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ABSTRACT

Generic responses are a known issue for open-domain dialog generation. Most
current approaches model this one-to-many task as a one-to-one task, hence being
unable to integrate information from multiple semantically similar valid responses
of a prompt. We propose a novel dialog generation model that learns a semantic
latent space, on which representations of semantically related sentences are close
to each other. This latent space is learned by maximizing correlation between
the features extracted from prompt and responses. Learning the pair relationship
between the prompts and responses as a regression task on the latent space, instead
of classification on the vocabulary using MLE loss, enables our model to view
semantically related responses collectively. An additional autoencoder is trained,
for recovering the full sentence from the latent space. Experimental results show
that our proposed model eliminates the generic response problem, while achieving
comparable or better coherence compared to baselines.

1 INTRODUCTION

The sequence-to-sequence (Sutskever et al.| 2014) framework has become a popular choice for de-
signing open-domain neural response generation systems (Vinyals & Lel |2015). Recently, trans-
former (Vaswani et al., |2017)) based models have received increasing attention (Wolf et al., [2018]).
Those models typically involves maximizing the probability of the ground truth response given the
input prompt, trained using a cross entropy loss on the 1-of-n coding vocabulary.

However, it is a known problem that models tend to generate bland and uninformative responses,
such as ”I don’t know” (Serban et al., 2016} [Sordoni et al. 2015} [Li et al., 2016} |[Zhang et al.
2018a; Ko et al.l 2019), despite the presence of more specific responses in the training data than
generic responses. This problem is not caused by model optimization error or decoding search error
(Holtzman et al., 2019); on the contrary this is a result of a fundamental deficiency of the end-to-end
maximum likelihood objective, which models the one-to-many task as a one-to-one task.

The specific issue is the following. A sequence-to-sequence decoder trained using maximum likeli-
hood objective tends to prefer uninformative stop word with higher frequency in training data, over
more informative words with lower frequency, because the model loss treat each informative word
independently and ignoring their semantic relatedness. A similar effect happens on the utterance
level when using beam search decoding. Beam search aims to find the most probable utterance.
Each sentence is treated independently, and the model is unable to use semantic similarity between
different utterances (Qiu et al.,[2019). When specific responses collectively have a high probability,
it is diluted by the large number of variations and possibilities of specific answers. On the other
hand, generic responses have much fewer variations, thus they become the most probable response
sequences. An alternative decoding method to beam search is sampling (Holtzman et al., 2019} |Fan
et al.| [2018), which does not suffer from this problem. However, sampling does not consider the
subsequent words during decoding, and the randomness in word choice makes it prone to generating
implausible responses and grammatical errors.

Aiming to take into account the semantic relatedness of those diverse specific responses, we propose
a novel model that learns a shared latent space with semantic information, on which semantically
related sentences tend to be close to one another. The generation process could be separated into
two steps. The first step predicts a sentence vector of the response on the semantic latent space.
Since predicting a vector is a regression problem in the latent space instead of classification in the
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vocabulary as in MLE loss, our model is able to learn that most of the probability mass of the
response is around the cluster of possible specific responses. The second step constructs the full
response sentence from the predicted vector.

Specifically, our semantic latent space is learned by maximizing the canonical correlation (Hotelling}
1936) between the features extracted from the prompt and the response. This objective preserves
information most correlated with the other sentence in the pair. Since semantically similar responses
are likely to correspond to a similar set of prompts, they will have similar representations in the
latent space. Generic responses correlate with a different and much larger set of inputs than specific
responses, so they will have very different representations in the latent space. This is illustrated in
Figure[I] showing our model’s representations of prompts and responses on a t-SNE plot.

