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ABSTRACT

Previous work on adversarially robust neural networks requires large training sets
and computationally expensive training procedures. On the other hand, few-shot
learning methods are highly vulnerable to adversarial examples. The goal of our
work is to produce networks which both perform well at few-shot tasks and are
simultaneously robust to adversarial examples. We adapt adversarial training for
meta-learning, we adapt robust architectural features to small networks for meta-
learning, we test pre-processing defenses as an alternative to adversarial training
for meta-learning, and we investigate the advantages of robust meta-learning over
robust transfer-learning for few-shot tasks. This work provides a thorough analysis
of adversarially robust methods in the context of meta-learning, and we lay the
foundation for future work on defenses for few-shot tasks.

1 INTRODUCTION

For safety-critical applications like facial recognition, traffic sign detection, and copyright control,
adversarial attacks pose an actionable threat (Zhao et al., 2018}, [Eykholt et al.l [2017; |Saadatpanah
et al.,2019). Conventional adversarial training and pre-processing defenses aim to produce networks
that resist attack (Madry et al.,2017;|Zhang et al.,|2019;[Samangouei et al., 2018), but such defenses
rely heavily on the availability of large training datasets. In applications that require few-shot learn-
ing, such as face recognition from few images, recognition of a video source from a single clip,
or recognition of a new object from few example photos, the conventional robust training pipeline
breaks down.

When data is scarce or new classes arise frequently, neural networks must adapt quickly (Duan
et al.L 2017 [Kaiser et al.| 2017} |Pfister et al., 2014; Vartak et al., 2017). In these situations, meta-
learning methods achieve few-shot learning by creating networks that learn quickly from little data
and with computationally cheap fine-tuning. While state-of-the-art meta-learning methods perform
well on benchmark few-shot classification tasks, these naturally trained neural networks are highly
vulnerable to adversarial examples. In fact, we will see below that even robust classifiers, when
adapted to a new task, fail to resist attacks unless appropriate measures are taken.

We study robust few-shot image classification by meta-learning. We begin by exploring several
obvious defenses for few shot learning: adversarial training, robust architectural features, and pre-
processing defenses, and find that all three provide relatively weak security in the few-shot setting.
Specifically, feature denoising layers, architectural features that achieve state-of-the-art adversarial
robustness on ImageNet, are not effective on the lightweight architectures used by meta-learning
algorithms, and pre-processing defenses, such as DefenseGAN and image superresolution, dramat-
ically decrease natural accuracy without achieving robustness.

We propose a new approach, called adversarial querying, in which the network is exposed to adver-
sarial attacks during the query step of meta-learning. This algorithm-agnostic method produces a
feature extractor that is robust, even without adversarial training during fine-tuning. In the few-shot
setting, we show that adversarial querying out-performs standard defenses by a wide margin in terms
of both clean accuracy and robustness.
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Model Anat Aadv
AT transfer learning (R2-D2 backbone) | 39.13% | 25.33%
ADML 47.75% | 18.49%
Naturally Trained R2-D2 72.59% | 0.00%
AQ R2-D2 (ours) 57.87% | 31.52%

Table 1: The R2-D2 meta-learning method, adversarially trained transfer learning (ADML), and our

adversarially queried (AQ) R2-D2 classifier on 5-shot Mini-ImageNet. The transfer learning model

was trained on all training data (except the hold-out classes) simultaneously, and then fine-tuned on

few-shot classes. All R2-D2 models are fine-tuned with a ridge regression head as in (Bertinetto

et al., 2018), and we re-implement ADML from (Yin et al.l 2018). Natural accuracy is denoted

A qt, and robust accuracy, Agqgy, 1 computed with respect to a 20-step PGD attack as iadry
A.1

et al.l[2017) with e = 2§5. A description of our training regime can be found in Appendix

2 RELATED WORK

2.1 LEARNING WITH LESS DATA

Before the emergence of meta-learning, a number of approaches existed to cope with few-shot data.
One simple approach is transfer learning, in which pre-trained feature extractors are created using
large datasets, and then fine-tuned on new tasks using less data (Bengio} 2012)). Metric learning
methods avoid overfitting to the small number of training examples in new classes by instead per-
forming classification using nearest-neighbors in feature space with a feature extractor that is trained
on a large corpus of data and not re-trained when classes are added (Snell et al.| 2017} |Gidaris & Ko-
modakis), [2018; Mensink et al., 2012). Metric learning methods are computationally efficient when
adding many low-shot classes, since the feature extractor network is not re-trained.

