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ABSTRACT

Machine learning models, especially deep neural networks (DNNs), have been
shown to be vulnerable against adversarial examples which are carefully crafted
samples with a small magnitude of the perturbation. Such adversarial perturbations
are usually restricted by bounding their Lp norm such that they are imperceptible,
and thus many current defenses can exploit this property to reduce their adversar-
ial impact. In this paper, we instead introduce “unrestricted” perturbations that
manipulate semantically meaningful image-based visual descriptors – color and
texture – in order to generate effective and photorealistic adversarial examples.
We show that these semantically aware perturbations are effective against JPEG
compression, feature squeezing and adversarially trained model. We also show
that the proposed methods can effectively be applied to both image classification
and image captioning tasks on complex datasets such as ImageNet and MSCOCO.
In addition, we conduct comprehensive user studies to show that our generated
semantic adversarial examples are photorealistic to humans despite large magnitude
perturbations when compared to other attacks.

1 INTRODUCTION

Machine learning (ML), especially deep neural networks (DNNs) have achieved great success
in various tasks, including image recognition (Krizhevsky et al., 2012; He et al., 2016), speech
processing (Hinton et al., 2012) and robotics training (Levine et al., 2016). However, recent literature
has shown that these widely deployed ML models are vulnerable to adversarial examples – carefully
crafted perturbations aiming to mislead learning models (Carlini & Wagner, 2017; Kurakin et al.,
2016; Xiao et al., 2018b). The fast growth of DNNs based solutions demands in-depth studies on
adversarial examples to help better understand potential vulnerabilities of ML models and therefore
improve their robustness.

To date, a variety of different approaches has been proposed to generate adversarial examples
(Goodfellow et al., 2014b; Carlini & Wagner, 2017; Kurakin et al., 2016; Xiao et al., 2018a); and
many of these attacks search for perturbation within a bounded Lp norm in order to preserve their
photorealism. However, it is known that the Lp norm distance as a perceptual similarity metric is not
ideal (Johnson et al., 2016; Isola et al., 2017). In addition, recent work show that defenses trained on
Lp bounded perturbation are not robust at all against new types of unseen attacks (Kang et al., 2019).
Therefore, exploring diverse adversarial examples, especially those with “unrestricted" magnitude of
perturbation has acquired a lot of attention in both academia and industries (Brown et al., 2018).

Recent work based on generative adversarial networks (GANs) (Goodfellow et al., 2014a) have
introduced unrestricted attacks (Song et al, 2018). However, these attacks are limited to datasets like
MNIST, CIFAR and CelebA, and are usually unable to scale up to bigger and more complex datasets
such as ImageNet. Xiao et al. (2018b) directly manipulated spatial pixel flow of an image to produce
adversarial examples without Lp bounded constraints on the perturbation. However, the attack does
not explicitly control visual semantic representation. More recently, Hosseini & Poovendran (2018)
manipulated hue and saturation of an image to create adversarial perturbations. However, these
examples are easily distinguishable by human and are also not scalable to complex datasets.

In this work, we propose unrestricted attack strategies that explicitly manipulate semantic visual
representations to generate natural-looking adversarial examples that are “far” from the original
image in tems of the Lp norm distance. In particular, we manipulate color (cAdv) and texture (tAdv)
to create realistic adversarial examples (see Fig 1). cAdv adaptively chooses locations in an image to
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Figure 1: An overview of proposed attacks. Top: Colorization attack (cAdv); Bottom: Texture
transfer attack (tAdv). Our attacks achieve high attack success rate via semantic manipulation without
any constraints on the Lp norm of the perturbation. Our methods are general and can be used for
attacking both classifiers and captioners.

change their colors, producing adversarial perturbation that is usually fairly substantial, while tAdv
utilizes the texture from other images and adjusts the instance’s texture field using style transfer.

These semantic transformation-based adversarial perturbations shed light upon the understanding
of what information is important for DNNs to make predictions. For instance, in one of our case
studies, when the road is recolored from gray to blue, the image gets misclassified to tench (a fish)
although a car remains evidently visible (Fig. 2b). This indicates that deep learning models can easily
be fooled by certain large scale patterns. In addition to image classifiers, the proposed attack methods
can be generalized to different machine learning tasks such as image captioning ( Karpathy & Fei-Fei
(2015)). Our attacks can either change the entire caption to the target (Chen et al., 2017; Xu et al.,
2019) or take on more challenging tasks like changing one or two specific target words from the
caption to a target. For example, in Fig. 1, “stop sign” of the original image caption is changed to
“cat sitting” and “umbrella is” for cAdv and tAdv respectively.

To ensure our “unrestricted" semantically manipulated images are natural, we conducted extensive
user studies with Amazon Mechanical Turk. We also tested our proposed attacks on several state of
the art defenses. Rather than just showing the attacks break these defenses (better defenses will come
up), we aim to show that cAdv and tAdv are able to produce new types of adversarial examples.
Experiments also show that our proposed attacks are more transferable given their large and structured
perturbations (Papernot et al., 2016). The proposed semantic adversarial attacks provide further
insights about the vulnerabilities of ML models and therefore encourage new solutions to improve
their robustness.