(a)
Prompt D, (Light red) \ Prompt D, (Light green)
what instruments do you play ? ‘ what do you do for a living ?
Response D, (Dark red) \ Response D, (Dark green)
i practice the piano every day . i work as an elementary teacher .
i can play anything on my electric violin . i am an olympic gymnast
i am learning the guitar . aside from nursing , i work at a bar to pay for school .
i like the drums a lot i’m a janitor , but i also play music at night . you ?
i used to play clarinet . since i was fired i found a job in insurance .
i play trombone , alto sax , baritone , and trumpet . you ? i work part time as a bartender , but i don’t drink any alcohol
my parents taught me flute mechanical engineering is my day job .
Prompt D, (Light blue) \ Prompt D, (Light yellow)
what is your favorite color ? \ ya, are you a female ?
Response D, (Dark blue) \ Response D, (Dark yellow)
my favorite color is green and whats yours yes i am a woman .
i like red too , with a bit of yellow . like a superhero ! not much to tell , i’m an average male . tell me about you .
blue color makes me happy female
mine is orange ! iam just a boy with a heart outside my body
i like rainbow colors , you ? iam a 12 year old female
red , blue , green , and yellow . i am thinking purple too
strangely my favorite is grey !
Prompt D, (Brown) | Response D, (Black)
what do you do for a living ? \ I don’t know .
(b)
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Figure 1: t-SNE Visualization of the semantic latent space. The representations of the sentences in
(a) are plotted in (b). Multiple semantic related responses are close to each other and close to the
corresponding prompt, while generic responses are far away.

For the second decoding step, we train an additional autoencoder. The decoder part is used for
constructing the response sentence from the shared latent space. The autoencoder representation is
split into two parts. One part correlates with the prompt and the other is independent of the prompt.
This design models that some information of the response is related to the prompt, while other
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information might be completely irrelevant (e.g. a follow up question). The encoder of the correlated
part is shared with the canonical correlated feature extractor for responses, while the uncorrelated
part is learned independently of the prompt and regularized using a normal distribution. The decoder
is only trained on the autoencoder task. It simply recovers the sentence from its semantic latent
representation, and it is not conditioned on the prompt. Since the semantics of the response and the
decoding are learned separately, we could still perform beam search for the most probable sequence
during inference but without the generic response problem.

We conduct experiments on two dialog datasets, and show that our model generates coherent and
specific responses.

2 RELATED WORK

Several previous models also uses the idea of learning on sentence vector representations. (Luo
used two autoencoders to learn the semantic representations of inputs, and learned
utterance-level dependency between those representations. [2019) fused the autoen-
coder and seq2seq feature space, so that the distance and direction from a predicted response vector
roughly matches the relevance and diversity. Those methods partially addresses this issue, but the
problematic end-to-end MLE loss still plays an important role in both methods. In our work, we
completely remove the end-to-end loss term (our autoencoder loss does not backpropagate through
the prompt encoder), so the matching of the input and response is learned only on a shared semantic
latent space. 2019) proposed a two-stage generation process, which predicts the average
of the reference responses as an intermediate task, but it requires training data with multiple re-
sponses. (Kumar & Tsvetkov, |2019) explored predicting continious word vectors on the token level
in seq2seq models instead of using softmax classifcation.

Deep canonical correlation analysis (Andrew et al.,[2013)) has previously been used on various tasks
including feature learning (Wang et al., 2015), caption retrieval (Yan & Mikolajczykl 2015), multi-
label classificaiton (Yeh et al., 2017), image cross-reconstruction (Chanda et al., 2016), and multilin-
gual word similarity (Rotman et al., 2018). (Mallinar & Rosset,[2018) experimented on performing
deep canonical correlation analysis (DCCA) on sequential data with a recurrent network.

3 OUR METHOD

Given example dialogue (Prompt, Response) pairs (D, D,) from open-domain dialogue datasets,
our goal is to generate a coherent and non-generic response when given an unseen prompt. The
structure of our model is depicted in Figure 2| It consists of three encoders; Prompt Encoder F,
Correlated Response Encoder F,, and Uncorrelated Response Encoder F,. The final response is
generated from a semantic latent vector via a Decoder G,. During training all three encoders and
the decoder are tuned. However, for inference/testing only the Prompt Encoder and the Decoder are
utilized. We will now describe each of these components in more detail.

Dl s L Testing D,’:l am Fine

v Dy :
T Reconstruction loss

Training
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D,:How are you?

D,: Watching a movie .

Figure 2: Architecture of our model.
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3.1 LEARNING THE CORRELATED SEMANTIC LATENT SPACE

Our primary aim is to learn a latent space where semantic related sentences (both prompts and
responses) are close to each other. For this we employ canonical correlation analysis (CCA)
(Hotelling}, |{1936) between the prompt and response pairs, which maximizes the correlation of the
extracted features with the other sentence in the pair. Since semantically similar responses are likely
to correspond to a similar set of prompts, semantic similar sentences will have similar represen-
tations in the CCA encoded space. Generic responses could be responses to a much larger set of
prompts, so they will have very different representations in the latent space.