Meta-learning algorithms create a “base” model that quickly adapts to new tasks by fine-tuning.
This model is created using a set of training tasks {7;} that can be sampled from a task distribution.
Each task comes with support data, 7;°, and query data, ’Eq. In practice, each task is taken to be
a classification problem involving only a small subset of classes in a large many-class dataset. The
number of examples per class in the support set is called the shot, so that fine-tuning on five support
examples per class is 5-shot learning.

An iteration of training begins by sampling tasks {7;} from the task distribution. The base model
is fine-tuned on the support data for the sampled tasks, and then used to make predictions on the
query data. Then, the base model parameters are updated to improve the accuracy of the resulting
fine-tuned model. This requires backpropagation through the fine-tuning steps. See Algorithm [I|for
a formal treatment.

Algorithm 1: The meta-learning framework

Require: Base model, Fy, fine-tuning algorithm, A, learning rate, -y, and distribution over tasks,
p(T).

Initialize 6, the weights of F';
while not done do

Sample batch of tasks, {7;}_,, where 7; ~ p(T) and 7; = (7.5, T.7).

fori=1,...,ndo

Fine-tune model on 7; (inner loop). New network parameters are written ; = A(0, 7,°).
L Compute gradient g; = VoL (EFp,, ;).
Update base model parameters (outer loop): 6 <=6 — 15" g;

Note that the fine-tuned parameters, 8; = A(6, 7;®), in the above algorithm, are a function of the
base model’s parameters so that the gradient computation in the outer loop may backpropagate
through A. For validation after training, the base model is fine-tuned on the support set of hold-out
tasks, and accuracy on the query set is reported. In this work, we report performance on OmniGlot,
Mini-ImageNet, and CIFAR-FS (Lake et al., [2015} [Vinyals et al.| 2016; Bertinetto et al., 2018)).
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We focus on four meta-learning algorithms: MAML, R2-D2, MetaOptNet, and ProtoNet. (Finn
et al.,[2017} |Bertinetto et al., 2018; [Lee et al.,[2019} [Snell et al.,|2017). During fine-tuning, MAML
uses SGD to update all parameters, minimizing cross-entropy loss. Since unrolling SGD steps into a
deep computation graph is expensive, a first-order variants ignore second-order derivatives. We use
the original MAML formulation. R2-D2 and MetaOptNet, on the other hand, only update the final
linear layer during fine-tuning, leaving the “backbone network™ that extracts these features frozen
at test time. R2-D2 replaces SGD with a closed-form differentiable solver for regularized ridge
regression, while MetaOptNet achieves its best performance when replacing SGD with a solver for
SVM. Because the objective of these linear problems is convex, differentiable convex optimizers can
be efficiently deployed to find optima, and differentiate these optima with respect to the backbone
features at train time. ProtoNet takes an approach inspired by metric learning. It constructs class
prototypes as the centroids in feature space for each task. These centroids are then used to classify
the query set in the outer loop of training. Because each class prototype is a simple geometric
average of feature representations, it is easy to differentiate through the fine-tuning step.