In summary, our contributions are: 1) We propose two novel approaches to generate “unrestricted"
adversarial examples via semantic transformation; 2) We conduct extensive experiments to attack both
image classification and image captioning models on large scale datasets (ImageNet and MSCOCO);
3) We show that our attacks are equipped with unique properties such as smooth cAdv perturbations
and structured tAdv perturbations. 4) We perform comprehensive user studies to show that when
compared to other attacks, our generated adversarial examples appear more natural to humans despite
their large perturbations; 5) We test different adversarial examples against several state of the art
defenses and show that the proposed attacks are more transferable and harder to defend.

2 COLORIZATION ATTACK (cADV)

Background. Image Colorization is the task of giving natural colorization to a grayscale image. This
is an ill-posed problem as there are multiple viable natural colorizations given a single grayscale
image. Deshpande et al. (2017) showed that diverse image colorization can be achieved by using an
architecture that combines VAE (Kingma & Welling (2013)) and Mixture Density Network; while
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Figure 2: Class color affinity. Samples from unconstrained cAdv attacking network weights with
zero hints provided. For (a) the ground truth (GT) class is pretzel; and for (b) the GT is car.
These new colors added are commonly found in images from target class. For instance, green in
Golfcart and blue sea in Tench images.

Zhang et al. (2017) demonstrated an improved and diverse image colorization by using input hints
from users guided colorization process.

Our goal is to adversarially color an image by leveraging a pretrained colorization model. We
hypothesize that it is possible to find a natural colorization that is adversarial for a target model (e.g.,
classifier or captioner) by searching in the color space. Since a colorization network learns to color
natural colors that conform to boundaries and respect short-range color consistency, we can use it
to introduce smooth and consistent adversarial noise with a large magnitude that looks natural to
humans. This attack differs from common adversarial attacks which tend to introduce short-scale
high-frequency artifacts that are minimized to be invisible for human observers.

We leverage Zhang et al. (2016; 2017) colorization model for our attack. In their work, they produce
natural colorizations on ImageNet with input hints from the user. The inputs to their network consist
of the L channel of the image in CIELAB color space XL ∈ RH×W×1, the sparse colored input hints
Xab ∈ RH×W×2, and the binary mask M ∈ BH×W×1, indicating the location of the hints.

cAdv Objectives. There are a few ways to leverage the colorization model to achieve adversarial
objectives. We experimented with two main methods and achieved varied results.

Network weights. The straightforward approach of producing adversarial colors is to modify Zhang
et al. (2017) colorization network, F directly. To do so, we simply update F by minimizing the
adversarial loss objective Jadv , which in our case, is the cross entropy loss. t represents target class.

θ∗ = argmin
θ

Jadv(F(XL, Xab,M ; θ), t) (1)

Hints and mask. We can also vary input hints Xab and mask M to produce adversarial colorizations.
Hints provides the network with ground truth color patches that guides the colorization, while the
mask provides its spatial location. By jointly varying both hints and mask, we are able to manipulate
the output colorization. We can update the hints and mask as follows:

M∗, X∗ab = argmin
M,Xab

Jadv(F(XL, Xab,M ; θ), t) (2)

cAdvAttack Methods. Attacking network weights allows the network to search the color space
with no constraints for adversarial colors. This attack is the easiest to optimize, but the output colors
are not realistic as shown in Fig. 2. Our various strategies outlined below are ineffective as the
model learns to generate the adversarial colors without taking into account color realism. However,
colorizations produced often correlate with colors often observed in the target class. This suggests
that classifiers associate certain colors with certain classes which we will discuss more in our case
study.

Attacking input hints and mask jointly gives us natural results as the pretrained network will not
be affected by our optimization. Attacking hints and mask separately also works but takes a long
optimization time and give slightly worse results. For our experiments, we use Adam Optimizer
(Kingma & Ba (2014)) with a learning rate of 10−4 in cAdv. We iteratively update hints and mask
until our adversarial image reaches the target class and the confidence change of consecutive iterations
does not exceed a threshold of 0.05.

Control over colorization. Current attack methods lack control over where the attack occurs, opting
to attack all pixels indiscriminately. This lack of control is not important for most attacks where the
ε is small but is concerning in cAdv where making inconsiderate large changes can be jarring. To
produce realistic colorization, we need to avoid making large color changes at locations where colors
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Figure 3: Controlling cAdv. We show a comparison of sampling 50 color hints from k clusters
with low-entropy. All images are attacked to misclassify as golf-cart. Second and fourth row
visualize our cluster segments, with darker colors representing higher mean entropy and red dots
representing the sampled hints location. Sampling hints across more clusters gives less color variety.

are unambiguous (e.g. roads in general are gray) and focus on those where colors are ambiguous (e.g.
an umbrella can have different colors). To do so, we need to segment an image and determine which
segments should be attacked or preserved.