We use two recurrent neural networks F, Iy, as feature extractors to map prompts and responses
into the shared featured space respectively. Using the definition of CCA, we maximize the total
correlation of each dimension between X = F,(D,),Y = F,(D,) as follows.

(Zk: zk: Y (Xp, = X (Y, = Y)
max corr(Xi,Yi)> = max m — — )
= @(X:‘n - X023, - V)2

i=1
m

(D

subject to the condition
S (X = X0)(XG, = X7) = 3 (V= V(Y = YT) =0 @)

for each i, j pair. 4, j are the indices of the feature dimension, and m is the index of the example
pair in the batch, and & is the number of feature dimensions. The condition ensures that the different
dimensions in the representation are uncorrelated, to avoid redundant representations.

To make the two feature spaces X and Y shared, we add the following conditions to the mean and
variance of both representations, inspired by (Yeh et al.,|2017).

Xi=Yi=0 3)
DXL =D (V) =1 &)

for all dimensions <.

When prompt X and response Y are perfectly correlated, and these two conditions perfectly hold,
X will be equal to Y, so this makes X and Y interchangeable during inference. This is desirable
because we don’t have access to Y during inference.

Using the two conditions, Equations becomes;

k k
max (Z corr(X?, Yi)> = max (Z Z anYg1> = min (

k
i=1 =1 m =
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We can formulate the total CCA loss from equation 3] to equation [6] as,

k
Le=)" (Z(an LR <abs(z X5 +abs(> y%))
i]
Ao <abs(Z(an)2 — 1) +abs(Y_(V;)* — 1)>>+A3 > <abs(z X, X3,) + abs(> Y&y%))

m m 4]
(7
where A1, A2, A3 are tunable hyper-parameters.
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3.2 GENERATING THE RESPONSE FROM THE SEMANTIC LATENT SPACE

Since X and Y are interchangeable in the semantic space, we directly use the features extracted
from the prompt X to approximate the response features Y. Now we want to generate the response
sentence D! from these response features. For this purpose, an additional autoencoder is trained
on all the responses, simultaneously with the CCA. The autoencoder consists of encoder F},, and
decoder G, both of which are recurrent networks. The parameters of the encoder are shared with
the semantic feature extractor of the responses. During inference, features extracted from the prompt
X is directly fed into the decoder to generate the response sentence.

We also experimented on adding adversarial training between X and Y, but it did not improve the
results.

Generating sentences from a continuous space is known to produce ungrammatical text (Bowman
et al.|[2016). To address this issue, we randomly replace some of the autoencoder input word tokens
by the unknown word token (unk). This denoising task forces the autoencoder to learn grammatical
and semantic knowledge, instead of just repeating the input. It also prevents the autoencoder from
overfitting too early before the CCA objective converges. Note that, this is different from the word
dropout used in (Bowman et al.| [2016). They only replace decoder inputs, while we replace both
encoder and decoder inputs, since we want to prevent overfitting and make the extracted features
include more high level semantic information of the sentence instead of focusing on individual
words.

3.3 CORRELATED AND UNCORRELATED REPRESENTATIONS

When encoding the response with F),, the autoencoder and the CCA loss have conflicting objectives.
The autoencoder task requires the representation to preserve all the information in the sentence for
reconstruction. The CCA tasks aims to preserve only the information correlated with the prompt and
discard all other irrelevant information. For example, a paraphrase pair are likely to be responses
of the same set of prompts, so they should have the same representation under CCA objective,
but the autoencoder objective forces the representations to be different, to enable reconstruction
of the exact sentences. A response could also include a topic change, which makes part of the
response completely irrelevant with the prompt, and the irrelevant information shouldn’t be in the
CCA representation.

To model this issue, we separate the autoencoder representations into the correlated part Y, which
correlates with the prompt, and the uncorrelated part Y,,. The correlated part learns both the autoen-
coder task and the CCA task. The uncorrelated part is only trained for autoencoder reconstruction.

During training, G, learns to reconstruct from the concatenation of the correlated and uncorrelated
representations. The reconstruction is trained using cross entropy loss.