2.2 ROBUST LEARNING WITH LESS DATA

Several authors have tried to learn robust models in the data scarce regime. The authors of (Shafahi
et al.| 2019) study robustness properties of transfer learning. They find that retraining earlier layers
of the network during fine-tuning impairs the robustness of the network, while only retraining later
layers can largely preserve robustness. ADML is the first attempt at achieving robustness through
meta-learning. ADML is a MAML variant, specifically designed for robustness, which employs
adversarial training (Yin et al., | 2018). However, this method for robustness is only compatible with
MAML, an outdated meta-learning algorithm. Moreover, ADML is computationally expensive, and
the authors only test their method against a weak attacker. We implement ADML and test it against
a strong attacker. We show that our methods achieve both higher robustness and natural accuracy.

Sample results comparing baseline robust learning methods are shown in Table[T} which shows that
clean meta-learning and a direct application of adversarial training to meta-learning (the ADML
method) achieve low levels of robustness. While simple robust transfer learning achieves more
robustness, the adversarial querying procedure does significantly better in terms of both clean and
robust accuracy.

3 EVALUATING THE ROBUSTNESS OF EXISTING FEW-SHOT METHODS

In this section, we benchmark existing methods for robust learning with scarce data in terms of both
natural and robust accuracy. Following standard practices, we assess the robustness of models by
attacking them with /..-bounded perturbations. We craft image perturbations using the projected
gradient descent attack (PGD) since it has proven to be one of the most effective algorithms both
for attacking as well as for adversarial training (Madry et al.}|2017). This attack is a more powerful
version of the one-step attack used in ADML (Yin et al.l [2018). A detailed description of the PGD
attack can be found in Algorithmlzl We consider perturbations of £, radius of 55=, and a step size

2557
of 52= as described by Madry et al.|(2017).

Adversarial training is the industry standard for creating robust models that maintain good clean-
label performance (Madry et al.l 2017). This method involves replacing clean examples with adver-
sarial examples during the training routine. A simple way to harden models to attack is adversarial
training, which solves the minimax problem

minlE ;)0 max Ly(x+ 6, , (D
in Ky, y) LMN o y)
where Ly(x + d,y) is the loss function of a network with parameters 6, x is an input image with

label y, and ¢ is an adversarial perturbation. Adversarial training finds network parameters that keep
the loss low (and class labels correct) even when adversarial perturbations are added.

3.1 NATURALLY TRAINED META-LEARNERS ARE NOT ROBUST

Similarly to classically trained classifiers, we expect that few-shot learners are highly vulnerable to
attack when adversarial defenses are not employed. We test prominent meta-learning algorithms
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Algorithm 2: PGD Attack

Require: network, Fy, input data, (x, y), perturbation, §, number of steps, n, step size, -y, and
attack bound, e.

Initialize 0 € B.(x) randomly;

fori=1,...,ndo

L Compute g = sign (VxLg (x +6,7)).

Update § = § + vg.
If ||]|, > €, then project § onto the surface of B.(x).

return perturbed image x + ¢

against a 20-step PGD attack as in (Madry et al., [2017)). Table [2| contains 5-shot natural and robust
accuracy on the Mini-ImageNet and CIFAR-FS datasets (Vinyals et al.| 2016 Bertinetto et al.,[2018).

Model Apat MI | Aggy MI | A4 CIFAR-FS | Auq, CIFAR-FS
ProtoNet 70.23% | 0.00% 79.66% 0.00%
R2-D2 73.02% | 0.00% 82.81% 0.00%
MetaOptNet | 78.12% | 0.00% 84.11% 0.00%

Table 2: 5-shot MinilmageNet (MI) and CIFAR-FS results comparing naturally trained meta-
learners. A,,4; and A,g4, are natural and robust test accuracy respectively, where robust accuracy is
computed with respect to a 20-step PGD attack.

We find that these algorithms are completely unable to resist the attack. Interestingly, MetaOpt-
Net uses SVM for fine-tuning, which is endowed with a wide margins property. The failure of
even SVM to express robustness during testing suggests that using robust fine-tuning methods on
naturally trained meta-learners is insufficient for robust performance. To further examine this, we
consider MAML, which updates the entire network during fine-tuning. We use a naturally trained
MAML model and perform adversarial training during fine-tuning (see Table [3). Adversarial train-
ing is performed with 7-PGD as in (Madry et al.| [2017). If adversarial fine-tuning yielded robust
classification, then we could avoid expensive adversarial training variants during meta-learning.

