
Under review as a conference paper at ICLR 2020

LOCALISED GENERATIVE FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

We argue that flow-based density models based on continuous bijections are lim-
ited in their ability to learn target distributions with complicated topologies, and
propose localised generative flows (LGFs) to address this problem. LGFs are com-
posed of stacked continuous mixtures of bijections, which enables each bijection
to learn a local region of the target rather than its entirety. Our method is a gener-
alisation of existing flow-based methods, which can be used without modification
as the basis for an LGF model. Unlike normalising flows, LGFs do not permit
exact computation of log likelihoods, but we propose a simple variational scheme
that performs well in practice. We show empirically that LGFs yield improved
performance across a variety of common density estimation tasks.

1 INTRODUCTION

Flow-based generative models, often referred to as normalising flows, have become popular methods
for density estimation because of their flexibility, expressiveness, and their tractable likelihoods.
Given the problem of learning an unknown target density p?X on a data space X , normalising flows
model p?X as the marginal in X of the following generative process:

Z ∼ pZ , X := g−1(Z), (1)
where pZ is a prior density on a space Z , and g : X → Z is a bijection.1 Assuming sufficient
regularity, it follows thatX has density pX(x) = pZ(g(x))|detDg(x)| (see e.g. Billingsley (2008)).
The parameters of g can be learned via maximum likelihood given i.i.d. samples from p?X .

To be effective, a normalising flow model must specify an expressive family of bijections with
tractable Jacobians. Affine coupling layers (Dinh et al., 2014; 2016), stacked autoregressive trans-
formations (Papamakarios et al., 2017), and invertible ResNet blocks (Behrmann et al., 2019) are
all examples of such bijections that can be composed to produce complicated flows. These mod-
els have demonstrated significant promise in their ability to model complex datasets (Papamakarios
et al., 2017) and to synthesise novel data points (Kingma & Dhariwal, 2018).

However, in all these cases, g is continuous in x. We believe this is a significant limitation of these
models since it imposes a global constraint on g−1, which must learn to match the topology of Z
(which is usually quite simple) to the topology of X (which we expect to be very complicated).
We argue that this constraint makes maximum likelihood estimation extremely difficult in general,
leading to training instabilities and artefacts in the learned density landscape.

To address this problem we introduce localised generative flows (LGFs), which generalise equation 1
by replacing the single bijection g with a hierarchical continuous mixture of bijectionsG. Intuitively,
LGFs allows these bijections each to focus on modelling only a local component of the target, which
may have a much simpler topology than the full density. LGFs do not stipulate the form of G, and
indeed any standard choice of g can be used as the basis for its construction. We pay a price for these
benefits in that we can no longer compute the likelihood of our model exactly, and must instead resort
to a variational approximation, with our training objective replaced by the evidence lower bound
(ELBO). However, in practice we find this is not a significant limitation, as the bijection structure
of LGFs permits learning a high-quality variational distribution suitable for large-scale training, and
we show empirically that LGFs outperform their counterpart normalising flows across a variety of
density estimation tasks.

1We assume throughout that X ,Z ⊆ Rd, and that all densities are with respect to the Lebesgue measure.

1

Under review as a conference paper at ICLR 2020

2 1 0 1 2

1.0

0.5

0.0

0.5

1.0

0.000

0.048

0.096

0.144

0.192

0.240

0.288

0.336

0.384

2 1 0 1 2

1.0

0.5

0.0

0.5

1.0

0.000

0.048

0.096

0.144

0.192

0.240

0.288

0.336

0.384

Figure 1: Density models learned after 300 epochs by a standard ten-layer MAF (left) and by a five-
layer LGF-MAF (right). Both models have roughly 80,000 parameters and use a standard Gaussian
prior distribution. Samples from the target distribution are shown in black. Details of the experi-
mental setup are given in subsection C.1.

2 LIMITATIONS OF NORMALISING FLOWS

Consider a normalising flow model defined by a parameterised family of bijections gθ, where θ de-
notes our parameters. Suppose we are in the typical case that each gθ is continuous in x. Intuitively,
this seems to pose a problem when p?X and pZ are effectively supported2 on domains with differ-
ent topologies, since continuous functions necessarily preserve topology. In practice, suggestive
pathologies along these lines are readily apparent in simple 2-D experiments as shown in Figure 1.
In this case, the density model (a Masked Autoregressive Flow (MAF) (Papamakarios et al., 2017))
is unable to continuously transform the support of the prior (a standard 2-D Gaussian) into the sup-
port of p?X , which is the union of two disjoint rectangles and hence clearly has a different topology.

The standard maximum likelihood objective is asymptotically equivalent to
arg min

θ
DKL(p?X ||pθX), (2)

where pθX(x) = pZ(gθ(x))|detDgθ(x)| and DKL denotes the Kullback-Leibler divergence. We
conjecture that the pathologies in Figure 1 are the result of sensitivities of this KL, which are greatly
exacerbated when modelling p?X as the pushforward of pZ by a single continuous g−1θ . In particular,
observe that DKL(p?X ||pX) = ∞ unless the support supp pX contains supp p?X . However, at the
same time, Pinsker’s inequality (Massart, 2007) means that the KL is bounded below like

DKL(p?X ||pθX) ≥ 2

(
1−

∫
supp p?X

pθX(x)dx

)2

= 2

(
1−

∫
supp(p?X)∩supp pθX

pθX(x)dx

)2

and is hence strictly positive unless supp p?X = supp pθX . Thus the objective of equation 2 en-
courages the support of p?X to approximate that of pθX , from above, as closely as possible, but any
overshoot – however small – carries an immediate infinite penalty.

