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ABSTRACT

Learning with noisy labels has drawn a lot of attention. In this area, most of recent
works only consider class-conditional noise, where the label noise is independent
of its input features. This noise model may not be faithful to many real-world ap-
plications. Instead, few pioneer works have studied instance-dependent noise, but
these methods are limited to strong assumptions on noise models. To alleviate this
issue, we introduce confidence-scored instance-dependent noise (CSIDN), where
each instance-label pair is associated with a confidence score. The confidence
scores are sufficient to estimate the noise functions of each instance with minimal
assumptions. Moreover, such scores can be easily and cheaply derived during the
construction of the dataset through crowdsourcing or automatic annotation. To
handle CSIDN, we design a benchmark algorithm termed instance-level forward
correction. Empirical results on synthetic and real-world datasets demonstrate the
utility of our proposed method.

1 INTRODUCTION

The recent success of deep neural networks has increased the need for high-quality labeled data.
However, such a labelling process can be time-consuming and costly. A compromise is to resort
to weakly-supervised annotations, using crowdsourcing platforms or trained classifiers that annotate
the data automatically. These weakly-supervised annotations tend to be low-quality and noisy, which
negatively affects the accuracy of high-capacity models due to memorization effects (Zhang et al.,
2017). Thus, learning with noisy labels has often drawn a lot of attention.

Early works on noisy labels studied random classification noise (RCN) for binary classification
(Angluin & Laird, 1988; Kearns, 1993). In the RCN model, each instance has its label flipped with a
fixed noise rate ρ ∈ [0, 1

2 ). A natural extension of RCN is class-conditional noise (CCN) for multi-
class classification (Stempfel & Ralaivola, 2009; Natarajan et al., 2013; Scott et al., 2013; Menon
et al., 2015; van Rooyen & Williamson, 2015; Patrini et al., 2016) (Appendix A). In the CCN model,
each instance from class i has a fixed probability ρi,j of being assigned to class j. Thus, it is possible
to encode some similarity information between classes. For example, we can expect that the image
of a “dog” is more likely to be erroneously labelled as “cat” than “boat”.

To handle the CCN model, a common method is the loss correction, which aims to correct the pre-
diction or the loss of the classifier using an estimated noise transition matrix (Patrini et al., 2017;
Sukhbaatar et al., 2015; Goldberger & Ben-Reuven, 2017; Ma et al., 2018). Another common ap-
proach is the label correction, which aims to improve the label quality during training. For example,
Reed et al. (2015) introduced a bootstrapping scheme. Similarly, Tanaka et al. (2018) proposed to
update the weights of a classifier iteratively using noisy labels, and use the updated classifier to
yield more high-quality pseudo-labels for the training set. Although these methods have theoretical
guarantees, they are unable to cope with real-world noise, e.g., instance-dependent noise (IDN).

The IDN model considers a more general noise (Manwani & Sastry, 2013; Ghosh et al., 2014;
Menon et al., 2016; Cheng et al., 2017; Menon et al., 2018), where the probability that an instance
is mislabeled depends on both its class and features. Intuitively, this noise is quite realistic, as poor-
quality or ambiguous instances are more likely to be mislabeled in real-world datasets. However, it
is much more complex to formulate the IDN model, since the probability of a mislabeled instance is
a function of not only the label space but also the input space that can be very high dimensional.
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Table 1: Comparisons between baselines and our work for handling the IDN model. Rate identifia-
bility denotes whether the transition matrix is identifiable.

Approaches Multi-class Rate-identifiability Unbounded-noise
Du & Cai (2015) 7 7 3

Menon et al. (2018) 7 3 3
Bootkrajang & Chaijaruwanich (2018) 7 7 3

Cheng et al. (2017) 7 3 7
Our work 3 3 3

As a result, several pioneer works have considered stronger assumptions on noise functions. How-
ever, stronger assumptions tend to restrict the utility of these works (Table 1). For instance, the
boundary-consistent noise model considers stronger noise for samples closer to the decision bound-
ary of the Bayesian optimal classifier (Du & Cai, 2015; Menon et al., 2018). However, such a model
is restricted to binary and cannot estimate noise functions. Cheng et al. (2017) recently studied
a particular case of the IDN model, where noise functions are upper-bounded. Nonetheless, their
method is limited to binary classification and has only been tested on small datasets.

Instead of simplifying assumptions on noise functions, we propose to tackle the IDN model from the
source, by considering confidence scores to be available for the label of each instance. We term this
new setting confidence-scored instance-dependent noise (CSIDN, Figure 1c). The confidence scores
denote how likely an instance is to be correctly labeled. Here, we make a simple assumption on real-
world noisy data: the instance influences the “magnitude” of the noise, i.e., how likely the assigned
label is to be wrong, but conditioned on an assigned label being erroneous, the transition probabilities
to other classes are independent of the instance. Based on this assumption and confidence scores,
we derive an instance-level forward correction algorithm. In particular, this algorithm can fully
estimate the transition probability for each instance, and subsequently train a robust classifier with a
loss-correction method similarly to Patrini et al. (2017).