Model Anat -Aadv Anat(advftuned) -Aad'u (adv—tuned)
1-shot Mini-ImageNet | 45.04% | 0.03% 33.18% 0.20%

5-shot Mini-ImageNet | 60.25% | 0.03% 32.45% 1.55%

1-shot Omniglot 91.50% | 68.46% | 91.60% 74.66%

5-shot Omniglot 97.12% | 82.28% | 97.71% 87.94%

5-shot Omniglot AQ 97.27% | 95.85% | 97.51% 96.14%

Table 3: MAML models on Mini-ImageNet and Omniglot datasets. A,,; and A,q, are natural
and robust test accuracy respectively, where robust accuracy is computed with respect to a 20-step
PGD attack. Ay,q¢(adv—tuned) a0d Aqdu(adv—tuned) are natural and robust test accuracy with 7-PGD
training during fine-tuning. The bottom row is an adversarially queried model for comparison.

While clean trained MAML models with adversarial fine-tuning are slightly more robust than their
naturally fine-tuned counterparts, they achieve almost no robustness on Mini-ImageNet even with
adversarial fine-tuning. Omniglot is an easier dataset for robustness, so we include an adversarially
queried (AQ) MAML model for comparison. The adversarially queried model achieves far superior
robustness. We conclude from these experiments that naturally trained meta-learners are vulnerable
to adversarial examples, and an analysis of robust techniques for few-shot learning is in order.

3.2 TRANSFER LEARNING FROM ADVERSARIALLY TRAINED MODELS IS LESS ROBUST THAN
ROBUST META-LEARNING

We have observed that few-shot learning methods with a non-robust feature extractor break under
attack. But what if we use a robust feature extractor? In the following section, we consider both
transfer learning and meta-learning with a robust feature extractor.
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In order to compare transfer learning and meta-learning, we train the backbone networks from meta-
learning algorithms on all training data simultaneously in the fashion of standard adversarial training
using 7-PGD (not meta-learning). We then fine-tune using the head from a meta-learning algorithm
on top of the transferred feature extractor. We compare the performance of these feature extractors to
that of those trained using adversarially queried meta-learning algorithms with the same backbones
and heads. This experiment provides a direct comparison of feature extractors produced by transfer
learning and robust meta-learning (see Table [3.2). Meta-learning exhibits far superior robustness
than transfer learning on all algorithms we test.

Model Aot Transfer | A4, Transfer | A,,,: Meta | A,q, Meta
MAML 32.79% 18.03% 33.45% 23.07 %
ProtoNet 31.14% 22.31% 52.04% 27.99%
R2-D2 39.13% 25.33% 57.87% 31.52%
MetaOptNet | 50.23% 22.45% 60.71% 28.08 %

Table 4: Adversarially trained transfer learning and adversarially queried meta-learning on 5-shot
Mini-ImageNet. A,,; and A,q4, are natural and robust test accuracy respectively, where robust
accuracy is computed with respect to a 20-step PGD attack.

4 ADVERSARIAL QUERYING: A ROBUST META-LEARNING TECHNIQUE

We now adapt adversarial training to the meta-learning paradigm by introducing the query data, but
not support data, to adversarial attack (see Algorithm [3). This approach yields fast performance
during deployment, as adversarial training (which is roughly 10X slower than standard training) is
not required to adapt to a new task. Adversarial querying is algorithm agnostic. We test this method
on the MAML, ProtoNet, R2-D2, and MetaOptNet algorithms on the Mini-ImageNet and CIFAR-FS
datasets (see Table[d).