Dy = Gy([Y;Ya]) = Gy ([Fy(Dy); Fu(Dy)]) ©)
L, = CrossEntropy(D,, D)) (10)

During testing, G, generates the response from the CCA semantic representation of the prompt and
a vector R representing the uncorrelated part of the response.

D), = G, ([Fy(D.); R]) (11)

By adding additional regularization to the uncorrelated representation Y,, during training, we enforce
a normal distribution with zero mean and unit variance. Hence during inference we can sample R
from this distribution or use a fixed prior to approximate Y.

The formulation of the regularization is the same as variational autoencoders (Kingma & Welling,
2013). An encoder recurrent network F,, predicts a mean y and variance o2 for each dimension, and
Y,, is sampled from that multivariate normal distribution. The predicted x and o2 is regularized by
the KL divergence with unit normal distribution.

Lo =37 3 (i) + (03,)° ~ logl(07,)%) (12)
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With this regularization, R can either be set to all zero mean, or be randomly drawn from a unit
Gaussian distribution. We found that the generated sentence is insensitive to this choice, so the
two ways generate exactly the same sentence more often than not. Despite the insensitivity, we
calculated the ratio between the KL loss and the autoencoder reconstruction loss, and found that
the ratio consistently increases during training, indicating that there is no posterior collapsing (Chen
et al., 2017). We also found that adding the uncorrelated representation allows both the CCA loss
and the autoencoder reconstruction loss to converge to a significantly lower value. Inspection on
generated sentences showed that there are obvious improvement on coherence, at the cost of slightly
increased grammatical errors.

To avoid introducing excessive noise while using R as an approximation, we use a low dimension
for the uncorrelated part. A high dimension results in worse performance in our experiments.

During training, the gradient of all loss terms are weighted summed and all parameters are updated
together. The total loss is:
L=MLc+ AsLy + 6Ly (13)

where \4, \5, \g are hyper-parameters.

3.4 ATTENTION

One shortcoming of this model is that it does not have an attention mechanism, so it couldn’t dynam-
ically focus on different parts of the prompt during generation. We also experiment on a variant of
our model with [Luong et al.|(2015))’s attenion. Similar to previous works, the key and value is from
the RNN hidden state of the prompt encoder F}, and the query is the hidden state of the response de-
coder G,. To prevent nullifying the main purpose of our model design: removing end-to-end MLE
training, we create a bottleneck to limit the end-to-end information flow before concatenating the
attention output vector with the hidden state. The bottleneck is a fully connected layer that reduces
the attention output vector into a low dimension.

4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on two datasets: PersonaChat (Zhang et al., [2018b) and DailyDialog (L1
et al., |2017). PersonaChat is a chit-chat dataset collected by crowdsourcing. We don’t use the
personas in the dataset since they are not related to our work. We use the ConvAI2 version, which
contains 122,499 prompt-response pairs for training. We use 3,000 pairs for validation and 4,801
pairs for testing. DailyDialog is a collection of conversations in daily life for English learners. We
remove those prompt-response pairs in the validation and test set that also appears in the training
set, which resulted in about 30% of pairs removed in the test set. The final dataset has 76,052 pairs
for training, 5,334 pairs for validation, and 4,738 pairs for testing.

4.2 METHODOLOGY

We compare with the vanilla Seq2seq model with attention (Luong et al.| 2015)) trained using MLE
loss, decoded using beam search and nucleus sampling (Holtzman et al., [2019). We also compare
with previous work MMI-anti (Li et al., 2016) and SpaceFusion (Gao et al., |2019). MMI-anti is
based on mutual information, it penalizes frequent responses with an anti-language model. Space-
Fusion is a recently proposed method which learns a fused common space representation of the
Seq2seq dialogue generation task and the autoencoder task. We use the authors’ code.

Parameters: We use 1 layer GRU for all encoders and decoders. The correlated representation
size is 512, the uncorrelated representation size is 10. We implement F,, and F,, as different output
dimensions of the same GRU. For compared methods we use hidden layer size 522. The word em-
bedding dimension is 128. We use Adam (Kingma & Ba, [2015) optimizer with learning rate 0.001,
1 = 0.9, B2 = 0.999. Batch size is 64. {A1, A2, A3, A, A5, Ag} is set to {3.9,6.25,0.05,2,2,0.1},
they are tuned to make the conditions (2), (3), (4) enforced properly. The number of epochs trained
is tuned on the validation set. Since there is no obvious automatic metric to evaluate the response
quality, it is validated by human inspection on the generated sentences on the validation set for all
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models. Under this criterion, the MLE and MMI models are stopped considerably later than the
minimum validation perplexity, since stopping earlier makes the responses more generic. For our
model with attention, the attention bottleneck has dimension 10.