To segment the image into meaningful areas, we cluster the image’s ground truth AB space using
K-Means. We first use a Gaussian filter of σ = 3 to smooth the AB channels and then cluster them
into 8 clusters. Then, we have to determine which cluster’s colors should be preserved. Fortunately,
Zhang et al. (2017) network output a per-pixel color distribution for a given image which we used to
calculate the entropy of each pixel. The entropy represents how confident the network is at assigning
a color at that location. The average entropy of each cluster represents how ambiguous their color
is. We want to avoid making large changes to clusters with low-entropy while allowing our attack
to change clusters with high entropy. One way to enforce this behavior is through hints, which are
sampled from the ground truth at locations belonging to clusters of low-entropy. We sample hints
from the k clusters with the lowest entropy which we refer as cAdvk (e.g. cAdv2 samples hints from
the 2 lowest entropy clusters).

Number of input hints. Network hints constrain our output to have similar colors as the ground
truth, avoiding the possibility of unnatural colorization at the cost of color diversity. This trade-off is
controlled by the number of hints given to the network as initialization (Fig. 4). Generally, providing
more hints gives us similar colors that are observed in original image. However, having too many
hints is also problematic. Too many hints makes the optimization between drawing adversarial colors
and matching local color hints difficult. Since the search space for adversarial colors is constrained
because of more hints, we may instead generate unrealistic examples.

Number of Clusters. The trade-off between the color diversity and the color realism is also controlled
by the number of clusters we sample hints from as shown in Fig. 3. Sampling from multiple clusters
gives us realistic colors closer to the ground truth image at the expense of color diversity.

Empirically, from our experiments we find that in terms of color diversity, realism, and robustness of
attacks, using k = 4 and 50 hints gives us better adversarial examples. For the rest of this paper, we
fix 50 hints for all cAdvk methods.
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Figure 4: Number of color hints required for cAdv. All images are attacked to Merganser with
k = 4. When the number of hints increases (from left to right), the output colors are more similar to
groundtruth. However, when the number of hints is too high (500), cAdv often generate unrealistic
perturbations. This is due to a harder optimization for cAdv to both add adversarial colors and match
GT color hints. cAdv is effective and realistic with a balanced number of hints.

3 TEXTURE ATTACK (tADV)

Background. Texture transfer extracts texture from one image and adds it to another. Transferring
texture from one source image to another target image has been widely studied in computer vision
( Efros & Freeman (2001); Gatys et al. (2015)). The Convolutional Neural Network (CNN) based
texture transfer from Gatys et al. (2015) led to a series of new ideas in the domain of artistic style
transfer ( Gatys et al. (2016); Huang & Belongie (2017); Li et al. (2017); Yeh et al. (2018)). More
recently, Geirhos et al. (2018) showed that DNNs trained on ImageNet are biased towards texture for
making predictions.

Our goal is to generate adversarial examples by infusing texture from another image without explicit
constraints on Lp norm of the perturbation. For generating our tAdv examples, we used a pretrained
VGG19 network (Simonyan & Zisserman, 2014) to extract textural features. We directly optimize our
victim image (Iv) by adding texture from a target image (It). A natural strategy to transfer texture is
by minimizing within-layer feature correlation statistics (gram matrices) between two images Gatys
et al. (2015; 2016). Based on Yeh et al. (2018), we find that optimizing cross-layer gram matrices
instead of within-layer gram matrices helps produce more natural looking adversarial examples. The
difference between the within-layer and the cross-layer gram matrices is that for a within-layer, the
feature’s statistics are computed between the same layer. For a cross-layer, the statistics are computed
between two adjacent layers.

tAdv Objectives. tAdv directly attacks the image to create adversarial examples without modifying
network parameters. Moreover, there is no additional content loss that is used in style transfer
methods (Gatys et al. (2016); Yeh et al. (2018)). Our overall objective function for the texture attack
contains a texture transfer loss (LAt ) and an cross-entropy loss (Jadv).

LAtAdv = αLAt (Iv, It) + βJadv(F(Iv), t) (3)

Unlike style transfer methods, we do not want the adversarial examples to be artistically pleasing.
Our goal is to infuse a reasonable texture from a target class image to the victim image and fool a
classifier or captioning network. To ensure a reasonable texture is added without overly perturbing the
victim image too much, we introduce an additional constraint on the variation in the gram matrices of
the victim image. This constraint helps us to control the image transformation procedure and prevents
it from producing artistic images. Let m and n denote two layers of a pretrained VGG-19 with a
decreasing spatial resolution and C for number of filter maps in layer n, our texture transfer loss is
then given by

LAt (Iv, It) =
∑

(m,n)∈L

1

C2

∑
ij

∥∥Gm,nij (Iv)−Gm,nij (It)
∥∥2

std
(
Gm,nij (Iv)

) (4)

Let f be feature maps, Ufn be an upsampled fn that matches the spatial resolution of layer m. The
cross layer gram matrices G between the victim image (Iv) and a target image (It) is given as

Gm,nij (I) =
∑
p

[
fmi,p(I)

] [
Ufnj,p(I)

]T (5)