Algorithm 3: Adversarial Querying

Require: Base model, Fy, fine-tuning algorithm, A, learning rate, -y, and distribution over tasks,
p(T).
Initialize 6, the weights of F';
while not done do
Sample batch of tasks, {7;}i—,, where 7; ~ p(7) and T; =
fori=1,...,ndo
Fine-tune model on 7;. New network parameters are written 0; =

(IEQ’ Zq)
A(6,77).

Construct adversarial query data, Tq by maximizing L£(Fp,, Tq) constrained to

||x — x|, < e for query examples x, and their associated adversaries, xq

Compute gradient g; = Vo L(Fp,, 7;‘1)

| Update base model parameters: 6 < 0 — 15" g;
Model Ay MT | Ay MI | Ao CIFAR-FS | A,y CIFAR-ES
ProtoNet AQ 52.04% | 27.99% 63.53% 40.11%
R2-D2 AQ 57.87% 31.52% | 69.25% 44.80%
MetaOptNet AQ | 60.71% 28.08% 71.07% 43.79%

Table 5: Comparison of adversarially queried (AQ) meta-learners on 5-shot Mini-ImageNet (MI)
and CIFAR-FS. A,,,; and A,g4, are natural and robust test accuracy respectively, where robust ac-
curacy is computed with respect to a 20-step PGD attack.

In our tests, R2-D2 outperforms MetaOptNet in robust accuracy despite having a less powerful back-
bone architecture. In Section we dissect the effects of backbone architecture and classification
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head on the disparity between R2-D2 and MetaOptNet in robust performance. In Section 4.4 we
verify that adversarial querying generates networks robust to a wide array of strong attackers.

Adversarial querying can also be used to construct meta-learning analogues for other variants
of adversarial training. We explore this by substituting the cross-entropy loss for the TRADES
loss (Zhang et al., |2019). We refer to this method as meta-TRADES. While meta-TRADES can
marginally outperform our initial adversarial querying method in robust accuracy with a careful hy-
perparameter choice, A, we find that networks trained with meta-TRADES severely sacrifice natural
accuracy (see Table [d).

Model Anat ML | Ay ML | A, CIFAR-FS | A4, CIFAR-FS
R2-D2 Adversarial Queried | 57.87% | 31.52% | 69.25% 44.80%
R2-D2 TRADES (1/A=1) | 56.02% | 30.96% | 66.29% 45.59%
R2-D2 TRADES (1/A=3) | 51.51% | 32.30% | 61.41% 46.54%
R2-D2 TRADES (1/A =6) | 34.29% | 22.04% | 58.32% 45.89%

Table 6: 5-shot Mini-ImagNet (MI) and CIFAR-FS results comparing meta-TRADES to adversarial
querying. A,,,; and A4, are natural and robust test accuracy respectively, where robust accuracy is
computed with respect to a 20-step PGD attack.

4.1 FOR BETTER NATURAL AND ROBUST ACCURACY, ONLY FINE-TUNE THE LAST LAYER.
High performing meta-learning models, like MetaOptNet and R2-D2, fix their feature extractor and
only update their last linear layer during fine-tuning. In the setting of transfer learning, robustness is
a feature of early convolutional layers, and re-training these early layers leads to a significant drop
in robust test accuracy (Shafahi et al., 2019). We verify that re-training only the last layer leads to
improved natural and robust accuracy in adversarially queried meta-learners by training a MAML
model but only updating the final layer during fine-tuning including during the inner loop of meta-
learning. We find that the model trained by only fine-tuning the last layer decisively outperforms the
traditional MAML algorithm (AQ) in both natural and robust accuracy (see Table [.1)).

Layers updated Anat Aadv Anat(advftuned) Aadv(advftuned)
All layers 33.45% | 23.07% | 33.03% 23.29%
FC Only 40.06% | 25.15% | 39.94% 25.32%

Table 7: Adversarially queried MAML compared with a MAML variant with only the last layer
re-trained during fine-tuning on 5-shot Mini-ImageNet. A,,,; and A4, are natural and robust test
accuracy respectively, where robust accuracy is computed with respect to a 20-step PGD attack.
Anat(ado—tuned) A Aqgy(ado—tuned) are natural and robust test accuracy respectively with 7-PGD
training during fine-tuning. Layers are fine-tuned for 10 steps with a learning rate of 0.01.

