when applying cross-normalization.
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Algorithm 1: Cross-Normalization pseudocode.
CrossNorm uses α = 0.5 and the BatchNorm
function in line 5. CrossRenorm uses α = 0.99
and the BatchRenorm function (i.e., normalizes
with running averages of the moments).
Input :Off-policy transitions (s, a, s′), feature

layer activations f , current policy π,
mixing param. α, and batch size N

Output :Normalized feature vectors y

1 E(x) := 1
N

∑
i xi

2 x̂off ← E(f(s, a)); x̂on ← E(f(s′, π(s′)))

3 µ̂α ← α · x̂off + (1− α) · x̂on

4 σ̂2 ← 1
2·N−1

[
(x̂on−µ̂α=1/2)

2+(x̂off−µ̂α=1/2)
2
]

5 yon/off ← Normalize(xon/off, µB=µ̂α, σB=σ̂)

The results are shown in Figure 3. The
application of CrossNorm to TD3 did not
produce good results and the sequence of
steps by which we arrive at CrossRenorm
is described in Section 3. BatchNorm may
be failing because TD3 is learning more
quickly. This makes normalization more
difficult, as it needs to make precise es-
timates of more quickly moving distribu-
tions.

We test two strategies — CrossNorm and
CrossRenorm — both of which ensure that
the same moments are used to normalize
the feature activations for the consecutive
timesteps in a TD update. We find that a
stable and stationary estimate of the mo-
ments, provided by CrossRenorm with are
beneficial. On the MuJoCo tasks, it boosts
the performance of methods like TD3 be-
yond the state-of-the-art achieved by TD3

and SAC, as seen in Figure 4, while dropping the requirement of target networks. To the best of
our knowledge, this is the first time a DDPG variant has been trained successfully without target
networks.

TD3 SAC TD3 + CrossRenorm
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Figure 4: TD3 CrossRenorm outperforms other baselines. Here we use the original hyperparameters
and re-evaluate on -v2 environments. Evaluation on OpenAI gym continuous control tasks, showing
average returns and half standard deviations computed over 10 runs; curves are uniformly smoothed.
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4 ANALYZING THE STABILITY IMPROVEMENT
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Figure 5: Plots showing the convergence
of DDPG on a fixed experience buffer of
Walker transitions with size 1 million. The
curves are the log of the average Q value
prediction of a randomly sampled (s, a)
batch of size 1024. All DDPG runs are
trained without target networks.

In the previous section, we showed that normalization
empirically provides improved stability without the use
of target networks. What causes this effect? To isolate
the cause that prevents divergence, we trained a DDPG
agent on a fixed experience dataset with three different
configurations: no target networks, with CrossNorm,
and with a mean-only variant of CrossNorm. Figure 5
shows that mean-recentering in CrossNorm is enough
to ensure stable optimization.

It is intriguing that mean-recentering provides stabil-
ity. It motivated us to study the effects in a controlled
setting: policy evaluation with simple linear function
approximators.

4.1 EFFECT OF MEAN FEATURE SUBTRACTION

In the linear function approximator setting the value
function for a state s ∈ S is computed as: V (s; θ) =
θ>φ(s) orQ(s, a; θ) = θ>φ(s, a) where φ(s) is a n×1
feature vector.

We consider the possible effect of subtracting the mean from the features of the Q function approx-
imator. In a situation like off-policy DDPG-learning, the input of the Q-function is a combined
representation (e.g. concatenated vectors) of a state and an action. During the TD update those are:
φ = φ(s, a) and φ′ = φ(s′, π(s′)). While both s and s′ are drawn from the same distribution of
available states in the experience replay, the actions come from two different distributions: µ and the
current policy π. It is not clear which of the two distributions to use in order to calculate the mean
features, so we defined in Equation 1 a parameterized mixture normalization with parameter α that
uses both. Thus we use a combination of the means of the current (φ) and successor (φ′) features:
m = Eµ [α φ+ (1− α) φ′]. In practice we will only be able to calculate estimates of m (e.g. by
averaging a minibatch). Therefore, we also consider the stability of parameterizations, where α and
β do not sum to 1:

m = Eµ [α φ+ β φ′] (2)

Subtracting m from the feature encodings contained in Φ gives us Φ̂ = Φ − 1m> where 1 is an
N × 1 vector of ones.

4.2 POLICY EVALUATION EXPERIMENTS

To test the stability of TD bootstrapping in isolation, we want to learn value functions for fixed policies.
This configuration is called policy evaluation and can be run on fixed experience buffers (Sutton &
Barto, 2018) that were generated by other policies, resulting in off-policy learning. While the training
dynamics in policy evaluation differ from the more complicated concurrent learning of actor and
critic, it provides a good indication of stability. Approximate off-policy learning suffers from the risk
of divergence. A number of surprisingly simple MDPs exist that demonstrate divergence of off-policy
TD(0) methods; one of these is Baird’s counter example described in detail in Baird (1995); Sutton &
Barto (2018).