Texture Transfer. To create tAdv adversarial examples, we need to find images to extract the texture
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Figure 5: tAdv strategies. Texture transferred from random “texture source” (Ts) in row 1, random
target class Ts (row 2) and from the nearest target class Ts (row 3). All examples are misclassified
from Beacon to Nautilus. Images in the last row look photo realistic, while those in the first two
rows contain more artifacts as the texture weight α increases (left to right).

from, which we call “texture source” (Ts). A naive strategy is to randomly select an image from
the data bank as Ts. Though this strategy is successful, their perturbations are clearly perceptible.
Alternatively, we can randomly select Ts from the adversarial target class. This strategy produces
less perceptible perturbations compared to the random Ts method as we are extracting a texture from
the known target class. A better strategy to select Ts is to find a target class image that lies closest to
the victim image in the feature space using nearest neighbors. This strategy is sensible as we assure
our victim image has similar feature statistics as our target image. Consequently, minimizing gram
matrices is easier and our attack generates more natural looking images (see Fig. 5).

For texture transfer, we extract cross-layer statistics in Eq. 4 from the R11, R21, R31, R41, and R51
of a pretrained VGG19. We optimize our objective (Eq. 3) using an L-BFGS (Liu & Nocedal (1989))
optimizer. tAdv attacks are sensitive and if not controlled well, images get transformed into artistic
images. Since we do not have any constraints over the perturbation norm, it is necessary to decide
when to stop the texture transfer procedure. For a successful attack (images look realistic), we limit
our L-BFGS to fixed number of small steps and perform two set of experiments: one with only one
iteration or round of L-BFGS for 14 steps and another with three iterations of 14 steps. For the three
iterations setup, after every iteration, we look at the confidence of our target class and stop if the
confidence is greater than 0.9.

Texture and Cross-Entropy Weights. Empirically, we found setting α to be in the range [150, 1000]
and β in the range

[
10−4, 10−3

]
to be successful and also produce less perceptible tAdv examples.

The additional cross-entropy based adversarial objective Jadv helps our optimization. We ensure large
flow of gradients is from the texture loss and they are sufficiently larger than the adversarial cross-
entropy objective. The adversarial objective also helps in transforming victim image to adversarial
without stylizing the image. All our tabulated results are shown for one iteration, α = 250 and
β = 10−3, unless otherwise stated. We use the annotation tAdviterα for the rest of the paper to denote
the texture method that we are using.

Control over Texture. The amount of texture that gets added to our victim image is controlled by
the texture weight coefficient (α). Increasing texture weights improves attack success rate at the cost
of noticeable perturbation. When compared to within-layer statistics, the cross-layer statistics that we
use are not only better at extracting texture, it is also easier to control the texture weight.
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Model R50 D121 VGG19
Accuracy 76.15 74.65 74.24

A
tta

ck
Su

cc
es

s cAdv1 99.72 99.89 99.89
cAdv4 99.78 99.83 100.00
tAdv1

250 97.99 99.72 99.50
tAdv1

500 99.27 99.83 99.83

(a) Whitebox Target Attack
Success Rate

Method Model R50 D121 VGG19
Kurakin et al. (2016) R50 100.00 17.33 12.95

Carlini & Wagner (2017) R50 98.85 16.50 11.00
Xiao et al. (2018b) R50 100 5.23 8.90

cAdv4

R50 99.83 28.56 31.00
D121 18.13 99.83 29.43

VGG19 22.94 26.39 100.00

tAdv1
250

R50 99.00 24.51 34.84
D121 21.16 99.83 32.56

VGG19 20.21 24.40 99.89

(b) Transferability

Table 1: Our attacks are highly successful on ResNet50 (R50), DenseNet121 (D121) and VGG19.
In (a), for cAdv, we show results for k = {1, 4} when attacked with 50 hints. For tAdv we show
results for α = {250, 500} and β = 0.001. In (b) We show the transferability of our attacks. We
attack models from the column and test them on models from the rows.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the two proposed attack methods both quantitatively, via attack success
rate under different settings, and qualitatively, based on interesting case studies. We conduct our
experiments on ImageNet Deng et al. (2009) by randomly selecting images from 10 sufficiently
different classes predicted correctly for the classification attack and randomly chosen images from
MSCOCO Lin et al. (2014) for image captioning attack.

4.1 ATTACKING CLASSIFIERS

We use a pretrained ResNet 50 classifier (He et al. (2016)) for all our methods. DenseNet 121 and
VGG 19 (Huang et al.; Simonyan & Zisserman (2014)) are used for our transferability analysis.

4.1.1 cADV ATTACK

cAdv achieves high targeted attack success rate by adding realistic color perturbation. Our numbers
in Table 1 and Table 2 also reveal that cAdv examples with larger color changes (consequently more
color diversity) are more robust against transferability and adversarial defenses. However, these big
changes are found to be slightly less realistic from our user study (Table 2, Table 5).