4.2 THE R2-D2 HEAD, NOT EMBEDDING, IS RESPONSIBLE FOR SUPERIOR ROBUST
PERFORMANCE.

The naturally trained MetaOptNet algorithm outperforms R2-D2 in natural accuracy, but previous
research has found that performance discrepancies between meta-learning algorithms might be an
artifact of different backbone networks (Chen et al.| 2019). On natural meta-learning, we con-
firm that MetaOptNet with the R2-D2 backbone performs similarly to R2-D2 (see Table {.2). In
our adversarial querying experiments, we saw that MetaOptNet was less robust than R2-D2. This
discrepancy remains when we train MetaOptNet with the R2-D2 backbone (see Table[d.2)). We con-
clude that MetaOptNet’s backbone is not responsible for its inferior robustness. These experiments
suggest that ridge regression may be a more effective fine-tuning technique than SVM for robust
performance. ProtoNet with R2-D2 backbone also performs worse than the other two adversarially
queried models with the same backbone architecture.
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Model 1-shot MI | 5-shot MI | 1-shot CIFAR | 5-shot CIFAR
R2-D2 55.22% 73.02% 68.36% 82.81%
MetaOptNet 60.65 % 78.12% 70.99 % 84.11%
MetaOptNet (R2-D2 backbone) | 55.78% 73.15% 68.37% 82.71%

Table 8: Natural test accuracy of naturally trained R2-D2, MetaOptNet, and the MetaOptNet head
with R2-D2 backbone on the Mini-ImageNet (MI) and CIFAR-FS (CIFAR) datasets.

Model 1-shot MI | 5-shot MI | 1-shot CIFAR | 5-shot CIFAR
R2-D2 20.59 % 31.52% 32.33% 44.80%
MetaOptNet 18.37% 28.08% 30.74% 43.79%
MetaOptNet (R2-D2 backbone) | 18.81% 24.68% 29.57% 41.90%
ProtoNet (R2-D2 backbone) 18.24% 28.39% 26.48% 40.59%

Table 9: Robust test accuracy of adversarially queried R2-D2, MetaOptNet, and the MetaOptNet and
heads with R2-D2 backbone on Mini-ImageNet (MI) CIFAR-FS (CIFAR) datasets. Robust accuracy
is computed with respect to a 20-step PGD attack.

4.3 ENHANCING ROBUSTNESS WITH ROBUST ARCHITECTURAL FEATURES

In addition to adversarial training, architectural features have been used to enhance robustness (Xie
et al.|[2019). Feature denoising blocks pair classical denoising operations with learned 1 x 1 convo-
lutions to reduce the feature noise in feature maps at various stages of a network, and thus reduce the
success of adversarial attacks. Massive architectures with these blocks have achieved state-of-the-
art robustness against targeted adversarial attacks on ImageNet. However, when deployed on small
networks for meta-learning, we find that denoising blocks do not improve robustness. We deploy
denoising blocks identical to those in [Xie et al.| (2019)) after various layers of the R2-D2 network.
The best results for the denoising experiments are achieved by adding a denoising block after the
fourth layer in the R2-D2 embedding network (See Table [I0).

Model -Anat -Aadv
R2-D2 73.02% | 0.00%
R2-D2 AQ 57.87% | 31.52%
R2-D2 AQ Denoising | 57.68% | 31.14%

Table 10: 5-shot MinilmageNet results for our highest performing R2-D2 with feature denoising
blocks. A, and A4, are natural and robust test accuracy respectively, where robust accuracy is
computed with respect to a 20-step PGD attack.

