
Under review as a conference paper at ICLR 2020

MODELLING BIOLOGICAL ASSAYS WITH ADAPTIVE
DEEP KERNEL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the significant costs of data generation, many prediction tasks within drug1

discovery are by nature few-shot regression (FSR) problems, including accurate2

modelling of biological assays. Although a number of few-shot classification and3

reinforcement learning methods exist for similar applications, we find relatively4

few FSR methods meeting the performance standards required for such tasks under5

real-world constraints. Inspired by deep kernel learning, we develop a novel FSR6

algorithm that is better suited to these settings. Our algorithm consists of learning7

a deep network in combination with a kernel function and a differentiable kernel8

algorithm. As the choice of kernel is critical, our algorithm learns to find the9

appropriate one for each task during inference. It thus performs more effectively10

with complex task distributions, outperforming current state-of-the-art algorithms11

on both toy and novel, real-world benchmarks that we introduce herein. By12

introducing novel benchmarks derived from biological assays, we hope that the13

community will progress towards the development of FSR algorithms suitable for14

use in noisy and uncertain environments such as drug discovery.15

1 INTRODUCTION16

Following breakthroughs in domains including computer vision, autonomous driving, and natural17

language processing, deep learning methods are now entering the domain of pharmaceutical R&D.18

Recent successes include the deconvolution of biological targets from -omics data (Min et al.,19

2017), generation of drug-like compounds via de novo molecular design (Xu et al., 2019), chemical20

synthesis planning (Segler and Waller, 2017; Segler et al., 2017), and multi-modal image analysis for21

quantification of cellular response (Min et al., 2017). A common characteristic of these applications,22

however, is the availability of high quality, high quantity training data. Unfortunately, many critical23

prediction tasks in the drug discovery pipeline fail to satisfy these requirements, in part due to24

resource and cost constraints (Cherkasov et al., 2014).25

We therefore focus this work on modelling biological assays (bio-assays) relevant in the early stages26

of drug discovery, primarily binding and cellular readouts. Under the constraints of an active drug27

discovery program, the data from these assays, consisting of libraries of molecules and their associated28

real-valued activity scores, is often relatively small and noisy (refer to statistics in Section 5). In29

many contexts, it can be a struggle to build a training set of even a few dozen samples per individual30

assay. Modelling an assay is thus best viewed as a few-shot regression (FSR) problem, with many31

variables (including experimental conditions, readouts, concentrations, and instrument configurations)32

accounting for the data distribution generated. Practically, these variables make it infeasible to33

compare data collected across different assays, thereby making it difficult to learn predictive models34

from molecular structures. Furthermore, as bio-assay modelling is intended to be used for prioritizing35

molecules for subsequent evaluation (e.g. Bayesian optimization) and efficiently exploring the overall36

chemical space (e.g. active learning), accurate prediction and uncertainty estimation using few data is37

critical to successful application in drug discovery.38

It is our view that robust FSR algorithms are needed to tackle this challenge. Specifically, we argue39

that these algorithms should remain accurate in noisy environments, and also provide well-calibrated40

uncertainty estimates to inform efficient exploration of chemical space during molecular optimization.41

Fortunately, recent advances in few-shot learning have led to new algorithms that learn efficiently42

and generalize adequately from small training data (Wang and Yao, 2019; Chen et al., 2019). Most43
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have adopted the meta-learning paradigm (Thrun and Pratt, 1998; Vilalta and Drissi, 2002), where44

some prior knowledge is learned across a large collection of tasks and then transferred to new tasks45

in which there are limited amounts of data. Such algorithms differ in two aspects: the nature of the46

meta-knowledge captured and the amount of adaptation performed at test-time for new tasks or47

datasets. Due to the size of the total chemical space accessible when modelling bio-assays (Bohacek48

et al., 1996), there is a particular need for the meta-knowledge to be sufficiently rich so as to allow for49

extrapolation and uncertainty estimation in unseen regions of chemical space at test-time (i.e. for new50

tasks). Given that the same molecule can behave differently across different assays, greater test-time51

adaptation is also required and must be accounted for during modelling.52

In previous work, metric learning methods (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,53

2017; Garcia and Bruna, 2017; Bertinetto et al., 2018) accumulate meta-knowledge in high capacity54

covariance/distance functions and use simple base-learners such as k-nearest neighbor (Snell et al.,55

2017; Vinyals et al., 2016) or low capacity neural networks (Garcia and Bruna, 2017) to produce56

adequate models for new tasks. However, they do not adapt the covariance functions nor the base-57

learners at test-time. Initialization- and optimization-based methods (Finn et al., 2017; Kim et al.,58

2018; Ravi and Larochelle, 2016) that learn the initialization points and update rules for gradient59

descent-based algorithms, respectively, allow for improved adaptation on new tasks but remain time60

consuming and memory inefficient. We therefore argue that to ensure optimal performance when61

modelling bio-assays, it is crucial to combine the strengths of both types of methods while also62

allowing for the incorporation of domain-specific knowledge when making predictions. We achieve63

this by framing FSR as a deep kernel learning (DKL) task, deriving novel algorithms that we apply to64

modelling specific assays and readouts.65

Contributions: Our contributions are several-fold. We first frame few-shot regression as a DKL66

problem and showcase its advantages relative to classical metric learning methods. We then derive67

the adaptive deep kernel learning (ADKL) framework by learning a conditional kernel function that68

is task dependant, allowing for more test-time adaptation than the DKL framework. Finally, we69

introduce two real-world datasets for modelling biological assays using FSR. With this contribution,70

we hope to encourage the development of subsequent few-shot regression methods suitable for71

real-world applications (as is the case for few-shot classification and reinforcement learning, each of72

which have received comparatively greater attention in recent years (Wang and Yao, 2019)).73