Smooth cAdv perturbations. Fig. 12 in our Appendix shows interesting properties of the adversarial
colors. We observe that cAdv perturbations are locally smooth and are relatively low-frequency.
This is different from most adversarial attacks that generate high-frequency noise-like perturbations.
This phenomenon can be explained by the observation that colors are usually smooth within object
boundaries. The pretrained colorization model will thus produce smooth, low-frequency adversarial
colors that conform to object boundaries.

Importance of color in classification. From Fig. 2, we can compare how different target class
affects our colorization results if we relax our constraints on colors (cAdv on Network Weights, 0
hints). In many cases, the images contain strong colors that are related to the target class. In the case
of golf-cart, we get a green tint over the entire image. This can push the target classifier to misclassify
the image as green grass is usually overabundant in benign golf-cart images. Fig. 2b shows our attack
on an image of a car to tench (a type of fish). We observe that the gray road turned blue and that
the colors are tinted. We can hypothesize that the blue colors and the tint fooled the classifier into
thinking the image is a tench in the sea.

The colorization model is originally trained to produce natural colorization that conforms to object
boundaries. By adjusting its parameters, we are able to produce such large and abnormal color change
that is impossible with our attack on hints and mask. These colors, however, show us some evidence
that colors play a stronger role in classification than we thought. We reserve the exploration of this
observation for future works.

While this effect (i.e., strong color correlation to target class) is less pronounced for our attack on
hints and mask, for all methods, we observe isoluminant color blobs in our images. Isoluminant
colors are characterized by a change in color without a corresponding change in luminance. As most
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Figure 6: Captioning attack. Top: Colorization attack (cAdv); Bottom: Texture transfer attack
(tAdv). We attack the second word to dog and show the corresponding change in attention mask of
that word. More examples in Appendix.

color changes occur along edges in natural images, it is likely that classifiers trained on ImageNet
have never seen isoluminant colors. This suggests that cAdv might be exploiting isoluminant colors
to fool classifiers.

4.1.2 tADV ATTACK

Attack Success. With a very small weighted adversarial cross-entropy objective and texture loss, we
are able to fool the classifiers while remaining realistic to humans. As shown in Table 1, our attacks
are highly successful on white-box attacks tested on three different models with the nearest neighbor
texture transfer approach. We also show our attacks are more transferable to other models. In our
Appendix, we have results for untargeted attacks and other strategies that we used for generating
tAdv adversarial examples.

Structured tAdv Perturbations. Since we extract features across different layers of VGG, the tAdv
perturbations follow a textural pattern. They are more structured and organized when compared to
others. Our tAdv perturbations are big when compared with existing attack methods in Lp norm.
They are of high-frequency and yet imperceptible (see Fig. 1 and Fig. 12).

Importance of Texture in Classification. Textures are crucial descriptors for image classification
and Imagenet trained models can be exploited by altering the texture. Their importance is also shown
in the recent work from Geirhos et al. (2018). Our results also shows that even with a small or
invisible change in the texture field can break the current state of the art classifiers.

4.2 ATTACKING CAPTIONING MODEL

Our methods are general and can be easily adapted for other learning tasks. As proof of concept, we
test our attacks against image captioning models.

Background. Image captioning is the task of generating a sequence of word description for an
image. The popular architecture for captioning is a Long-Short-Term-Memory (LSTM) (Hochreiter
& Schmidhuber (1997)) based models (Karpathy & Fei-Fei (2015); Wang et al. (2017)). Recently,
Aneja et al. (2018) proposed a convolutional based captioning model for a fast and accurate caption
generation. This convolutional based approach does not suffer from the commonly known problems
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Method Res50 JPEG75 Feature Squeezing Res152 Adv
Res152

User
Pref.4-bit 5-bit 2x2 3x3 11-3-4

Kurakin et al. (2016) 100 12.73 28.62 86.66 34.28 21.56 29.28 1.08 1.38 0.506
Carlini & Wagner (2017) 99.85 11.50 12.00 30.50 22.00 14.50 18.50 1.08 1.38 0.497

Hosseini & Poovendran (2018) 1.20 – – – – – – – – –
Xiao et al. (2018b) 100 17.61 22.51 29.26 28.71 23.51 26.67 4.13 1.39 0.470

cAdv1 100 52.33 47.78 76.17 36.28 50.50 61.95 12.06 11.62 0.427
cAdv2 99.89 46.61 42.78 72.56 34.28 46.45 59.00 17.39 19.4 0.437
cAdv4 99.83 42.61 38.39 69.67 34.34 40.78 54.62 14.13 12.5 0.473
cAdv8 99.81 38.22 36.62 67.06 31.67 37.67 49.17 6.52 10.04 0.476
tAdv1

250 99.00 32.89 62.79 89.74 54.94 38.92 40.57 10.9 2.10 0.433
tAdv3

250 100 36.33 67.68 94.11 58.92 42.82 44.56 15.21 4.6 0.425
tAdv1

1000 99.88 31.49 52.69 90.52 51.24 34.85 39.68 19.12 5.59 0.412
tAdv3

1000 100 35.23 61.40 93.18 56.31 39.66 45.59 22.28 6.94 0.406

Table 2: Comparison against defense models. Misclassification rate after passing different adver-
sarial examples through the defense models (higher means the attack is stronger). All attacks are
performed on ResNet50 with whitebox attack. The highest attack success rate is in bold. We also
report the user preference scores from AMT for each attack (last column).

of vanishing gradients and overly confident predictions of LSTM network. Therefore, we choose to
attack the current state of the art convolutional captioning model.