4.3 AUTOMATIC EVALUATION

We use the following automatic evaluation metrics: (1) BLEU-1 and BLEU-2 (Papineni et al., 2002)
(2) Embedding Average cosine similarity (Foltz et al., |[1998)) between generated and gold response.
The sentence-level embedding are computed by averaging the embeddings of each word in the sen-
tence. This metric reflects the coherence of the response. (3) dist-1 and dist-2 (Li et al., |2016),
which evaluates the diversity of the generated responses. They respectively calculate the count of
distinct unigrams and bigrams, divided by the total number of words in all responses. Table|[I|shows
the results. Our model outperform baselines on BLEU and embedding similarity. In terms of dist
score, our model is not higher than MMLI, since the responses our model generate are much longer.

4.4 HUMAN EVALUATION

We use crowdsourcing for human evaluation. For each model, we let 3 workers label 500 pairs of
randomly sampled data. We ask them to rate the specificity and coherence of each response, on a
Likert scale from 0 to 3. We report the average of all annotations for both metrics. Since a good
response has to be both coherent and non-generic, we also report the useful information (UI) score,
which is multiplying specificity multiplied by coherence for each sentence, and then take average
over all sentences.

On PersonaChat dataset, SpaceFusion and sampling could generate very specific responses, but they
do not improve coherence. Our model generates the most coherent responses, and the specificity
score outperforms Seq2Seq and MMI. On DailyDailog dataset, sampling scores highest on speci-
ficity, but the responses are not coherent. Our model with attention greatly improves specificity
compared to other baselines, while maintaining similar level of coherence. Adding attention to our
model improves both coherence and specificity on the DailyDialog dataset, but harms specificity on
the PersonaChat dataset. Examples of generated responses are shown in the appendix. Our models
performs best on Ul score for both datasets.

We also evaluated the grammatical correctness of our model on PersonaChat. About 11% of sen-
tences contain major grammatical errors that cause difficulty understanding of the sentence. 18%
contain minor errors that don’t affect the understanding of the sentence. 71% of the sentences are
grammatically correct. This shows that most of the responses of our model are acceptable by human,
and comprehensibility is not a major problem while we generate responses from a continuous space.

\ \ automatic metrics | human evaluation
Dataset | Model | Bleu-1 Bleu-2 Sim  Dist-1 Dist-2 | Coh. Spec. UI
MLE+beam search 0.146  0.0640 0.854 0.0128 0.0397 | 1.09 0.98 1.43
MLE+sampling 0.148  0.0605 0.851 0.0313 0.131 1.05 139 1.65
MMI 0.124  0.0551 0.838 0.0517 0.217 1.18 1.08 1.54
PersonaChat SpaceFusion 0.176  0.0715 0.855 0.0233 0.0766 | 1.05 1.66 1.84
Ours 0.191 0.0746 0.871 0.0363 0.179 1.29 135 1.97
Ours+Attention 0.182 0.0712 0.868 0.0360 0.171 132 122 1.76
Ours w/o Uncorrelated | 0.179  0.0729 0.866 0.0305 0.127 | 096 140 1.46
Ours w/o Denoising 0.167 0.0556 0.868 0.0332 0.252 | - - -
MLE+beam search 0.100 0.0394 0.763 0.0440 0.152 1.25 0.73 0.84
MLE+sampling 0.142  0.0413 0.790 0.0620 0.389 |0.81 1.56 1.18
DailyDialog MMI 0.0939 0.0369 0.764 0.0697 0.270 1.29 0.89 1.09
SpaceFusion 0.146  0.0595 0.792 0.0531 0.216 1.21 1.08 1.24
Ours 0.170  0.0575 0.807 0.0457 0.191 1.18 1.45 1.71
Ours+Attention 0.171  0.0558 0.805 0.0530 0.213 1.24 1.51 1.74

Table 1: Result comparison of all models on PersonaChat and DailyDialog datasets using different
automatic and human evaluation metrics. Our model generates specific and coherent responses.
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4.5 ABLATION STUDY