We believe this behaviour significantly limits the ability of normalising flows to properly learn any
target distribution whose support has a complicated topology. Note that in practice our parame-
terisation usually satisfies detDgθ(x) 6= 0 for all θ and x. It then follows that no θ will yield
supp pθX = supp p?X when supp p?X and supp pZ are not homeomorphic, even if our parameteri-
sation contains all such continuous bijections. When this holds, we conjecture that the optimum of
equation 2 will typically be pathological, since, in order to drive the KL to zero, gθ must necessarily
approximate some mapping that is not a continuous bijection. For gradient-based methods of solving
equation 2, we further conjecture that this problem is compounded by the discontinuous behaviour
of the KL described above. It seems plausible that perturbations of θ might entail small perturbations
of parts of supp pθX . When gθ is close to optimal, so that supp pθX ≈ supp p?X , these perturbations

2Strictly speaking, the support of a density p technically refers to the set on which p is positive. However,
here and elsewhere, our statements are also approximately true when supp p is interpreted as the region of p
which is not smaller than some threshold. This is relevant in practice since, even if both are highly concentrated
on some small region, it is common to assume that p?X and pZ have full support, in which case the supports of
p?X and pZ would be trivially homeomorphic.

2

Under review as a conference paper at ICLR 2020

Figure 2: Three subsequent epochs of training for the models shown in Figure 1. The support of the
standard MAF fluctuates significantly, while LGF-MAF is stable.

may potentially push some region of supp pθX outside the boundary of supp p?X and hence drive the
KL to infinity. We conjecture this makes the landscape around the optimal θ extremely difficult to
navigate for gradient-based methods, leading to increasing fluctuations and instabilities in the KL
in equation 2, degrading the quality of the final gθ produced. Figure 2 illustrates this behaviour:
observe that, even after 500 training epochs, the support of the standard MAF is unstable.

A simple way to fix these problems would be to use a complicated pZ more closely matched to
the structure of p?X . For instance, taking pZ to be a mixture model has previously been found to
improve the performance of normalising flows in some cases (Papamakarios et al., 2017). However,
this approach requires prior knowledge of the topology of supp p?X that might be difficult to obtain:
e.g. using a Gaussian mixture pZ seems to require us to know the number of connected components
of supp p?X beforehand, and even then would not be sufficient unless these components are each
homeomorphic to a hypersphere. Ideally, we would like our model to be flexible enough to learn the
structure of the target on its own, with minimal explicit design choices required on our part.

An alternative approach would be to try a more expressive family gθ in the hope that this better
conditions the optimisation problem in equation 2. Several works have considered families of gθ
that are (in principle) universal approximators of any continuous probability densities (Huang et al.,
2018; Jaini et al., 2019). While we have not performed a thorough empirical evaluation of these
methods, we suspect that this approach can at best mitigate the problems described above, since the
assumption of continuity of gθ holds for universal approximators also. Moreover, the method we
propose below can be used in conjunction with any standard flow-based method, so that we expect
even further improvement when an expressive gθ is combined with our approach.

Finally, we note that the shortcomings of the KL divergence for generative modelling are described
at length by Arjovsky et al. (2017). There, the authors suggest instead using the Wasserstein distance
to measure the discrepancy between p?X and pZ , since under typical assumptions this will yield a
continuous loss function suitable for gradient-based training. However, the Wasserstein distance is
difficult to estimate in high dimensions, and its performance can be sensitive to the choice of ground
metric used (Peyré et al., 2019). Our proposal here is to keep the KL objective in equation 2 and to
modify the model instead, so that we are not required to meet the stringent requirement of mapping
supp pZ onto supp p?X using a single continuous bijection. We describe our method in full now.

3 LOCALISED GENERATIVE FLOWS

3.1 MODEL

The essence of our idea is to replace the single g used in equation 2 with an indexed family
{G(·;u)}u∈U such that each G(·;u) is a bijection from X to Z . Intuitively, our aim is for each
G(·;u) only to push the prior onto a local region of supp p?X , thereby relaxing the constraints posed
by standard normalising flows as described above. To do so, we now define pX as the marginal

3

Under review as a conference paper at ICLR 2020

density of X obtained via the following generative process:
Z ∼ pZ , U ∼ pU |Z(·|Z), X := G−1(Z;U). (3)

Here pU |X is an additional term that we must specify. In all our experiments we take this to be a
mean field Gaussian, so that pU |X(u|z) = Gaussian(u;µ(z), σ(z)2Idu) for some functions µ, σ :

Z → U ⊆ Rdu , where du is the dimensionality of U , and Idu is the du × du identity matrix. Other
possibilities, such as the Concrete distribution, (Maddison et al., 2016) might also be useful.

Informally,3 this yields the joint model pX,U,Z(x, u, z) = pZ(z) pU |Z(u|z) δ(x−G−1(z;u)),where
δ is the Dirac delta. To obtain a proper density for (X,U) we can marginalise out the dependence
on z by making the change of variable z = G(x′;u), yielding dz = |detDG(x′;u)| dx′.4 Thus

pX,U (x, u) =

∫
pX,U,Z(x, u, z) dz

=

∫
pZ(G(x′;u))pU |Z(u|G(x′;u))δ(x− x′) |detDG(x′;u)| dx′

= pZ(G(x;u)) pU |Z(u|G(x;u)) |detDG(x;u)| .
We then obtain our density model pX by marginalising out u:

pX(x) =

∫
pZ(G(x;u)) pU |Z(u|G(x;u)) |detDG(x;u)| du. (4)

In other words, our pX(x) is a mixture (in general, infinite) of individual normalising flowsG(x;u),
each weighted by pU |Z(u|G(x;u)).