Attacking captioning models is harder than attacking classifiers when the goal is to change exactly
one word in the benign image’s caption. We show that our attacks are successful and have no visible
artifacts even for this challenging task. In Fig. 6, we change the second word of the caption to dog
while keeping the rest of the caption the same. This is a challenging targeted attack because, in many
untargeted attacks, the resulted captions do not make sense. More examples are in our Appendix.

Adversarial Cross-Entropy Objective for Captioning. Let t be the target caption, w denote the
word position of the caption, F for the captioning model, Iv for the victim image and Jadv for the
cross-entropy loss

LAcapt =
∑
w

Jadv((F(Iv))w, tw) (6)

For cAdv, we give all color hints and optimize to get an adversarial colored image to produce target
caption. For tAdv, we add Eqn 6 to Eqn 4 to optimize the image. We select TS as the nearest
neighbor of the victim image from the ones in the adversarial target class using ImageNet dataset.
We stop our attack once we reach the target caption and the caption does not change in consecutive
iterations. Note we do not change the network weights, we only optimize hints and mask (for cAdv)
or the victim image (for tAdv) to achieve our target caption.

4.3 DEFENSE AND TRANSFERABILITY ANALYSIS

We test all our attacks and other existing methods with images attacked from Resnet50. We evaluate
them on three defenses – JPEG defense (Das et al., 2017), feature squeezing (Xu et al., 2017) and
adversarial training. By leveraging JPEG compression and decompression, adversarial noise may be
removed. We tested our methods against JPEG compression of 75. Feature squeezing is a family of
simple but surprisingly effective strategies, including reducing color bit depth and spatial smoothing.
Adversarial training has been shown as an effective but costly method to defend against adversarial
attacks. Mixing adversarial samples into training data of a classifier improves its robustness without
affecting the overall accuracy. We were able to obtain an adversarially pretrained Resnet152 model
on ImageNet dataset and hence we tested our Resnet50 attacked images with this model.

Robustness of Our Attacks. In general, our attacks are more robust to the considered defenses
and transferable for targeted attacks. For cAdv, there is a trade-off between more realistic colors
(using more hints and sampling from more clusters) and attack robustness. From Table 1 and 2, we
show that as we progressively use more clusters, our transferability and defense numbers drop. A
similar trend is observed with the change in the number of hints. cAdv is robust to JPEG defense and
adversarial training because of their large, smooth and spatial perturbations. For tAdv, increasing
texture weight does not necessarily perform well with the defense even though it increases attack
success rate, but increasing texture flow with more subsequent iterations improves attack’s robustness
against defenses.
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5 HUMAN PERCEPTUAL STUDIES

To quantify how realistic tAdv and cAdv examples are, we conducted a user study on Amazon
Mechanical Turk (AMT). We follow the same procedure as described in Zhang et al. (2016); Xiao
et al. (2018b). For each attack, we choose the same 200 adversarial images and their corresponding
benign ones. During each trial, one random adversarial-benign pair appears for three seconds and
workers are given five minutes to identify the realistic one. Each attack has 600 unique pairs of
images and each pair is evaluated by at least 10 unique workers. We restrict biases in this process
by allowing each unique user up to 5 rounds of trials and also ignore users who complete study in
less than 30 seconds. In total, 598 unique workers completed at least one round of our user study.
For each image, we can then calculate the user preference score as the number of times it is chosen
divided by the number of times it is displayed. 0.5 represents that users are unable to distinguish if
the image is fake. For cAdv and tAdv, user preferences averages at 0.476 and 0.433 respectively,
indicating that workers have a hard time distinguishing them. The user preferences for all attacks are
summarized in Table 2 and their comparison with Lp norm is in Table 5 and Table 6.

6 RELATED WORK

Here we briefly summarize existing unrestricted and semantic adversarial attacks. Xiao et al. (2018b)
proposed geometric or spatial distortion of pixels in image to create adversarial examples. They distort
the input image by optimizing pixel flow instead of pixel values to generate adversarial examples.
While this attack leads to “natural” looking adversarial examples with large L∞ norm, it does not
take image semantics into account. Song et al (2018) and Dunn et al. (2019) considered GANs for
adversarial attacks. This attack is unrestricted in Lp norm but they are restricted to simple datasets as
it involves training GANs, which have been known to be unstable and computationally intensive for
complex datasets like ImageNet (Karras et al. (2017); Brock et al. (2018)).