2 DEEP KERNEL LEARNING74

In this section, we describe the DKL framework introduced for single tasks by Wilson et al. (2016).75

We then extend it to few-shot learning and discuss its advantages over the metric learning framework.76

Single Task DKL: Let Dt
trn = {(xi, yi)}mi=1 ⊂ X × R, a training dataset available for learning77

the regression task t where X is the input space and R is the output space. A DKL algorithm aims78

to obtain a non-linear embedding of inputs in the embedding spaceH, using a deep neural network79

φθ : X → H of parameters θ. It then finds the minimal norm regressor ht∗ in the reproducing kernel80

Hilbert space (RKHS)R onH, that fits the training data, i.e.:81

ht∗ := argmin
h∈R

λ ‖h‖R + `(h,Dt
trn) (1)

where ` is a non-negative loss function that measures the loss of a regressor h and λ weighs the82

importance of the norm minimization against the training loss. Following the representer theorem83

(Scholkopf and Smola, 2001; Steinwart and Christmann, 2008), ht∗ can be written as a finite linear84

combination of kernel evaluations on training inputs, i.e.:85

ht∗(x) =
∑

(xi,yi)∈Dttrn

αtikρ(φθ(x),φθ(xi)), (2)

where αt = (αt1, · · · , αtm) are the combination weights and kρ : H × H → R+ is a reproducing86

kernel of R with hyperparameters ρ. Candidates include the radial basis, polynomial, and linear87

kernels. Depending on the loss function `, the weights αt can be obtained by using a differentiable88

kernel method enabling the computation of the gradients of the loss w.r.t. the parameters θ. Such89

methods include Gaussian Process (GP), Kernel Ridge Regression (KRR), and Logistic Regression90

(LR).91
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As DKL inherits from deep learning and kernel methods, it follows that gradient descent algorithms92

are required to optimize θ, which can be high dimensional such that seeing a significant amount of93

training samples is essential to avoid overfitting. However, once the latter condition is met, scalability94

of the kernel method becomes limiting as the running time of kernel methods scales approximately in95

O(m3) for a training set of m samples. Some approximations of the kernel are thus needed for the96

scalability of the DKL method (see Williams and Seeger (2001); Wilson and Nickisch (2015)).97

Few-Shot DKL: In the setup of episodic meta learning, also known as few-shot learning, one has98

access to a meta-training collection Dmeta−trn :=
{
(D

tj
trn, D

tj
val)
}T
j=1

of T tasks to learn how to99

learn from few datapoints. Each task tj has its own training (or support) set Dtj
trn and validation (or100

query) set Dtj
val. A meta-testing collection Dmeta−tst is also available to assess the generalization101

performance of the few-shot algorithm across unseen tasks. To obtain a Few-Shot DKL (FSDKL)102

method for FSR in such settings, one can share the parameters of φθ across all tasks, similar to metric103

learning algorithms. Hence, for a given task tj , the inputs are first transformed by the function φθ104

and then a kernel method is used to obtain the regressor htj∗ , which will be evaluated on Dtj
val. Here,105

KRR and GP are explored as they are the state-of-the-art algorithms for kernel-based regression. The106

latter is used to allow our models to provide accurate predictive uncertainty, which is useful when107

modelling biological assays.108

KRR: Using the squared loss and the L2-norm to compute ‖h‖R, KRR gives the optimal regressor
for a task t and its validation loss Ltθ,ρ,λ as follows:

ht∗(x) = αKx,trn, with α = (Ktrn,trn + λI)−1 ytrn (3)

Ltθ,ρ,λ = E
x,y∼Dtval

(αKx,trn − y)2, (4)

where ytrn = (y1, · · · , y|Dttrn|)T , Ktrn,trn is the matrix of kernel evaluations and each entry is109

kρ(φθ(xi),φθ(xl)) for (xi, ·), (xl, ·) ∈ Dt
trn . An equivalent definition applies to Kx,trn.110

GP: Using the negative log likelihood loss function instead, the GP algorithm gives a probabilistic
regressor for which the predictive mean, covariance, and loss for a task t are:

Ltθ,ρ,λ = − lnN (yval;E[ht∗], cov(ht∗)), (5)

E[ht∗] = Kval,trn(Ktrn,trn + λI)−1ytrn, (6)

cov(ht∗) = Kval,val −Kval,trn(Ktrn,trn + λI)−1Ktrn,val (7)

Finally, the parameters θ of the neural network, along with λ and the kernel hyperparameters ρ, are111

optimized using the expected loss on all tasks:112

argmin
θ,ρ,λ

E
t∼Dmeta−trn

Ltθ,ρ,λ. (8)

To summarize, FSDKL finds a representation common to all tasks such that the kernel method (in our113

case, GP and KRR) will generalize well from a small amount of samples. In doing so, this alleviates114

two of the main limitations of single task DKL: i) the scalability of the kernel method is no longer an115

issue since we are in the few-shot learning regime1, and ii) the parameters θ (and ρ, λ) are learned116

across a potentially large amount of tasks and samples, providing the opportunity to learn a rich117

representation without overfitting.118

Despite shared characteristics with the metric learning framework, the FSDKL framework is more119

powerful and flexible. It provides better task-specific adaptation due to the inference of the appropriate120

model using the kernel methods compared to shared model parameters in metric learning. After meta-121

training, any task-specific model also inherits the generalization guarantees of kernel-based models,122

and consequently increasing the number of shots for new tasks can only improve generalization123

performance. The incorporation of prior knowledge through user-specific kernel functions is also124

a major advantage of DKL over metric learning (e.g. use periodic kernels for periodic function125

regression tasks).126

1Even with several hundred samples, the computational cost of embedding each example is usually higher
than inverting the Gram matrix.
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3 ADAPTIVE DEEP KERNEL LEARNING127