We can also stack this architecture by taking pZ itself to be a density of the form of equation 4.
Doing so with L layers of stacking corresponds to the marginal of X ≡ ZL obtained via:

Z0 ∼ pZ0 ,

U` ∼ pU`|Z`−1
(·|Z`−1), for ` ∈ {1, . . . , L},

Z` = G−1` (Z`−1;U`), for ` ∈ {1, . . . , L},
where now each G`(·;u) : X → Z is a bijection for all u. The stochastic computation graph
corresponding to this model is shown in Figure 3a. In this case, the same argument yields
pZ`,U1:`

(z`, u1:`)=pZ`−1,U1:`−1
(G`(z`;u`),u1:`−1)pU`|Z`−1

(u`|G`(z`;u`))|detDG`(z`;u`)| (5)
where pZ0,U1:0

≡ pZ0
. This approach is in keeping with the standard practice of constructing

normalising flows as the composition of simpler bijections, which can indeed be recovered here
by taking each pU`|Z`−1

(·|Z`−1) to be Dirac. We have found stacking to improve significantly the
overall expressiveness of our models, and make extensive use of it in our experiments below.

3.2 BENEFITS

Intuitively, we believe our model allows each G(·;u) to learn a local region of p?X , thereby greatly
relaxing the global constraints on existing flow-based models described above. To ensure a finite KL,
we no longer require the density pZ(G(x;u)) |detDG(x;u)| to have support covering the entirety
of supp p?X for any given u: all that matters is that every region of supp p?X is covered for some
choice of u. Thus, our model can achieve good performance with each bijection G(·;u) faithfully
capturing only a potentially very small component of p?X . This seems significantly more achievable
than the previous case, wherein a single bijection is required to capture the entire target.

This argument is potentially clearest if u is discrete. For example, even if u ∈ {u1, u2} can take
only two possible values, it immediately becomes simpler to represent the target shown in Figure 1
using a Gaussian prior: we simply require G(x;u1) to map onto one component, and G(x;u2) to
map onto the other. In practice, we could easily implement such a G using two separate normalising
flows that are trained jointly. The discrete case is moreover appealing since in principle it allows
exact evaluation of the integral in equation 4, which becomes a summation. Unfortunately this
approach also has significant drawbacks that we discuss at greater length in Appendix B.

We therefore instead focus here on a continuous u. In this case, for example, we can recover p?X
from Figure 1 by partitioning U into disjoint regions U−1 and U1, and having G−1(·;u) map onto

3This argument can be made precise using disintegrations (Chang & Pollard, 1997), but since the proof is
mainly a matter of measure-theoretic formalities we omit it.

4Note that DG(x;u) refers to the Jacobian with respect to x only

4

Under review as a conference paper at ICLR 2020

the left component of p?X for u ∈ U−1, and the right component for u ∈ U1. Observe that in this
scenario we do not require any given G−1(·;u) to map onto both components of the target, which is
in keeping with our goal of localising the model of p?X that is learned by our method.

In practiceGwill invariably be continuous in both its arguments, in which case it will not be possible
to partition U disjointly in this way. Instead we will necessarily obtain some additional intermediate
region U0 on which G−1(·;u) maps part of supp pZ outside of supp p?X , so that pX(x) will be
strictly positive there. This might appear to return us to the situation shown for the standard MAF
shown in Figure 1. However, if only a relatively small region of U0 maps to any such x, then the
overall value of the integral in equation 4 will be small here. Moreover, if pU |X is sufficiently
flexible, it might additionally learn to downweight such (u, x) pairs, further reducing the value
of pX(x). Empirically, we find these conditions are indeed sufficient to learn an accurate density
estimator without the pathologies of standard flows. Observe in Figure 1 that our model is able to
separate cleanly the two distinct components of the target density. Moreover, in Figure 2, we see
that the learned density avoids the instabilities we observed previously.

We believe a similar story holds when our model is applied on more complicated targets also. At
a heuristic level, we expect our model will learn to (softly) partition supp p?X (via u) into separate
components, and that each G−1(·;u) will learn to map supp pZ onto only one of these components.
We conjecture that learning many such localised bijections is easier than learning a single global
bijection, and we demonstrate this empirically for several density estimation problems of interest.

3.3 INFERENCE

Even in the single layer case (L = 1), if u is continuous, then the integral in equation 4 is intractable.
In order to train our model, we resort to a variational approximation: we introduce an approximate
posterior qU1:L|X ≈ pU1:L|X , and consider the evidence lower bound (ELBO) of log pX(x):

L(x) := EqU1:L|X(u1:L|x)
[
log pX,U1:L

(x, u1:L)− log qU1:L|X(u1:L|x)
]
.

It is straightforward to show that L(x) ≤ log pX(x). This bound is tight when qU1:L|X is the exact
posterior pU1:L|X , which allows learning an approximation to p?X by maximising n−1

∑n
i=1 L(xi)

jointly in pX,U1:L
and qU1:L|X , where we assume a dataset of n i.i.d. samples xi ∼ p?X .