Hosseini & Poovendran (2018), changes the hue & saturation of an image randomly to create
adversarial examples. It is similar to cAdv as they both involve changing colors, however, their search
space is limited to two dimensions and their images are unrealistic, Appendix (Fig. 8). Also, while
this method has a non-trivial untargeted attack success rate, it performs extremely poorly for targeted
attacks (1.20% success rate in our own experiments on ImageNet). Our work is also related to Joshi
et al. (2019) and Qiu et al. (2019), who manipulate images conditioned on face dataset attributes like
glasses, beard for their attacks. These work focuses on changing single image visual attribute and are
conditionally dependent. Our work focuses on changing visual semantic descriptors to misclassify
images and are not conditioned to any semantic attributes.

Method
Semantic

Based Unrestricted Photorealistic
Explainable

(eg color affinity)
Complex
Dataset

Caption
Attack

Kurakin et al. (2016) 7 7 3 7 3 7
Carlini & Wagner (2017) 7 7 3 7 3 7

Hosseini & Poovendran (2018) 3 3 7 7 7 7
Song et al (2018) 7 3 7 7 7 7

Xiao et al. (2018b) 7 3 3 3 3 7
cAdv (ours) 3 3 3 3 3 3
tAdv (ours) 3 3 3 3 3 3

Table 3: Summary of the difference in our work compared to previous work. Unlike previous attack
methods, our attacks are unbounded, semantically motivated, realistic, highly successful, and scales
to more complex datasets and other ML tasks. They are also robust against tested defenses.

7 CONCLUSION

Our proposed two novel unrestricted semantic attacks shed light on the role of texture and color fields
in influencing DNN’s predictions. They not only consistently fool human subjects but in general
are harder to defend against. We hope by presenting our methods, we encourage future studies on
unbounded adversarial attacks, better metrics for measuring perturbations, and more sophisticated
defenses.
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Model Resnet50 Dense121 VGG 19
Accuracy 76.15 74.65 74.24

A
tta

ck
Su

cc
es

s
Random Ts 99.67 99.72 96.16

Random Target Ts 99.72 99.89 99.94
Nearest Target Ts 97.99 99.72 99.50
cAdv4 25 hints 99.78 99.83 99.93
cAdv4 50 hints 99.78 99.83 100.00
cAdv4 100 hints 99.44 99.50 99.93

Whitebox target attack success rate. Our attacks
are highly successful on different models across all
strategies. tAdv results are for α = 250, β = 10−3

and iter= 1.

β
α

250 500 750 1000

10−4 99.88 99.61 98.55 95.92
10−3 97.99 99.27 99.66 99.50
10−2 96.26 95.42 96.32 96.59
tAdv ablation study. Whitebox target

success rate with nearest target Ts (texture
source). In columns, we have increasing
texture weight (α) and in rows, we have

increasing adversarial cross-entropy weight
(β). All attacks are done on Resnet50.

Table 4: Ablation Studies.

Method L0 L2 L∞ Preference
cw 0.587 0.026 0.054 0.506
BIM0.051 0.826 0.030 0.051 0.497
BIM0.21 0.893 0.118 0.21 0.355
BIM0.347 0.892 0.119 0.347 0.332

cAdv2 0.910 0.098 0.489 0.437
cAdv4 0.898 0.071 0.448 0.473
cAdv8 0.896 0.059 0.425 0.476
tAdv1250 0.891 0.041 0.198 0.433
tAdv11000 0.931 0.056 0.237 0.412
tAdv3250 0.916 0.061 0.258 0.425
tAdv31000 0.946 0.08 0.315 0.406

Table 5: User Study. User preference score and Lp norm of perturbation for different attacks. cAdv
and tAdv are imperceptible for humans (score close to 0.5) even with very big Lp norm perturbation.

A APPENDIX

A.1 ADDITIONAL RESULTS

A.2 OTHER DETAILS ON HUMAN STUDY

We also chose BIM (Kurakin et al., 2016) and CW (Carlini & Wagner, 2017) for comparing our
perturbations. Since these attacks are known to have low Lp norm, we designed an aggressive version
of BIM by relaxing its L∞ bound to match the norm of our attacks. We settled with two aggressive
versions of BIM with average L∞ = {0.21, 0.347}, which we refer to as BIM0.21, BIM0.34. The
average user preferences for BIM drops drastically from 0.497 to 0.332 when we relax the norm to
BIM0.34; the decrease in user preferences for tAdv (0.433 to 0.406) and cAdv (0.476 to 0.437) is not
significant. In Fig. 7, we plot a density plot of L∞ vs user preference scores.
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Attack tarantula merganser nautilus hyena beacon golfcart photocopier umbrella pretzel sandbar Mean

BIM

L0 0.82 0.81 0.80 0.88 0.80 0.79 0.86 0.80 0.85 0.84 0.83
L2 0.05 0.02 0.03 0.04 0.02 0.01 0.04 0.02 0.02 0.04 0.03
L∞ 0.07 0.04 0.06 0.06 0.04 0.03 0.07 0.04 0.04 0.06 0.05

Preference 0.49 0.75 0.44 0.67 0.48 0.48 0.27 0.39 0.38 0.63 0.50

CW

L0 0.54 0.55 0.52 0.77 0.48 0.42 0.70 0.48 0.69 0.71 0.59
L2 0.05 0.01 0.03 0.03 0.02 0.01 0.04 0.01 0.02 0.04 0.03
L∞ 0.08 0.04 0.06 0.07 0.04 0.03 0.07 0.04 0.05 0.06 0.05