FSDKL uses a shared deep kernel function, in which the base kernel kρ is user-chosen (although its128

parameters ρ are learned during meta-training). Given that the choice of the kernel function dictates129

almost all the generalization properties of any kernel-based method, it may not be optimal to leave it130

to the user. In addition, for modelling bio-assays, it is not straightforward how to best incorporate131

task-specific prior knowledge in this shared and user-chosen kernel. We overcome these limitations132

by developing the Adaptive Deep Kernel Learning (ADKL) framework, illustrated by Fig. 1.133

ADKL also aims to obtain a non-linear embedding of inputs using a deep neural network φθ shared134

by all tasks before finding the minimal norm task-specific regressor ht∗ using either GP or KRR135

as described in Section 2 (ADKL-GP and ADKL-KRR will refer to our algorithm when using136

GP and KRR, respectively). The fundamental difference between FSDKL and ADKL lies in the137

kernel definition, which brings significantly more flexibility in the latter case relative to the former.138

Specifically, during the meta-training, ADKL learns to learn task-specific kernel functions instead of139

using one chosen by the user. It does so by learning how to represent tasks with the task encoding140

network ψη and then how to leverage task embeddings to build task-specific kernels using a multi-141

modal neural network cρ. Given a task t, ADKL thus first computes its embedding zt = ψη(D
t
trn)142

using its support set Dt
trn and deduces the adapted kernel with cρ. We describe in more detail both143

the task encoding network ψη and the network cρ responsible for computing the task-specific kernel144

below.145

Figure 1: ADKL-KRR. The blue and orange colors show the procedure for a task during
internal train and test, respectively.

3.1 TASK ENCODING146

The challenge of the ψη network is to capture complex dependencies in the training set Dt
trn to147

provide a useful task encoding z. Furthermore, the task encoder should be invariant to permutations148

of the training set and be able to encode a variable amount of samples. After exploring a variety149

of architectures, we found that those that are more complex, such as Transformers (Vaswani et al.,150

2017), tend to underperform. This is possibly due to overfitting or the sensitivity of training such151

architectures.152

Consequently, inspired by DeepSets (Zaheer et al., 2017), we propose the following order in-153

variant network. It begins its computations by representing each input-target pair xyi =154

r(Concat(φ(xi),v(yi))) for all (xi, yi) ∈ Dt
trn, using neural networks φ,v, and r. The xyi155

captures nonlinear interactions between the inputs and the targets if r is a nonlinear transforma-156

tion. Then, by computing µtxy and σtxy, the empirical mean and standard deviation of the set157

{xy1,xy2, . . . ,xym}, respectively, we obtain the task representation as follows:158

zt = ψη(D
t
trn) :=

[
µtxy, σ

t
xy

]
. (9)

As µtxy and σtxy are invariant to permutations inDt
trn, it follows thatψη is also permutation invariant.159

Overall,ψη is simply the concatenation of the first and second moments of the sample representations,160
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which were nonlinear transformations of the original inputs and targets. The learnable parameters η161

of the task encoder include all the parameters of the networks v and r, and are shared across all tasks.162

To help the training of these parameters, we maximize the mutual information between Dt
trn and163

Dt
val i.e. we expect and encourage the network to produce similar task encodings using any data164

partitions for a given task. More explicitly, we use the MINE algorithm (Belghazi et al., 2018), which165

optimizes a lower bound on the mutual information. For two random variables r, s ∼ p(r, s) and a166

similarity measure fφ between r and s, parameterized by φ, the following inequality holds:167

I [r, s] ≥ max
φ

E
r,s∼p(r,s)

fφ(r, s)− ln E
r∼p(r)

E
s∼p(s)

efφ(r,s). (10)

Using a batch of b tasks2, and the cosine similarity c as the similarity measure between two task
encodings, one obtains and maximizes I[Dtrn, Dval] ≥ Ĩη , where:

Ĩη
def
= 1

b

b∑
j=1

c(ψη(D
t
trn),ψη(D

t
val))− ln 1

b(b−1)

b∑
j=1

∑
i 6=j

ec(ψη(D
t
trn),ψη(D

ti
val)). (11)

3.2 TASK-SPECIFIC KERNEL168

LetH and Z be the output domains of φθ and ψη respectively. We define a pairwise function onH,169

whose outputs are dependant from the task representations in Z as follows:170

cρ : H×H×Z → R
(φx,φ

′
x, zt)→ MLPρ(

[
(φx − φ′x)2, zt

]
),

(12)

where [·, ·] is the concatenation operator. It bears mentioning that the parameters ρ are shared across171

all tasks and learned during the meta-training. Also, cρ is symmetric and stationary with regard to172

its inputs (φx and φ′x) as their element-wise L2 distances vector is received as input of the fully173

connected network. Further, by simply concatenating the task representation zt to this distance174

vector at the input, cρ provides a powerful approach to producing task-specific kernels. However,175

these kernels are not positive semi-definite (PSD) and cannot be directly used for KRR and GP.176