It can be shown (see Appendix A) that the exact posterior factors as pU1:L|X(u1:L|x) =∏L
`=1 pU`|Z`(u`|z`), where zL = x, and z`−1 := G`(z`;u`) for ` ≤ L. We thus endow qU1:L|X

with the same form:
qU1:L|X(u1:L|x) :=

L∏
`=1

qU`|Z`(u`|z`),

The stochastic computation graph for this inference model is shown in Figure 3b. In conjunction
with equation 5, this allows writing the ELBO recursively as
L`(z`) = EqU`|Z` (u`|z`)

[
L`−1(G`(z`;u`)) + log pU`|Z`(u`|z`) + log |detDG`(z`;u`)| − log qU`|X(u`|z`)

]
for ` ≥ 1, with the base case L0(z0) = pZ0(z0). Here we recover L(x) ≡ LL(zL).

Now let θ denote all the parameters of both pX,U1:L
and qU1:L|X . Suppose each q` can be suitably

reparametrised (Kingma & Welling, 2013; Rezende et al., 2014) so that h`(ε`, z`) ∼ q`(·|z`) when
ε` ∼ η` for some density η` not depending on θ. In all our experiments we give qU`|Z` the same
mean field form as in equation 3, in which case this holds immediately as described e.g. by Kingma
& Welling (2013). We can then obtain unbiased estimates of∇θL(x) straightforwardly using Algo-
rithm 1, which in turn allows training our model objective via stochastic gradient descent. Note that
although this algorithm is specified in terms of a single value of z`, it is trivial to obtain an unbiased
estimate of ∇θm−1

∑m
j=1 L(xj) for a minibatch of points xj by averaging over the batch index at

each layer of recursion.

3.3.1 PERFORMANCE

A major reason for the popularity of normalising flows is the tractability of their exact log likeli-
hoods. In contrast, the variational scheme described here can produce at best an approximation to
this value, which we might expect reduces performance of the final density estimator learned. More-
over, particularly when the number of layers L is large, it might seem that the variance of gradient
estimators obtained from Algorithm 1 would be impractically high.

5

Under review as a conference paper at ICLR 2020

Algorithm 1 Recursive calculation of an unbiased estimator of∇θL`(z`)
function GRADELBO(z`, `)

if ` = 0 then
return pZ0

(z`)
else

ε` ∼ η`
u` ← h`(ε`, z`)
z`−1 ← G`(z`;u`)
∆` ← log pU`|Z`−1

(u`|z`−1) + log |detDG`(z`;u`)| − log qU`|Z`(u`|z`)
return GRADELBO(z`−1, `− 1) +∇θ∆`

However, in practice we have not found either of these problems to be a significant limitation,
as our experimental results in section 5 show. Empirically we find that importance sampling is
sufficient for obtaining good, low-variance (if slightly biased) estimates of log pX(x) (Rezende et al.,
2014, Appendix E). Likewise, even when we take L to be large, we do not find that the variance
of Algorithm 1 becomes correspondingly large. We conjecture that this occurs because, as the
number of layers of bijections G−1 in our generative model grows, the complexity required of each
individual bijection in order to map pZ to p?X naturally decreases. We therefore have reason to think
that, as L grows, learning each qU`|Z` will become easier, so that the variance at each layer will
decrease, and the overall variance may remain fairly stable.

3.4 CHOICE OF INDEXED BIJECTION FAMILY

We now consider the choice of G, for which there are many possibilities. In our experiments, we
focus on the simple case in which

G(x;u) = s(u)� g(x) + t(u) (6)
where s, t : U → Z are unrestricted mappings, g : X → Z is a bijection, and� denotes elementwise
multiplication. In this case, detDG(x;u) = (detDg(x))

∑d
i=1[s(u)]i, where [s(u)]i denotes the

ith component of s(u), and Z ⊆ Rd as before. This has the advantage of working out-of-the-box
with all pre-existing normalising flow methods for which a tractable Jacobian of g is available.

Equation 6 also has an appealing similarity with the common practice of applying affine transforma-
tions between flow steps for normalisation purposes, which has been found empirically to improve
stability, convergence time, and overall performance (Dinh et al., 2016; Papamakarios et al., 2017;
Kingma & Dhariwal, 2018). In prior work, s and t have been simple parameters that are learned
either directly as part of the model, or updated according to running batch statistics. Our approach
may be understood as a generalisation of this family of techniques.

Other choices of G are certainly possible here. For instance, we have had preliminary experimen-
tal success on small problems by simply taking g to be the identity, in which case the model is
greatly simplified by not requiring any Jacobians at all. Alternatively, it is also frequently possible
to modify the architecture of standard choices of g to obtain an appropriate G. For instance, affine
coupling layers, a key component of models such as RealNVP (Dinh et al., 2016), make use of neu-
ral networks that take as input a subset of the dimensions of x. By concatenating u to this input, we
straightforwardly obtain a family of bijections G(·;u) for each value of u. This requires more work
to implement than our suggested method, but has the advantage of no longer requiring a choice of
s and t. We have again had preliminary empirical success with this approach. We leave a more
thorough exploration of these alternative possibilites for future work.

4 RELATED WORK

4.1 MIXTURE METHODS

There are other approaches which seek to model mixtures of normalising flows; however all of the
examples below rely on discrete mixing variables, which are not amenable to stacking or variational
inference (cf. Appendix B). A closely-related approach to ours is the RAD model (Dinh et al.,
2019) which briefly notes similar topological concerns to us and proposes a superficially similar
generative scheme. However, there are some limitations, notably that RAD requires an awkward
parametrisation to ensure continuity of the flow and does not demonstrate the effectiveness of stack-
ing the model architecture. Duan (2019) proposes a single-layer instance of our model with discrete

6

Under review as a conference paper at ICLR 2020

����−1�1

�1 ��−1

...
�0 �

(a) Generative Model

����−1�1

�1 ��−1 ��0

...