We compare our full model with two variants and test the contribution of different parts in our model.
We use the PersonaChat dataset for this experiment. The w/o Uncorrelated part model does not
have the representation Y,,, the autoencoder reconstruction is solely based on Y, which also learns
the CCA task. In the w/o Denoising model, we do not replace random words with (unk) in the
autoencoder input. The results are in Table

Without the uncorrelated part, all automatic metrics decrease. Human inspections of sentences
show that there is a obvious decrease on coherence, showing that allowing uncorrelated information
is important for the learning the correlation between the prompt-response pairs. Without denoising,
the generated sentences contains many grammatical errors. All automatic metrics decreased except
dist-2, which is caused by the ungrammaticality. Since the sentences are obviously unacceptable by
humans, we did not perform human evaluation.

4.6 VISULIZING THE SEMANTIC SPACE

In order to verify that the shared latent space successfully encodes semantic information, we vi-
sualize the representaions of some sentences in Figure [ The dimension reduction is performed
using t-SNE (van der Maaten| 2009) trained on 1,000 prompt representations and 1,000 response
representations in the test set.

The light red point is the latent representation of the sentence “what instruments do you play ?”
encoded by the prompt encoder F,. The seven dark red points are possible responses encoded by
the response encoder F),, such as “i practice the piano every day .”, “i am learning the guitar .”
Similarly, the light and dark blue, green, and yellow points shows multiple possible responses to
other three different questions.

We can see that those semantically related responses to the same question are clustered, showing
that the latent space is indeed able to capture semantic information. The questions’ representation is
close to the cluster of their corresponding responses, demonstrating that our model has successfully
learned from the collection of semantically similar possible responses.

s

We also visualize “i don’t know .” in black, and the most frequent generic response generated by
the Seq2Seq model trained on PersonaChat, “what do you do for a living ?” in brown, using the
response encoder F);. Those generic responses are much farther away from the question than specific
responses, thus they are unlikely to be generated.

5 CONCLUSION

In this paper, we proposed a novel open domain dialogue generation framework that first predicts a
semantic sentence vector, and then reconstruct it into a sentence. Our model jointly learns an denois-
ing autoencoder and a semantic latent space using CCA. The autoencoder representation consist of
two parts, one correlates with the prompt, and one is regularized to follow a unit normal distribution.
This design enables learning from the semantic relatedness of different responses. Our model could
generate coherent responses, and doesn’t suffer from the generic response problem unlike previous
approaches. Evaluation on open domain dialog datasets concretely demonstrates the efficacy of our
model.
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A EXAMPLE MODEL RESPONSES

PersonaChat
Prompt wow i love to see traditional dance .
MLE+beam search do you have a favorite color ?
MMI yes , i love the color blue .
Spacefusion iam not sure . i am a college student .
Ours its fun . i’ve always wanted to go for a dance class .
Prompt do you go to school at all
MLE+beam search i do not have a job but i want to be a doctor
MMI sometimes , but i do like photography .
Spacefusion idonot. iam a college student .
Ours idon’t.i’'m studying to go to college .
Prompt i live in nebraska . i don’t think i have ever been to ohio before .
MLE+beam search oh wow . what do you do for a living ?
MMI oh do you do volunteer work
Spacefusion oh wow . i love to go to the beach .
Ours wow , i have been there . do you have a favorite place ?
DailyDialog
Prompt Can you operate computers skillfully ?
MLE+beam search Yes,Iam.
MMI Yes , I have a special job .
Spacefusion Yes , I can . I have any other Word 2003 , and I can live in other areas .
Ours+Attention No , I am not familiar with both Java and C Programming Languages .
Prompt Exporters must ensure that their product satisfies customers ’ needs , wants and likes .
MLE+beam search Do you have any other questions ?
MMI We have to buy a new set .
Spacefusion I am calling to see you . But I've got a new customer here . But I don’t want to be
aware of their house .
QOurs+Attention That means that we have a commission about selling electronics . The prices are
perfect for you to promote the commission and the prices are cheaper .
Prompt It closes at 7:00 on Sundays .
MLE+beam search You’re welcome , I can help you .
MMI How do you get that ?
Spacefusion Nice to see you . The alarm isn’t a fool .
Ours+Attention Hold on , I have some other classes available .
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