Therefore, without losing any information given by cρ , we compute task-specific PSD kernels kρ,t177

as the empirical kernel maps with regard to the support set inputs, i.e.:178

kρ,t(x,x
′) = Ct(x) · Ct(x′), with

Ct(x) = (cρ(x,x1, zt), · · · , cρ(x,xm, zt)), and (xi, ·) ∈ Dt
trn∀i = 1, · · · ,m (13)

Using the empirical kernel map of cρ to compute kρ,t offers the opportunity to improve the kernel179

evaluations in low data settings using some unlabelled data. More precisely, instead of computing the180

empirical kernel map with regard to onlyDt
trn, we could use (Dt

trn∪U) whereU is a set of unlabelled181

inputs. However, to avoid a significant increase in the computation costs of the PSD kernels, |U |182

should be kept relatively small (in our experiments |U |≤ 50). One must also be careful about the183

composition of U to avoid overfitting certain tasks and under-fitting others. Therefore, instead of184

asking the user to provide the set U , we propose directly learning them through back-propagation. To185

do so, we introduce pseudo-input representations (or pseudo-representations) ul ∈ H that are shared186

by all tasks and learned during meta-training. The function Ct, from Eq. (13), becomes:187

Ct(x) = (cρ(x,x1, zt), · · · , cρ(x,xm, zt), cρ(x,u1, zt), · · · , cρ(x,ul, zt)),
with ul ∈ U ∀ l = 1, · · · , |U | and(xi, ·) ∈ Dt

trn∀i = 1, · · · ,m (14)

These pseudo-representations can be thought of as parameters of the adaptive kernel and the number188

to be included is a hyperparameter of the algorithm. To prevent their collapse into a single point189

and ensure that they are well distributed in the feature spaceH, we add a regularization term to the190

training loss. Let p and q be the distributions that generate the true input representations and the191

pseudo-input representations, respectively. We make the assumption that p and q are both multivariate192

Gaussian distributions with diagonal covariance matrices and have respective parameters (µφ, σ2
φ)193

2This yields a small bias on the gradient since the right hand side takes the log of the expectations. Since we
are not interested in the precise value of the mutual information, this does not constitute a problem.
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and (µu, σ2
u). The parameters of p are estimated using the running means and variances of all input194

representations computed over batches of tasks. Those of q are estimated using U . The training of195

the pseudo-input representations is then regularized by minimizing the KL distance D̃u between p196

and q, i.e.:197

D̃u = KL(N (µu, σ
2
u) ‖ N (µφ, σ

2
φ)) (15)

Putting it all together, the ADKL training objective is the following:

argmin
θ,η,ρ,u,λ

E
tj∼B

Ltjθ,η,ρ,u,λ − γtask Ĩη.+ γpseudoD̃u, (16)

with γtask ≥ 0 as a tradeoff hyperparameter for the regularization of the task-encoder, γpseudo ≥ 0198

as a tradeoff hyperparameter for the regularization of the pseudo-inputs.199

4 RELATED WORK200

Across the spectrum of learning approaches, DKL methods lie between neural networks and kernel201

methods. While neural networks can learn from a very large amount of data without much prior202

knowledge, kernel methods learn from fewer data when given an appropriate covariance function203

that accounts for prior knowledge of the relevant task. In the first DKL attempt, Wilson et al. (2016)204

combined GP with CNN to learn a covariance function adapted to a task from large amounts of data,205

though the large time and space complexity of kernel methods forced the approximation of the exact206

kernel using KISS-GP (Wilson and Nickisch, 2015). Dasgupta et al. (2018) have demonstrated that207

such approximation is not necessary using finite rank kernels. Here, we show that learning from a208

collection of tasks (FSR mode) does not require any approximation when the covariance function is209

shared across tasks. This is an important distinction between our study and other existing studies in210

DKL, which learn their kernel for single task applications instead of multiple task collections.211

On the spectrum between NNs and kernel methods we must also mention metric learning. Metric212

learning algorithms learn an input covariance function shared across tasks but rely only on the213

expressive power of DNNs. First, stochastic kernels are built out of shared feature extractors and214

simple pairwise metrics (e.g. cosine similarity (Vinyals et al., 2016), Euclidean distance (Snell et al.,215

2017)), or parametric functions (e.g. relation modules (Sung et al., 2018), graph neural networks216

(Garcia and Bruna, 2017; Kim et al., 2019a)). Then, within tasks, the predictions are distance-217

weighted combinations of the training labels with the stochastic kernel evaluations—no adaptation is218

done.219

In connection with the test-time adaptation capabilities of our method, methods that combine metric220

learning with initialization-based models are great competitors. In fact, Proto-MAML (Triantafillou221

et al., 2019), which captures the best of Prototypical Networks (Snell et al., 2017) and MAML222

(Finn et al., 2017), allows within-task adaptation using MAML on top of a shared feature extractor.223

Similarly, Kim et al. (2018) have proposed a Bayesian version of MAML where a feature extractor is224

shared across tasks, while multiple MAML particles are used for the task-level adaptation. Bertinetto225

et al. (2018) have also tackled the lack of adaptation for new tasks by using Ridge Regression and226

Logistic Regression to find the appropriate weighting of the training samples for classification tasks.227

This study can be considered as an instance of the FSDKL framework, though its contribution was228

limited to showing that simple differentiable learning algorithms can increase adaptation in the metric229

learning framework. Our work goes beyond by formalizing few-shot DKL and proposing ADKL: a230

data-driven manner for computing the correct kernel for a task.231

Since ADKL-GP learns task-specific stochastic processes, it is related to neural processes (Garnelo232

et al., 2018a) and the ML-PIP framework (Gordon et al., 2018). Both propose a scalable alternative233

to learning regression functions by performing inference on stochastic processes. In these families234

of methods, both Conditional Neural Processes (CNP) (Garnelo et al., 2018b) and Attentive Neural235