(b) Inference Model

Figure 3: Multi-layer model schematic withL layers. Given their parents, circular nodes are random,
and diamond nodes are deterministic.

mixing variable designed for Monte Carlo estimation. Ziegler & Rush (2019) introduce a normalis-
ing flow model with an additional latent variable indicating sequence length, but this model is only
applicable to sequences. Our method could also be considered an addition to the class of Deep Mix-
ture Models (Tang et al., 2012; Van den Oord & Schrauwen, 2014), but again our use of continuous
mixing variables avoids computational cost scaling exponentially in the number of layers, and the
additional structure imposed by the bijections allows for coherent inference across layers.

4.2 METHODS COMBINING VARIATIONAL INFERENCE AND NORMALISING FLOWS

It should be noted that the recent popularisation of normalising flows began with their use in varia-
tional inference models (Rezende & Mohamed, 2015). Models such as IAF (Kingma et al., 2016)
and Sylvester flows (Berg et al., 2018) sought to improve the mean-field variational posterior q by
additionally transforming samples from q through a normalising flow to obtain a new approximate
posterior. However, these models do not include any sort of flow in the generative process, generally
sticking to the VAE (Kingma & Welling, 2013; Rezende et al., 2014) encoder. Furthermore, the goal
of these models is to use normalising flows to improve variational inference, which is somewhat
tangential to the goal of using variational inference to improve normalising flows in the context of
density estimation, which sets these methods apart from ours.

However, there are indeed some methods augmenting normalising flows with variational inference,
but in all cases below the variational structure is not stacked to obtain extra expressiveness. Ho et al.
(2019) use a variational scheme to improve upon the standard dequantisation method for deep gener-
ative modelling of images (Theis et al., 2015); this approach is orthogonal to ours and could indeed
be integrated into LGFs. Gritsenko et al. (2019) also generalise normalising flows using variational
methods, but they incorporate the extra latent noise into the model in a much more restrictive way.
Das et al. (2019) only learn a low-dimensional prior over the noise space variationally.

4.3 PURELY VARIATIONAL METHODS

Finally, we can contrast our approach with purely variational methods which are not flow-based, but
still involve some type of stacking architecture. The main difference between these methods and
LGFs is that the bijections we use provide us with a generative model with far more structure, which
allows us to use the theory of D-separation to build appropriate inference models. Contrast this with,
for example, Rezende et al. (2014), in which the layers are independently inferred, or Sønderby et al.
(2016), which requires a complicated parameter-sharing scheme to reliably perform inference. A
single-layer instance of our model also shares some similarity with the fully-unsupervised case in
Maaløe et al. (2016), but the generative process there conditions the auxiliary variable on the data.

5 EXPERIMENTS

We now describe various experiments we ran that demonstrate the effectiveness of LGFs. In each
subsection, we compare a base flow with a flow that has been extended as an LGF model. We extend
the base flows by inserting a mixing variable U between every component layer of the base flow: for
example, we insert U after each MADE layer in MAF (Papamakarios et al., 2017), and after each
affine coupling layer in RealNVP (Dinh et al., 2016). In all cases we train our models to maximise
either the log probability (for the base flow) or the ELBO (for the extended flow), using the ADAM
optimiser (Kingma & Ba, 2014) with default hyperparameters and no weight decay. We insert batch
normalisation (Ioffe & Szegedy, 2015) between flow steps for the base flows as suggested by Dinh
et al. (2016), but omit it for the LGFs, since our choice ofG is a generalisation of batch normalisation
as described above. To evaluate the models, we calculate the average log-likelihood over the test
set for the base flows, and use the consistent estimator of the average log-likelihood over the test set

7

Under review as a conference paper at ICLR 2020

Table 1: Average plus/minus standard error of the best test-set negative log-likelihood.

POWER GAS HEPMASS MINIBOONE

MAF 0.19± 0.02 9.23± 0.07 −18.33± 0.10 −10.98± 0.03
LGF-MAF 0.48± 0.01 12.02± 0.10 −16.63± 0.09 −9.93± 0.04

with S = 1000 importance samples for LGFs, as in Rezende et al. (2014, Appendix E). We used
early stopping during training, halting after 30 epochs of no validation improvement5 for the UCI
experiments, and after 50 epochs of no improvement for the image experiments.

Our code is available at https://github.com/anonsubmission974/lgf.

5.1 UCI DATASETS

Following Papamakarios et al. (2017), we tested the performance of our method on the POWER,
GAS, HEPMASS, and MINIBOONE datasets from the UCI repository (Bache & Lichman, 2013).
We preprocessed these datasets identically to Papamakarios et al. (2017), including the same train,
validation, and test splits. To increase the speed of training, we increased the batch size and corre-
spondingly the learning rate by a factor of 10 from the configuration used by Papamakarios et al.
(2017). We note that our results slightly differ from theirs perhaps because of this change.