4.4 RESISTANCE TO OTHER ATTACKS

We test our method by exposing our adversarially queried R2-D2 model to a variety of powerful
adversarial attacks. We implement the momentum iterated fast gradient sign method (MI-FGSM),
DeepFool, and 20-step PGD with 20 random restarts (Dong et al., 2018; Moosavi-Dezfooli et al.,
2016; Madry et al.| [2017). Our adversarially queried model indeed is nearly as robust against the
strongest /-, bounded attacker as it is against the 20-step PGD attack with a single random start we
tested against previously. Note that DeepFool is not ¢, bounded and thus the perturbed images are
outside of the robustness radius enforced during adversarial querying.

5 PRE-PROCESSING DEFENSES AS AN ALTERNATIVE TO ADVERSARIAL
TRAINING

Recent works have proposed pre-proccessing defenses for sanitizing adversarial examples before
feeding them into a naturally trained classifier. If successful, these methods would avoid the expen-
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Model Apat Apr At Aso—pap
R2-D2 73.02% | 7.91% 0.01% 0.0%
R2-D2 AQ 57.87% | 14.45% | 31.87% | 30.31%
R2-D2 AT (Transfer Learning) | 39.13% | 0.42% 24.01% | 19.75%

Table 11: 5-shot MinilmageNet results against DeepFool (DF) (2 iteration) ¢, attack, MI-FGSM
(MI) (e = 8/255) attack, and PGD attack with 20 random restarts (20-PGD). We compare R2-D2
trained with adversarial-querying (AQ) to the transfer learning R2-D2 as in section[3.2]

sive adversarial querying procedure during training. While this approach has found success in the
mainstream literature, we find that it is ineffective in the few-shot regime.

In DefenseGAN, a GAN trained on natural images is used to sanitize an adversarial example by
replacing (possible corrupted) test images with the nearest image in the output range of the GAN
(Samangouei et al., 2018). Unfortunately, GANSs are not expressive enough to preserve the integrity
of testing images on complex datasets involving high-res natural images, and recent attacks have
critically compromised the performance of this defense (Ilyas et al., [2017; |Athalye et al., [2018).
We found the expressiveness of the generator architecture used in the original DefenseGAN setup
to be insufficient for even CIFAR-FS, so we substitute a stronger ProGAN generator to model the
CIFAR-100 classes (Karras et al., [2017).

The supperesolution defense first denoises data with sparse wavelet filters and then performs su-
perresolution (Mustafa et al., [2019). This defense is also motivated by the principle of projecting
adversarial examples onto the natural image manifold. We test the superresolution defense using
the same wavelet filtering and superresolution network (SRResNet) used by [Mustafa et al.| (2019)
and first introduced by [Ledig et al.|(2017). Like with the generator for DefenseGAN, we train the
SRResNet on the entire CIFAR-100 dataset before applying the superresolution defense.

We find that these methods are not well suited to the few-shot domain, in which the generative
model or superresolution network may not be able to train on the little data available. Morever, even
after training the generator on all CIFAR-100 classes, we find that DefenseGAN with a naturally
trained R2-D2 meta-learner performs significantly worse in both natural and robust accuracy than an
adversarially queried meta-learner of the same architecture. Similarly, the superresolution defense
achieves little robustness. The results of these experiments can be found in Table

Model Anat Aadv
R2-D2 83.30% | 0.00%
R2-D2 AQ 69.25% | 44.80%

R2-D2 with SR defense 35.15% | 23.00%
R2-D2 with DefenseGAN | 35.15% | 28.05%

Table 12: 5-shot CIFAR-FS results comparing the superresolution defense (SR defense) and De-
fenseGAN. A,,,; and A4, are natural and robust test accuracy respectively, where robust accuracy
is computed with respect to a 20-step PGD attack. Both methods perform worse than their adversar-
ially queried counterpart.