Processes (ANP) (Kim et al., 2019b) learn conditional stochastic processes parameterized by task-236

specific conditions derived from the support sets, but CNP is the most related to ADKL-GP. CNP is237

an instance of ML-PIP when the task encoder gives a point estimate of the task parameters instead238

of a distribution. Finally, the main differences between ANP and CNP are the architecture of the239

task-encoder and the lack of mathematical guarantees associated with stochastic processes in CNP240

(as it does not impose any consistency with respect to a prior process). By comparison, ADKL-GP241
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also learns conditional stochastic processes but has mathematical guarantees thanks to GP and PSD242

kernels.243

5 DATASETS244

Existing FSR methods have been mostly tested on 1D function regression and pixel-wise image245

completion tasks with MNIST and CelebA (Kim et al., 2018; Garnelo et al., 2018b;a). On one hand,246

the 1D regression tasks are all relatively simple, almost noise-less, and homogeneous. On the other247

hand, methods have been successful for image completion tasks only outside the few-shot regime (i.e.248

when the number of samples is greater than 500) (Garnelo et al., 2018b;a). For these reasons, we249

introduce two task collections from a real-world context. Deemed Binding and Antibacterial, these250

task collections contain data from bio-assays that are representative of real-world FSR tasks in drug251

discovery. The pre-processed versions of these collections and detailed statistics are available here252

(anonymized link).253

Binding: All tasks in this collection aim to predict the binding affinity of small molecules to a target254

protein. The characteristics of the proteins thus define different data distributions over the chemical255

space. The inputs and the targets for each task are molecules that have been tested in a binding assay256

and the measured binding affinity of the molecule against a given protein. The task collection was257

extracted from the public database BindingDB and altered by removing bio-assays with correlations258

above 0.8 or those with less than 10 experimental measurements, leaving us with 5, 717 tasks.259

Antibacterial: Within this collection, the task is to predict the antimicrobial activity of small260

molecules against various bacteria. They are characterized by a bacterial strain whose resistance to261

drug-like molecules was being evaluated. The task collection was extracted from the public database262

PubChem. After also removing bio-assays with correlations above 0.8 and those with less than 10263

samples, we obtain 3, 255 tasks.264

Their meta-test partitions each contain 500 tasks, with the remaining used in the meta-train and265

meta-validation. The molecules (represented as SMILES) are converted into vectors using routines266

available in the RDKit software (more precisely into ECFP6 binary fingerprint vectors of 4,096267

dimensions). These inputs were also processed in all methods using the same feature extractor268

architecture, which is a fully-connected network of 256× 256× 256. Due to the high noise-to-signal269

ratio, the targets are first log2-scaled and then scaled linearly between 0 and 1 to avoid scaling issues270

during training.271

Fig. 2 highlights three aspects of the collections that make them better benchmarks for evaluating the272

readiness of FSR methods for real-world applications relative to toy collections. First, the distributions273

of number of samples per task show that they naturally contain few samples, which we believe reflects274

the costs of acquiring labelled data in a drug discovery setting. In comparison, the number of samples275

available per task is relatively large in previous benchmarks, with the few-shot regime being achieved276

artificially through sampling. Second, as illustrated by their noise-to-signal ratio, real-world tasks277

are inherently noisy, increasing the difficulties associated with few-shot learning. Finally, the input278

diversity within each task is reduced relative to the total among tasks. Despite this diversity difference,279

good models should perform relatively well outside the input region they have seen in the support280

set. This situation challenges the methods to learn strong priors about the input space and to be281

able to generalize after seeing only a small fraction of it. These collections invite researchers to282

explore meta-learning with increasingly heterogeneous datasets and in noisy environments, as well as283

generalisation and extrapolation in large input spaces (such as the drug-like chemical space, which is284

estimated to be approximately 1033 molecules (Polishchuk et al., 2013)).285

To test our method in a noise-less environment, we also use the Sinusoids collection introduced by286

Kim et al. (2018). This challenging few-shot regression benchmark consists of 5,000 tasks defined287

by functions of the form: y = A sin(wx + b) + ε with A ∈ [0.1, 5.0], b ∈ [0.0, 2π], and288

w ∈ [0.5, 2.0]. Sampling inputs x ∈ [−5.0, 5.0] and observational noise ε ∈ N(0, (0.01A)2) and289

computing y gives the samples for each task. Here, the meta-train, meta-validation, and meta-test290

contain 56.25%, 18.75% and 25% of all the tasks, respectively, and all methods use the same feature291

extractor architecture, which is a fully-connected network of 40× 40× 40.292
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Figure 2: Statistics on bio-assay modelling tasks. Left: Number of samples per task. Middle: Noise-to-signal ratio. Right:
Within-task versus overall molecular diversity.