We focused on MAF as our baseline normalising flow because of its improved performance over
alternatives such as RealNVP for general-purpose density estimation (Papamakarios et al., 2017).
A given MAF model is defined primarily by how many MADE (Germain et al., 2015) layers it
uses, as well as the sizes of the autoregressive networks at each layer. For an LGF-MAF, we must
additionally define the neural networks used in the generative and inference process, for which we
use multi-layer perceptrons – the full details are in subsection C.2. For 3 separate random seeds,
we trained MAFs and LGF-MAFs using a variety of choices of hyperparameters. Each instance of
LGF-MAF has a corresponding MAF configuration, but in order to compensate for the parameters
introduced by our additional neural networks, we also explore deeper and wider MAF models. We
then chose the best performing model across all parameter configurations using validation perfor-
mance for a particular seed, and we report the test set log-likelihood of this model. Table 1 shows
these log likelihoods averaged across the different seeds. It is clear that extending MAFs with LGFs
produces superior results in this case when measured on test log-likelihood. We also note that for
each of the datasets considered, the range of test log-likelihoods achieved by LGF-MAF models
strictly does not overlap the range of test log-likelihoods achieved by MAF models.

5.2 IMAGE DATASETS

In this section we use RealNVP as the base flow and compare its performance to a RealNVP-based
LGF model on the Fashion-MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky et al., 2009)
datasets. We use the standard dequantisation step from Theis et al. (2015) to pre-process the data,
and a learning rate of 10−4 across all experiments.

We match the original RealNVP architecture given in Dinh et al. (2016), using a residual network
(He et al., 2016) with 8 residual blocks of 64 channels (i.e. 8×64) each for the coupling networks, 10
layers of coupling networks (with prescribed scale and squeeze operations), and batch normalisation
in between all layers. This method has 5.94M parameters for Fashion-MNIST and 6.01M parameters
for CIFAR-10. We also consider a RealNVP model with coupler networks of size 4 × 64 to match
those used below for LGF-RealNVP for completeness; this model has 2.99M and 3.05M parameters
for Fashion-MNIST and CIFAR-10, respectively.

For the LGF-RealNVP, we use a only 4 residual blocks of 64 channels each in the coupling networks
and no batch normalisation between the layers. Additionally, we specify the mean and variance of
both pU`|Z`−1

and qU`|Z` at each layer ` using residual networks of size 2 × 64. We also specify s
and t as the outputs of a residual network of size 2 × 8. We use a single-channel image-like u at
each layer, whose height and width are the same size as the outputs of the coupling network (which

5Validation performance for LGFs was again calculated using the importance sampling estimator of the
log-likelihood from Rezende et al. (2014) over the validation set, but with only S = 10 importance samples.

8

https://github.com/anonsubmission974/lgf

Under review as a conference paper at ICLR 2020

may not be the same size as the original image because of the scale and squeeze operations). This
model has 5.99M parameters for Fashion-MNIST and 6.07M parameters for CIFAR-10.

Table 2: Average plus/minus the standard error of test-set
bits per dimension. RealNVP (m) refers to a RealNVP
model with m residual blocks in the coupling networks.

Fashion-MNIST CIFAR-10

RealNVP (4) 2.944± 0.003 3.565± 0.001
RealNVP (8) 2.946± 0.002 3.554± 0.001
LGF-RealNVP (4) 2.823± 0.003 3.477± 0.019

As noted in Table 2, LGFs consis-
tently outperform the base models
for the same number of parameters,
and tend to train faster even without
the batch normalisation layers: e.g.
the average epoch of top validation
loss on CIFAR-10 is 458 for LGF-
RealNVP, and 723 for RealNVP (8).
Samples synthesised from all models
can be found in subsection C.3.

We can dig deeper into our experimental results to justify that using the ELBO as a surrogate objec-
tive instead of the log-likelihood does not penalise our method, even in high dimension. First note
that the gap between the estimated test set log-likelihood and the average test set ELBO is not very
large for the LGF models. In particular, the average relative error in estimated log probability when
estimating with the ELBO across the test set is 8.98 × 10−3 for Fashion-MNIST and 6.88 × 10−3

for CIFAR-10. Next, we note that the importance-sampling-based log-likelihood estimator itself has
incredibly low variance with S = 1000 importance samples. For each LGF model, we computed
the relative standard deviation of this estimator across three runs: the average of this across models
was 8.34× 10−4 for Fashion-MNIST, and 2.07× 10−5 for CIFAR-10.

6 CONCLUSION

In this paper, we have proposed localised generative flows for density estimation, which generalise
existing normalising flow methods and address the limitations of these models in expressing com-
plicated target distributions. Our method obtains promising empirical results on a variety of tasks.
Many extensions appear possible, and we believe localised generative flows therefore show promise
as a means for improving the performance of density estimators in practice.

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.
ics.uci.edu/ml.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Joern-Henrik Jacobsen.
Invertible residual networks. In International Conference on Machine Learning, pp. 573–582,
2019.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester nor-
malizing flows for variational inference. arXiv preprint arXiv:1803.05649, 2018.

Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.

Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

Joseph T Chang and David Pollard. Conditioning as disintegration. Statistica Neerlandica, 51(3):
287–317, 1997.

Hari Prasanna Das, Pieter Abbeel, and Costas J Spanos. Dimensionality reduction flows. arXiv
preprint arXiv:1908.01686, 2019.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. arXiv
preprint arXiv:1605.08803, 2016.

9

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2020

Laurent Dinh, Jascha Sohl-Dickstein, Razvan Pascanu, and Hugo Larochelle. A RAD approach to
deep mixture models. arXiv preprint arXiv:1903.07714, 2019.

Leo L Duan. Transport Monte Carlo. arXiv preprint arXiv:1907.10448, 2019.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pp. 881–889, 2015.