6 DISCUSSION & CONCLUSION

Naturally trained networks for few-shot learning are vulnerable to adversarial attacks, and existing
robust transfer learning methods do not perform well on few-shot tasks. Naturally trained networks
suffer from adversarial vulnerability even when adversarially trained during fine-tuning. We thus
identify the need for an investigation into robust few-shot methods. We particularly study robust-
ness in the context of meta-learning. We develop an algorithm-agnostic method, called adversarial
querying, for hardening meta-learning models. We find that meta-learning models are most robust
when the feature extractor is fixed, and only the last layer is retrained during the fine tuning stage.
We further identify that choice of classification head matters for robustness. We hope that this paper
serves as a starting point for developing new adversarially robust methods for few-shot applications.



Under review as a conference paper at ICLR 2020

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pp. 17-36, 2012.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differ-
entiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In International conference on learning representations, 2019.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Jun 2018. doi: 10.1109/cvpr.2018.00957. URL http://dx.doi.org/
10.1109/cvpr.2018.00957.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Advances
in neural information processing systems, pp. 1087-1098, 2017.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning
models. arXiv preprint arXiv:1707.08945, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126-1135. JMLR. org, 2017.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367—
4375, 2018.

Andrew Ilyas, Ajil Jalal, Eirini Asteri, Constantinos Daskalakis, and Alexandros G Dimakis.
The robust manifold defense: Adversarial training using generative models. arXiv preprint
arXiv:1712.09196, 2017.

Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to remember rare events.
arXiv preprint arXiv:1703.03129, 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation, 2017.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and et al. Photo-realistic
single image super-resolution using a generative adversarial network. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul 2017. doi: 10.1109/cvpr.2017.19. URL
http://dx.doi.orqg/10.1109/CVPR.2017.19l

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 10657-10665, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.


http://dx.doi.org/10.1109/cvpr.2018.00957
http://dx.doi.org/10.1109/cvpr.2018.00957
http://dx.doi.org/10.1109/CVPR.2017.19

Under review as a conference paper at ICLR 2020

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Metric learning for large
scale image classification: Generalizing to new classes at near-zero cost. In European Conference
on Computer Vision, pp. 488-501. Springer, 2012.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574-2582, 2016.

Aamir Mustafa, Salman H. Khan, Munawar Hayat, Jianbing Shen, and Ling Shao. Image super-
resolution as a defense against adversarial attacks, 2019.

Tomas Pfister, James Charles, and Andrew Zisserman. Domain-adaptive discriminative one-shot
learning of gestures. In European Conference on Computer Vision, pp. 814-829. Springer, 2014.

Parsa Saadatpanah, Ali Shafahi, and Tom Goldstein. Adversarial attacks on copyright detection
systems. arXiv preprint arXiv:1906.07153, 2019.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers against
adversarial attacks using generative models. arXiv preprint arXiv:1805.06605, 2018.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and Tom
Goldstein. Adversarially robust transfer learning. arXiv preprint arXiv:1905.08232, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077-4087, 2017.

Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, and Hugo Larochelle. A
meta-learning perspective on cold-start recommendations for items. In Advances in neural infor-
mation processing systems, pp. 6904-6914, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Advances in neural information processing systems, pp.
3630-3638, 2016.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising
for improving adversarial robustness. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 501-509, 2019.

Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-learning. arXiv
preprint arXiv:1806.03316, 2018.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael 1
Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint
arXiv:1901.08573, 2019.

Yue Zhao, Hong Zhu, Qintao Shen, Ruigang Liang, Kai Chen, and Shengzhi Zhang. Practical
adversarial attack against object detector. arXiv preprint arXiv:1812.10217, 2018.

A APPENDIX

A.1 TRAINING HYPERPARAMETERS

We train ProtoNet, R2-D2, and MetaOptNet models for 60 epochs with SGD. We use a learning rate
of 0.1, momentum (Nesterov) of 0.9, and a weight decay term of 5(10~*) for the parameters of both
the head and the embedding. We decrease the learning rate to 0.06 after epoch 20, 0.012 after epoch
40, and 0.0024 after epoch 50. MAML is trained for 60000 epochs with meta learning rate of 0.001
and fine-tuning learning rate of 0.01. Fine-tuning is performed for 10 steps per task.
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