Preference 0.51 0.68 0.43 0.59 0.52 0.51 0.39 0.40 0.42 0.62 0.51

tAdv3
250

L0 0.94 0.95 0.91 0.94 0.89 0.94 0.89 0.91 0.94 0.85 0.92
L2 0.07 0.08 0.08 0.06 0.05 0.06 0.03 0.05 0.07 0.05 0.06
L∞ 0.28 0.31 0.30 0.31 0.22 0.27 0.18 0.25 0.27 0.19 0.26

Preference 0.39 0.58 0.43 0.53 0.46 0.35 0.25 0.40 0.33 0.54 0.43

cAdv4

L0 0.90 0.90 0.88 0.90 0.90 0.90 0.90 0.89 0.93 0.88 0.90
L2 0.06 0.06 0.07 0.05 0.08 0.07 0.08 0.08 0.09 0.06 0.07
L∞ 0.36 0.44 0.41 0.31 0.48 0.51 0.55 0.56 0.46 0.39 0.45

Preference 0.46 0.65 0.46 0.58 0.45 0.48 0.30 0.43 0.35 0.59 0.47

Table 6: Class wise Lp norm and user preference breakdown. Users are biased and pick a few classes
quite often (merganser, sandbar), and do not like a few classes (photocopier) over others.
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Figure 7: Density Plot. Our methods achieve large L∞ norm perturbations without notable reduction
in user preference. Each plot is a density plot between perturbation (L∞ norm) on X axis and
Pr(user prefers adversarial image) on Y axis. For ideal systems, the density would be a concentrated
horizontal line at 0.5. All plots are on the same set of axes. On the left, plots for three baseline
methods (Fig a - Fig c). Note the very strong concentration on small norm perturbations, which users
like. Right 4 plots shows our methods (Fig d - Fig g). Note strong push into large norm regions,
without loss of user preference.

Merganserà Umbrella Sandbarà Beacon Hyenaà Tarantula

Figure 8: Images attacked with the method of (Hosseini & Poovendran, 2018) are not realistic, as
these examples show. Compare Fig 11, showing results of our color attack. Similar qualitative results
for CIFAR-10 are visible in Hosseini & Poovendran (2018).
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GT k=1 k=2 k=4 k=8k=6

Figure 9: Additional qualitative examples for controlling cAdv. We show a comparison of
sampling 50 color hints from k clusters with low-entropy. All images are attacked to golf-cart.
Even numbered rows visualize our cluster segments, with darker colors representing higher mean
entropy and red dots representing the location we sample hints from. Sampling hints across more
clusters gives less color variety.
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Figure 10: Additional qualitative examples for tAdv. Texture transferred from random images
(row 1), random images from adversarial target class (row 2) and from the nearest neighbor of
the victim image from the adversarial target class (row 3). All examples are misclassified from
Merganser to Umbrella. Images in the last row look photo realistic, while those in the first two
rows contain more artifacts as the texture weight α increases (left to right).
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a banana sitting on top 
of a table

a dog sitting on top of a 
table

Attention for banana Attention for dog

a clock tower in the 
middle of a city Attention for clock a bird tower in the 

middle of a city
Attention for bird

tA
dv

a woman is holding a 
donut in her mouth

a dog is holding a 
donut in her mouth

Attention for woman Attention for dog

a man sitting on a bench 
with a skateboard Attention for man Attention for bird

cA
dv

a bird boy sitting on a 
bench with a skateboard

Figure 11: Captioning attack. We attack the second word of each caption to {dog, bird} and show
the corresponding change in attention mask of that word. For tAdv we use the nearest neighbor
selection method and for cAdv we initialize with all groundtruth color hints.
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Tarantula Beacon NautilusGolfcart Photocopier Pretzel

BIM
Perturbations

CW
Perturbations

tAdv
Perturbations

cAdv
Perturbations

St-Adv
Perturbations

Figure 12: Perturbation comparisons. Images are attacked from tarantula to beacon, golf
cart, nautilus, photocopier, pretzel from left to right. Our perturbations (cAdv
and tAdv) are large, structured and have spatial patterns when compared with other attacks. Perturba-
tions from cAdv are low-frequency and locally smooth while perturbations from tAdv are primarily
high-frequency and structured. Note gray color indicates no perturbations.
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(b) cAdv Perturbations
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(c) tAdv1
250 for nearest Target Ts
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(d) tAdv Perturbations

Figure 13: Randomly sampled semantically manipulated unrestricted adversarial examples and their
perturbations. (a) Adversarial examples generated by cAdv attacking Hints and mask with 50 hints.
(c) Adversarial examples generated by tAdv with α = 250, β = 10−3 and iter= 1 using nearest
target Ts. (b) and (d) are their respective perturbations. Note that diagonal images are groundtruth
images and gray pixels indicate no perturbation.
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