Alexey A Gritsenko, Jasper Snoek, and Tim Salimans. On the relationship between normalising
flows and variational-and denoising autoencoders. 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
Conference on Machine Learning, pp. 2722–2730, 2019.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, pp. 2083–2092, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow. In International
Conference on Machine Learning, pp. 3009–3018, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Durk P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in neural information
processing systems, pp. 4743–4751, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary deep gen-
erative models. In International Conference on Machine Learning, pp. 1445–1453, 2016.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Pascal Massart. Concentration Inequalities and Model Selection. Springer, 2007.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pp. 2338–2347, 2017.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Foundations and Trends R© in
Machine Learning, 11(5-6):355–607, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning, pp. 1530–1538, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International Conference on Machine Learn-
ing, pp. 1278–1286, 2014.

10

Under review as a conference paper at ICLR 2020

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in neural information processing systems, pp. 3738–3746,
2016.

Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey Hinton. Deep mixtures of factor analysers.
In Proceedings of the 29th International Conference on International Conference on Machine
Learning, pp. 1123–1130. Omnipress, 2012.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Aaron Van den Oord and Benjamin Schrauwen. Factoring variations in natural images with deep
Gaussian mixture models. In Advances in Neural Information Processing Systems, pp. 3518–
3526, 2014.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zachary M Ziegler and Alexander M Rush. Latent normalizing flows for discrete sequences. arXiv
preprint arXiv:1901.10548, 2019.

11

Under review as a conference paper at ICLR 2020

A CORRECTNESS OF POSTERIOR FACTORISATION

We want to prove that the exact posterior factorises according to

pU1:L|X(u1:L|x) =

L∏
`=1

pU`|Z`(u`|z`), (7)

where zL = x, and z`−1 := G`(z`;u`) for ` ≤ L. We first note that we can always write this
posterior autoregressively as

pU1:L|X(u1:L|x) =

L∏
`=1

pU`|U>`,X(u`|u>`, x). (8)

Now, consider the graph of the full generative model, including the random variables {Z`}`. Using
the theory of D-separation (Bishop, 2006), we can prove that, for any ` ∈ {1, . . . , L − 1}, U` is
conditionally independent of all random variables in the set H` := {U>`, Z>`}, given Z`. This can
be seen by noting that all paths from U` to a node i ∈ H` contain a chain that is “blocked” by Z`;
in other words, all information about H` that can be gleaned from U` flows through Z`. Thus, we
know that

pU`|U>`,X,Z`(u`|u>`, x, z`) = pU`|Z`(u`|z`).

We can then (somewhat informally – refer to footnote on pg. 4) write the following for any ` ∈
{1, . . . , L− 1}:

pU`|U>`,X(u`|u>`, x) =

∫
pU`,Z`|U>`,X(u`, z`|u>`, x)dz`

=

∫
pU`|Z`,U>`,X(u`|z`, u>`, x)pZ`|U>`,X(z`|u>`, x)dz`

=

∫
pU`|Z`(u`|z`)δ

(
z` −

(
G`+1,u`+1

◦ · · · ◦GL,uL
)

(x)
)
dz`

= pU`|Z`
(
u`|
(
G`+1,u`+1

◦ · · · ◦GL,uL
)

(x)
)

= pU`|Z`(u`|z`)
by the definition of z`, where we write G`(·;u) ≡ G`,u(·) to remove any ambiguities when com-
posing functions. We can substitute this result into equation 8 to obtain equation 7.

B DISCRETE CASE

In this section, we briefly discuss the drawbacks of using a discrete u. First, observe that the choice
of number of discrete values taken by u has immediate implications for the number of disconnected
components of supp p?X thatG can separate, which therefore seems to require making fairly concrete
assumptions (perhaps implicitly) about the topology of the target of interest. To mitigate this, we
might try taking the number of u values to be very large, but then in turn the time required to
evaluate equation 4 (now as a sum over the components instead of an integral) necessarily increases.
This is particularly true when using a stacked architecture, since to evaluate pX(x) with L layers
each having K possible u-values takes Θ(KL) complexity. Dinh et al. (2019) propose a model
that partitions X so that only one component in each summation is nonzero for any given x, which
reduces this cost to Θ(L). However, this partitioning means that their pX is not continuous as a
function of x, which is reported to make the optimisation problem in equation 2 difficult. We thus
cannot rely on the otherwise seemingly convenient exact form of the log-likelihood in the discrete
case.

Not having an exact log-likelihood was not prohibitive in the continuous case though, as we were
able to introduce an approximate posterior and perform variational inference to instead maximise a
lower bound on the marginal log-likelihood. Unfortunately, we will not be able to use variational
methods when u is exactly discrete. Since pU`|Z`−1

defines a discrete distribution at each layer, we
would require our variational distribution to also be a discrete distribution to avoid high-variance
estimates of the ELBO, but the parameters of a discrete distribution cannot be optimised using the
reparametrisation trick.

As mentioned earlier, we could have alternatively used the CONCRETE distribution (Maddison
et al., 2016) to relax the discreteness of u and still apply variational methods – this is indeed a topic
for future work but would still require specifying an appropriate number of mixture components.

12

Under review as a conference paper at ICLR 2020

C FURTHER EXPERIMENTAL DETAILS

C.1 2-D EXPERIMENTS

To gain intuitions about our model, we ran several experiments on the simple 2-D datasets shown
in Figure 1 and Figure 4. Specifically, we compared the performance of a baseline MAF against an
LGF-MAF. For the LGF-MAF, s` and t` were obtained as the joint output of a multi-layer perceptron
(MLP), and the means and standard deviations of each pU`|Z`−1

and qU`|Z` were similarly each
obtained as the joint output of an MLP.