6 EXPERIMENTS293

6.1 BENCHMARKING ANALYSIS294

Performance of ADKL is evaluated against a FSDKL instance (R2-D2 of Bertinetto et al. (2018)),295

CNP (Garnelo et al., 2018b), MAML (Finn et al., 2017), BMAML (Kim et al., 2018), ProtoMAML296

(Triantafillou et al., 2019) and Learned Basis (Yi Loo, 2019) (all implementations are available297

here (anonymized link)). These algorithms have all proven to have efficient and effective test-time298

adaptation routines and therefore constitute strong baselines for benchmarking. Tables 1 to 3 report299

the average MSE over all tasks and 20 random support and query partitions for each task, for different300

sized support sets.301

For the Sinusoids collection, we observe that DKL-based methods significantly outperform all302

other methods despite their test-time adaptation capabilities. These results alone demonstrate the303

effectiveness of DKL-based methods in FSR relative to the current state-of-the-art. Furthermore, of304

all DKL-based methods, ADKL-KRR shows consistently stronger performance than others. This305

demonstrates that using ADKL increases test-time performance relative to FS-DKL (as R2-D2 and306

ADKL-KRR only differ by the kernel definition). It also indicates that attempting to capture the307

model uncertainty using GP in ADKL (instead of KRR) comes with a significant cost, especially in308

lower data regimes. This may be due to the inability of GP to differentiate between the observational309

noise and the model uncertainty as the number of samples get smaller. It is also important to notice310

that all methods using the task representation significantly outperform those that do not. This shows311

that adequately capturing the task representation is crucial for this task collection, which ADKL-KRR312

appears to be well-equipped to handle.313

Tables 2 and 3 show that real-world datasets are challenging for most methods, as their MSE only314

marginally improves when the size of the support set increases. It should be noted that while the315

scaling of the targets makes the MSE low for all methods, even a decrease of 0.005 can translate316

into large improvements of the modelling accuracy. However, we still observe that ADKL-KRR317

outperforms all other methods when the number of samples is greater than 10, again providing318

evidence of effectiveness of our method for FSR with complex task distributions. The gaps between319

ADKL and R2-D2 for these collections also confirm that using task specific kernels can be very320

useful even though inferring the right kernel can become difficult as the size of the support set gets321

smaller. Finally, it also appears that estimating the model uncertainty using ADKL-GP instead of322

ADKL-KRR comes with a marginal accuracy cost.323

6.2 ACTIVE LEARNING324

In this section, we report the results of active learning experiments. Our intent is to measure the325

effectiveness of the uncertainty captured by the predictive distribution of ADKL-GP for active326
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m 5 10 20
model

BMAML 2.042 1.371 0.844
CNP 1.616 0.392 0.117
Learned Basis 3.587 0.800 0.127
MAML 2.896 1.634 0.901
ADKL-GP 1.178 0.084 0.007
ADKL-KRR 0.867 0.061 0.005
ProtoMAML 2.044 1.369 0.846
FSDKL(R2D2) 1.002 0.073 0.009

Table 1: Average MSE
on Sinusoidals

m 5 10 20
model

BMAML 0.061 0.059 0.057
CNP 0.064 0.062 0.061
Learned Basis 0.063 0.060 0.059
MAML - - -
ADKL-GP 0.064 0.056 0.051
ADKL-KRR 0.063 0.054 0.051
ProtoMAML 0.061 0.059 0.065
FSDKL(R2D2) 0.060 0.060 0.055

Table 2: Average MSE
on Binding

m 5 10 20
model

BMAML 0.067 0.060 0.060
CNP 0.070 0.069 0.068
Learned Basis 0.068 0.065 0.093
MAML - - -
ADKL-GP 0.068 0.064 0.060
ADKL-KRR 0.068 0.059 0.058
ProtoMAML 0.065 0.063 0.070
FSDKL(R2D2) 0.066 0.064 0.063

Table 3: Average MSE
on Antibacterial

learning, as it is critical to our drug discovery use-cases. CNP, in comparison, serves to measure327

which of CNP and GP better captures the data uncertainty for improving FSR under active sample328

selection. For this purpose, we meta-train both algorithms using support and query sets of size329

m = 5. During meta-test time, five samples are randomly selected to constitute the support set Dtrn330

and build the initial hypothesis for each task. Then, from a pool U of unlabeled data, we choose the331

input x∗ of maximum predictive entropy, i.e. x∗ = argmaxx∈UE [log p(y|x, Dtrn)]. The latter is332

removed from U and added to Dtrn with its predicted label. The within-task adaptation is performed333

on the new support set to obtain a new hypothesis which is evaluated on the query set Dval of the334

task. This process is repeated until we reach the allotted budget of 20 queries.335

Fig. 3 illustrates, for all collections, the MSE after each sample acquisition iteration and under both336

random and active learning acquisition strategies. Under the active learning strategy, ADKL-GP337

consistently outperforms CNP. In particular, we observe that very few samples are queried by ADKL-338

GP to capture the data distribution whereas CNP performance remains far from optimal even when339

allowed the maximum number of queries. Further, since using the maximum predictive entropy340

strategy is better than querying samples at random for ADKL-GP (solid vs. dashed line), these results341

suggest that the predictive uncertainty obtained with GP is informative and more accurate than that of342

CNP. Moreover, when the number of queries is greater than 10, we observe a performance degradation343

for CNP while ADKL-GP remains consistent. This observation highlights the generalization capacity344

of DKL methods, even outside the few-shot regime where they have been trained — this same345

property does not hold true for CNP. We attribute this property of DKL methods to their use of kernel346

methods. In fact, their role in adaptation and generalization increases as we move away from the347

few-shot training regime.348
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Figure 3: Average MSE performance on the meta-test during active learning. The width of the
shaded regions denotes the uncertainty over five runs for the sinusoidal collection. No

uncertainty is shown for the real-world tasks as they were too time consuming.