We tested the effect of feature mean-recentering with different α and β values on the following
tasks a) Baird’s counterexample, which has a linear function approximator, b) alterations of Baird’s
counterexample with randomly selected features and c) learning the value function of a Walker2d
task (Brockman et al., 2016) from a fixed experience replay memory, with a neural network from
which only the last layer is trained. The results are shown in Figure 6. For each task all the rewards
are set to 0, therefore the true Q-value is 0 for every state. The mean absolute Q-value prediction
is shown on a logarithmic scale. There are three regions visible in the diagram: an area of strong
divergence (yellow), an area of fast convergence (blue), and an area of relatively slow convergence
(green). We test for convergence through semi-gradient dynamic programming which simulates
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the full expected TD update iteratively (Sutton & Barto, 2018). As expected, the case without
normalization (α = β = 0) is divergent in multiple tasks. Surprisingly, along the β = 1 − α line
the policy evaluation converged for all β > 0 values. Also ignoring the distribution of the target
Q-function features (α = 1 and β = 0) is very close to the highly unstable region in all four cases.
This indicates that even small deviations in the mean feature estimations could lead to divergence.

(a) Baird’s CE (b) Walker2d
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(c) Baird’s CE, random features
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Figure 6: (a) and (b) are phase diagrams showing Baird’s counterexample (CE) log(|V̄ |) and
Walker2d’s log(|Q̄|) value estimates after optimization, on the α, β plane of the feature space. Lower
values are better as all rewards were set to zero. α+ β = 1 normalization for α > 1 produces stable
results. Each pixel represents one optimization run for 50k iterations, with results produced using
expected TD(0) updates with γ = .99, η = 10−3. (c) shows two modifications of Baird’s MDP with
randomly generated feature vectors. The red cross indicates the un-normalized configuration.

In our experiments with a large number of randomly generated MDPs, we found that CrossNorm
stabilized learning on all of them except for certain classes of contrived transition matrices. Therefore,
we emphasize that CrossNorm does not provide convergence guarantees. However, we hypothesize
that most MDPs of practical interest may be of a benign class that is amenable to CrossNorm.

5 CONCLUSION

We identified that normalization based on a mixture of on- and off-policy transitions is an effective
strategy to mitigate divergence and to improve returns in deep off-policy TD learning. The proposed
cross-normalization methods are modular modifications of the function approximator. Thus, they
can be applied to DDPG, TD3, and potentially other off-policy TD algorithms. For both tested
algorithms, cross-normalization stabilized training and improved the results in terms of the reward
achieved. Moreover, it increased stability sufficiently to enable training without target networks.
Further experiments have shown that mean-only normalization is sufficient to stabilize training. We
also studied the effects of normalization in more controlled settings. Different mixtures of on- and
off-policy normalization result in a structured space of stable solutions. Cross-normalization increases
the chance to hit the most stable areas.
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A APPENDIX

Hyper-Parameters We used the well tuned “OurDDPG" and TD3 code published by Fujimoto
et al. (2018) to produce the respective DDPG and TD3 baseline curves. All of our CrossNorm
improvements were small modifications to these files. The only change to the network architectures
was the incorporation of normalization layers after the nonlinearity in each layer and on top of the
input layer (as was done in the original DDPG paper by Lillicrap et al. (2016)). After that, we
performed concatenated forward passes through the critics in the Cross Normalization variants.

To obtain the final set of hyperparameters, we manually tried out various combinations of different
learning rates for the actor and critic, and chose between the RMSprop and Adam optimizers. We
found that when training without target networks, RMSprop performed better than Adam.
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Figure 7: TD3 CrossRenorm comparison between α = 0.99 and α = 1.0

Experiment details We implemented a custom CrossNorm layer in PyTorch with configurable
α, β and an option to switch on renormalization.

For CrossNorm experiments with α = 0.5, we used BatchNorm layers with concatenated forward
passes to produce the consecutive Q predictions. Our code used the BatchNorm layer provided in
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PyTorch which relies on a highly optimized C++ implementation which runs about twice as fast in
wall-clock time as our custom CrossNorm layer. The BatchNorm momentum argument was set to 1
(which should correspond to 0 in TensorFlow).

For CrossRenorm, we used our custom CrossNorm layer with α = 0.99, β = 0.01. After 5000
optimization steps, we switched on normalization by running averages as in renormalization. Like in
the TD3 paper, before executing the trained policy we perform 1000 timesteps of random exploration
in the Walker and Hopper environments, and 10000 steps in HalfCheetah and Ant.

Table 1: List of hyperparameters of algorithms used in the Paper. The remaining hyperparameters
were the same as in Fujimoto et al. (2018). TD3 with CrossNorm 2048 used a forward pass of batch
size 2048 only to get the mean and variance of the batch for normalization, while the training was
conducted with batch size 256.

Algorithm Name Fig. LR τ Batch Size Optimizer α
DDPG 1 10−3 5 · 10−3 100 Adam -
DDPG with LayerNorm 1 10−3 5 · 10−3 100 Adam -
DDPG with BatchNorm 1 10−4 5 · 10−3 100 RMSprop -
DDPG 2 10−3 5 · 10−3 100 Adam -
DDPG w/o TN 2 10−3 - 100 Adam -
DDPG w/o TN w/ LayerNorm 2 10−3 - 100 Adam -
DDPG CrossNorm 2 10−4 - 100 RMSprop 0.5
TD3 3 10−3 5 · 10−3 256 Adam -
TD3 w/o TN w/ LayerNorm 3 10−3 - 256 Adam -
TD3 CrossNorm 3 10−3 - 256 RMSprop 0.5
TD3 CrossNorm 2048 3 10−3 - 256 (2048) RMSprop 0.5
TD3 CrossRenorm 3 10−3 - 256 RMSprop 0.99
TD3 4 10−3 5 · 10−3 100 Adam -
SAC 4 10−3 5 · 10−3 256 Adam -
TD3 CrossRenorm 4 10−3 - 256 RMSprop 0.99
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