For the dataset shown in Figure 1, the baseline MAF had 10 autoregressive layers consisting of
4 hidden layers with 50 hidden units. The LGF-MAF had 5 autoregressive layers consisting of 2
hidden layers with 50 hidden units. Additionally, the s`/t` network consisted of 2 hidden layers of
10 hidden units, and the mean/standard deviation networks consisted of 4 hidden layers of 50 hidden
units. In total the baseline MAF had 80080 parameters, while our model had 80810 parameters. We
trained both models for 300 epochs.

We used more parameters for the datasets shown in Figure 4, since these targets have more compli-
cated topologies. In particular, the baseline MAF had 20 autoregressive layers, each with the same
structure as before. The LGF-MAF had 5 autoregressive layers, now with 4 hidden layers of 50 hid-
den units. The s`/t` network and the mean/standard deviation networks were the same as before. In
total the baseline MAF had 160160 parameters, while our model had 80810 parameters. We trained
both models now for 500 epochs.

The results of this experiment are shown in Figure 1 and Figure 4. Observe that LGF-MAF consis-
tently produces a more faithful representation of the target distribution than the baseline. A failure
mode of our approach is exhibited in the spiral dataset, where our model lacks the power to fully
capture the topology of the target. However, we did not find it difficult to improve on this: by
increasing the size of the mean/standard deviation networks to 8 hidden layers of 50 hidden units
(and keeping all other parameters fixed), we were able to obtain the result shown in Figure 5. This
model had a total of 221910 parameters. For the sake of a fair comparison, we also tried increasing
the complexity of the MAF model, by the size of its autoregressive networks to 8 hidden layers of
50 hidden units (obtaining 364160 parameters total). This model diverged after approximately 160
epochs. The result after 150 epochs is shown in Figure 5.

13

Under review as a conference paper at ICLR 2020

Figure 4: Density models learned by a standard 20 layer MAF (left) and by a 5 layer LGF-MAF
(right) for a variety of 2-D target distributions. Samples from the target are shown in black.

Figure 5: Density models learned by a larger 20 layer MAF (left) and a larger 5 layer LGF-MAF
(right) for the spirals dataset.

14

Under review as a conference paper at ICLR 2020

C.2 UCI EXPERIMENTS

C.2.1 EXTENDED MAF

To turn a MAF model into an LGF-MAF model here, at each layer we must specify the conditional
generative distribution pU`|Z`−1

, the one-layer approximate posterior qU`|Z` , and the affine transfor-
mation networks s` and t`. We use multilayer perceptrons (MLPs) for all of these, in particular:

• We set pU`|Z`−1
= N

(
µp(Z`−1), σp(Z`−1)2

)
, where µp and σp are two separate outputs

of the same MLP
• We set qU`|Z` = N

(
µq(Z`), σq(Z`)

2
)
, where µq and σq are two separate outputs of the

same MLP
• We set s` and t` to be two separate outputs of the same MLP

C.2.2 PARAMETER CONFIGURATIONS

In tables 3 and 4, we list the choices of parameters for MAF and LGF-MAF. In all cases, we allowed
the base MAF to have more layers and deeper coupler networks to compensate for the additional
parameters added by p, q, s, and t. Note that neural networks are listed as size L × K, where L
denotes the number of hidden layers and K denotes the size of the hidden layers. All combinations
of parameters in list form in the table below were considered. In each case, there are 9 configurations
for MAF and 8 configurations for LGF-MAF.

Table 3: Parameter configurations for HEPMASS and MINIBOONE.

Layers Coupler size u size p, q size s, t size

MAF 5, 10, 20 2× 128, 2× 512, 2× 1024 N/A N/A N/A
LGF-MAF 5, 10 2× 128 10 2× 128, 2× 512 2× 128

Table 4: Parameter configurations for POWER and GAS.

Layers Coupler size u size p, q size s, t size

MAF 5, 10, 20 2× 100, 2× 200, 2× 400 N/A N/A N/A
LGF-MAF 5, 10 2× 128 10 2× 100, 2× 200 2× 128

C.3 IMAGE EXPERIMENTS

In figures 6 to 11, we present some samples synthesised from the density models trained on Fashion-
MNIST and CIFAR-10.

15

Under review as a conference paper at ICLR 2020

Figure 6: Synthetic samples from Fashion-MNIST generated by RealNVP (4)

Figure 7: Synthetic samples from Fashion-MNIST generated by RealNVP (8)

16

Under review as a conference paper at ICLR 2020

Figure 8: Synthetic samples from Fashion-MNIST generated by LGF-RealNVP (4)

Figure 9: Synthetic samples from CIFAR-10 generated by RealNVP (4)

17

Under review as a conference paper at ICLR 2020

Figure 10: Synthetic samples from CIFAR-10 generated by RealNVP (8)

Figure 11: Synthetic samples from CIFAR-10 generated by LGF-RealNVP (4)

18

	Introduction
	Limitations of Normalising Flows
	Localised generative flows
	Model
	Benefits
	Inference
	Performance

	Choice of indexed bijection family

	Related Work
	Mixture Methods
	Methods Combining Variational Inference and Normalising Flows
	Purely Variational Methods

	Experiments
	UCI Datasets
	Image datasets

	Conclusion
	Correctness of Posterior Factorisation
	Discrete Case
	Further Experimental Details
	2-D experiments
	UCI Experiments
	Extended MAF
	Parameter Configurations

	Image Experiments