6.3 ABLATION EXPERIMENTS349

In our final set of experiments, we more closely evaluate the impact of the task encoder and the pseudo-350

inputs on the generalization during meta-testing. We do so by training and evaluating ADKL on351

Sinusoids with different hyperparameter combinations. Figs. 4a to 4d show the relative improvements352

(negative values) or setbacks (positive values) in the meta-test MSE compared to different baselines353

(but the joint impact of γtask and γpseudo is only discussed in Appendix A.3).354
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First, Fig. 4a compares γtask ∈ {0.01, 0.1} relative to γtask = 0 and consequently demonstrates that355

regularizing the task encoder by maximizing the mutual information between the support set and356

the query set significantly improves the generalization performance. This conclusion holds for all357

support set sizes tested, as shown in Appendix A.1. Combined with the results from Section 6.1, this358

figure shows the importance of good task encoders for generalization in few-shot learning and how359

using the regularization term that we introduced is a step forward in that direction.360

Then, Fig. 4c measures the relative differences between γpseudo ∈ {0.01, 0.1} and γpseudo = 0 for361

different values of hyperparameter combinations. It shows that improving the kernel map evaluations362

using pseudo-input representations can significantly help with the generalization performance of363

ADKL. This conclusion also holds for all values tested for |Dt
trn| ( see Appendix A.2). However, the364

improvements were more consistent for smaller support sets, which is not surprising as improving365

the kernel map estimations in these cases is more critical.366

Finally, Figs. 4b and 4d illustrate for ADKL-GP and ADKL-KRR, and different sizes of support sets,367

how the number of pseudo-representations (i.e |U |) affects performance. The values for each cell368

are relative performance using |U |∈ {20, 50} versus |U |= 0 and have been averaged over different369

hyperparameters and γpseudo. In general, we can confirm that increasing the number of pseudo-370

representations increases the estimates of the kernel maps and improves generalization. However, the371

improvements are more prominent with KRR in comparison to GP, which may be due to the fact that372

GP attributes a part of the modelling noise to the kernel evaluations, leading to more constraints on373

the optimization of the pseudo-representation parameters.374

(a) Impact of the task encoder trade-off parameter. (b) Pseudo-inputs with
ADKL-KRR

(c) Impact of the pseudo inputs trade-off parameter (d) Pseudo-inputs with
ADKL-GP

Figure 4: Relative decrease/increase in the meta-test MSE compared to different baselines. In
(a) and (c) the baselines are γtask = 0 and γpseudo = 0, respectively. In (b) and (d) the

baselines are |U |= 0

7 CONCLUSION375

In this work, we investigate the modelling of biological assays using few-shot learning methods.376

We propose a new framework, ADKL, that stores meta-knowledge in kernel functions and adapts377

to new tasks using KRR or GP. Our experiments provide evidence that the additional adaptation378

capacity at test-time provided by these methods increases generalization when modelling bio-assays379

and on 1D sinusoidal regression tasks. In a Bayesian setup, they better estimate predictive uncertainty,380

increasing their utility in real-world applications such as drug discovery. Finally, by making our381

bio-assay task collections publicly available, we hope that the community will leverage them to382

propose FSR algorithms that are ready to be deployed under real-world constraints, with the ultimate383

aim of accurately predicting key molecular properties early in the drug discovery pipeline.384
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Appendices468

A REGULARIZATION IMPACT469

A.1 TASK REGULARIZATION470

Table 4 presents the hyperparameter combinations used in the experiments to assess the impact of471

the trade-off parameter γtask. We report the MSE performance obtained on the meta-test for each472

combination. To make reading this table easier, we also repeat the Fig. 5 showing the improvement473

of the MSE relative to γtask = 0 (no regularization).474

Table 4: Effect of using task regularization (parameter γtask) on the MSE performance

γtask 0.00 0.01 0.10
algorithm K γpseudo Configuration

ADKL-KRR 20 0.01 1 0.0585 0.0327 0.0289
10 0.00 2 0.4051 0.2944 0.3671

0.10 3 0.4363 0.2964 0.2882
ADKL-GP 5 0.10 4 2.4920 2.2511 2.2994
ADKL-KRR 20 0.00 5 0.0574 0.0305 0.0302
ADKL-GP 5 0.01 6 2.5611 2.1511 2.2112

0.01 7 3.2933 2.7663 3.0971
10 0.01 8 0.7675 0.7105 0.4352
20 0.00 9 0.1201 0.0873 0.0646

ADKL-KRR 20 0.10 10 0.0575 0.0447 0.0273

Figure 5: Relative improvement of the MSE depending on the γtask parameter

For a more in-depth analysis, we show below the similar tables and figures for different values of K (475

5, 10 and 20). These results confirm that regularizing the task encoder is helpful for any value of476

K, even though the impact seems to become much more important as K increases (observe that the477

maximum improvement in each figure increases with K).478

For K = 5479

γtask 0.00 0.01 0.10
algorithm γpseudo

ADKL-GP 0.01 3.2933 2.7663 3.0971
0.00 2.8528 3.1136 2.2801
0.01 2.5611 2.1511 2.2112
0.10 2.4920 2.2511 2.2994

ADKL-KRR 0.00 1.7123 1.7079 1.2808
0.01 1.6344 1.6655 1.1974
0.10 1.6868 1.6532 1.2173
0.00 1.1951 1.2129 1.1998
0.01 1.1655 1.1611 1.1416
0.10 1.1658 1.1716 1.1442

480

For K = 10481
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γtask 0.00 0.01 0.10
algorithm γpseudo

ADKL-GP 0.00 0.6423 0.6556 0.6079
0.01 0.7675 0.7105 0.4352
0.10 0.6182 0.6577 0.5244
0.10 0.7326 0.6294 0.7663

ADKL-KRR 0.00 0.4051 0.2944 0.3671
0.01 0.4386 0.3544 0.3628
0.10 0.4363 0.2964 0.2882
0.00 0.3170 0.2967 0.2395
0.01 0.3070 0.2888 0.2299
0.10 0.3038 0.2893 0.2326

482

For K = 20483

γtask 0.00 0.01 0.10
algorithm γpseudo

ADKL-GP 0.00 0.1201 0.0873 0.0646
0.01 0.0958 0.0761 0.0952
0.10 0.0940 0.0882 0.1286
0.01 0.1069 0.1029 0.1144

ADKL-KRR 0.00 0.0526 0.0535 0.0430
0.01 0.0375 0.0325 0.0414
0.10 0.0380 0.0325 0.0395
0.00 0.0574 0.0305 0.0302
0.01 0.0585 0.0327 0.0289
0.10 0.0575 0.0447 0.0273

484

A.2 PSEUDO-INPUT REPRESENTATIONS485

Table 5 presents the hyperparameter combinations used in the experiments to assess the impact of486

the trade-off parameter γpseudo, which governs the penalty applied to the divergence between the487

distribution of learned pseudo-representations and the distribution of actual representations. We also488

repeat in Fig. 6, the relative improvement of MSE compared to γpseudo = 0 as shown in the main489

text.490

Table 5: Effect of the pseudo-examples regularization (parameter γpseudo)
on the MSE performance

γpseudo 0.00 0.01 0.10
algorithm K γtask Conf.

ADKL-GP 10 0.10 1 0.6079 0.4352 0.5244
20 0.01 2 0.0873 0.0761 0.0882

ADKL-KRR 20 0.00 3 0.0526 0.0375 0.0380
ADKL-GP 5 0.10 4 2.2801 2.2112 2.2994
ADKL-KRR 20 0.01 5 0.0535 0.0325 0.0325
ADKL-GP 5 0.01 6 2.9466 2.7663 2.7121

20 0.10 7 0.1147 0.1144 0.0870
0.00 8 0.1201 0.0958 0.0940

5 0.01 9 3.1136 2.1511 2.2511
0.00 10 2.8528 2.5611 2.4920

Figure 6: Relative improvement of the MSE depending on the γtask parameter

Once again, for a more in-depth analysis, we show below the same format of tables and figures for491

different values of K, confirming again that regularizing using the pseudo-representation can be very492

helpful for any value of K. It is worth noticing here that the improvement gain is more consistent for493
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K = 5 compared to K ∈ {10, 20}, supporting the fact that improving kernel maps evaluations using494

pseudo-representations is critical as size of the support set decreases.495

For K = 5496

γpseudo 0.00 0.01 0.10
algorithm γtask

ADKL-GP 0.01 2.9466 2.7663 2.7121
0.10 2.2801 2.2112 2.2994

ADKL-KRR 0.00 1.7123 1.6344 1.6868
0.00 1.1951 1.1655 1.1658

ADKL-GP 0.00 2.8528 2.5611 2.4920
ADKL-KRR 0.10 1.1998 1.1416 1.1442

0.01 1.2129 1.1611 1.1716
0.10 1.2808 1.1974 1.2173

ADKL-GP 0.01 3.1136 2.1511 2.2511
ADKL-KRR 0.01 1.7079 1.6655 1.6532

497

For K = 10498

γpseudo 0.00 0.01 0.10
algorithm γtask

ADKL-GP 0.01 0.7329 0.7907 0.6294
0.10 0.7479 0.7800 0.7663

ADKL-KRR 0.00 0.3170 0.3070 0.3038
ADKL-GP 0.00 0.6423 0.7675 0.6182
ADKL-KRR 0.10 0.3671 0.3628 0.2882

0.01 0.2967 0.2888 0.2893
ADKL-GP 0.01 0.6556 0.7105 0.6577

0.00 0.7145 0.6758 0.7326
0.10 0.6079 0.4352 0.5244

ADKL-KRR 0.10 0.2395 0.2299 0.2326

499

For K = 20500

γpseudo 0.00 0.01 0.10
algorithm γtask

ADKL-GP 0.00 0.1201 0.0958 0.0940
0.00 0.0794 0.1069 0.0702
0.01 0.0873 0.0761 0.0882

ADKL-KRR 0.01 0.0305 0.0327 0.0447
0.00 0.0526 0.0375 0.0380
0.10 0.0302 0.0289 0.0273
0.00 0.0574 0.0585 0.0575

ADKL-GP 0.10 0.1147 0.1144 0.0870
ADKL-KRR 0.01 0.0535 0.0325 0.0325

0.10 0.0430 0.0414 0.0395

501

Overall, the effect of the regularization is beneficial, even though we witness a few pathological cases.502

A.3 JOINT IMPACT OF γtask AND γpseudo503

Since both γtask and γpseudo have a high impact on the training and the generalization performance,504

we need to assess the relationship between the two. Fig. 7 shows, for different values of K, the505

relative improvement of the test MSE compared to the case where no regularization is done, i.e.506

γtask = 0 and γpseudo = 0. Overall, one can see that higher is better in both dimensions but there507

seems to be a sweet spot on the grid for each value of K and therefore we can only advise the user to508

cross-validate on those hyperparameters.509

Figure 7: Average relative improvement of the MSE
and joint impact of γtask and γpseudo.
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B PREDICTION CURVES ON THE SINUSOIDS COLLECTION510

Figure 8 presents a visualization of the results obtained by each model on three tasks taken randomly511

from the meta-test set. We provide the model with ten examples from an unseen task consisting of512

a slightly noisy sine function (shown in blue), and present in orange the predictions made by the513

network based on these ten examples.514
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Figure 8: Meta-test time predictions on the Sinusoids collection
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