It is noted that confidence scores can be easily and cheaply derived during the construction of the
dataset. For example, in crowdsourcing platforms, simply counting how many annotators agree on
a given instance can give a notion of how confident a label is. Besides, many real-world datasets are
automatically annotated using a trained classifier, such as web-scraped datasets (Tong Xiao et al.,
2015) and physiological features inferred from medical records (Agarwal et al., 2016). In these
cases, the class-probabilities of the labels assigned by the classifier can be seen as confidence scores,
provided that the classifier is well calibrated (Guo et al., 2017).

To sum up, we first formulate instance-dependent noise in Section 2.1, and expose its robustness
challenge in Section 2.2. Then, we explain our motivation to use confidence scores, and propose the
confidence-scored instance-dependent noise (CSIDN) model in Section 2.3. Lastly, to handle this
new noise model, we present the first practical algorithm termed instance-level forward correction
in Section 3, and validate the proposed algorithm through extensive experiments in Section 4.

2 TACKLING INSTANCE-DEPENDENT NOISE FROM THE SOURCE

In this section, we present the IDN model along with the limitations of existing approaches, and
introduce the CSIDN model as a tractable instance-dependent noise model.

2.1 NOISE MODELS: FROM CLASS-CONDITIONAL TO INSTANCE-DEPENDENT NOISE

We formulate the problem of learning with noisy labels in this section. Let D be the distribution
of a pair of random variables (X,Y ) ∈ X × Y , where X ∈ Rd, Y = {1, 2, . . . ,K} and K is the
number of classes. In the classification task with noisy labels, we hope to train a classifier while
having only access to samples from a noisy distribution D̄ of random variables (X, Ȳ ) ∈ X × Y .
Given a point x sampled from X , Ȳ is derived from the random variable Y via a noise transition
matrix T (x) = (Ti,j(x))

K
i,j=1 ∈ [0, 1]K×K :

∀1 ≤ j ≤ K, P (Ȳ = j|X = x) =

K∑
i=1

Ti,j(x)P (Y = i|X = x). (1)
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(a) Class-conditional noise (b) Instance-dependent noise (c) Confidence-scored instance-
dependent noise

Figure 1: Illustration of different noise models. Each color represents an observed class ȳ: circles
indicate ȳ = y, while crosses indicate ȳ 6= y. The size of each point represents the confidence scores
in the label ȳ: the bigger the point is, the more confident it is. In the CCN model, the noise function
only depends on the label of each instance. In the IDN and CSIDN models, the noise function
depends on the observed instance x. To illustrate the IDN model, we show a special case called
boundary-consistent noise, i.e., points that lie close to the decision boundary are more likely to be
mislabelled. Note the CSIDN model varies from the IDN model via confidence scores (Section 2.3).

Each noise function Ti,j : X 7→ [0, 1] is defined as Ti,j(x) = P (Ȳ = j|Y = i,X = x). In
the class-conditional noise (CNN) model (Figure 1a), the transition matrix does not depend on the
instance x and the noise is entirely characterized by theK2 constants Ti,j . However, in the instance-
dependent noise (IDN) model (Figure 1b), the transition matrix depends on the actual instance. This
tremendously complicates the problem, as the noise is now characterized by K2 functions over the
latent space X , which can be very high dimensional (e.g., d ∼ 104-106 for an object recognition
dataset).

2.2 CHALLENGES FROM INSTANCE-DEPENDENT NOISE

Limitation of existing CCN methods. Due to the complexity of the IDN model, most recent
works in learning with noisy labels have focused on the CCN model (Figure 1a), and the CCN
model can be seen as a simplified IDN model (Figure 1b) free of feature information.

In addition to loss correction and label correction mentioned before, another method for the CCN
model is sample selection, which aims to find reliable samples during training, such as the small-
loss approaches (Jiang et al., 2018; Han et al., 2018). Inspired by the memorization in deep learning
(Arpit et al., 2017), those methods first run a standard classifier on a noisy dataset, then select the
small-loss samples for reliable training.

However, all approaches cannot handle the IDN model directly. Specifically, loss correction con-
siders the noise model to be characterized by a fixed transition matrix, which does not include any
instance-level information. Meanwhile, label correction is vulnerable to the IDN model, since the
classifier will be much weaker on noisy regions and labels corrected by the current prediction would
likely be erroneous. Similarly, sample selection is easily affected by the IDN model.

For example, in the small-loss approaches, instance-dependent noise functions can leave partial re-
gions of the input space clean and other regions very noisy (e.g., in an object recognition dataset,
poor-quality pictures will tend to receive more noisy labels than high-quality ones). Since clean re-
gions will tend to receive smaller losses than noisy regions, the small-loss approaches will focus on
clean regions and neglect harder noisy regions. Then, since the distribution of clean regions will sub-
sequently be different from the global distribution, this will introduce a covariate-shift (Shimodaira,
2000), which greatly degrades performances. Moreover, it is hard to use importance reweighting
(Sugiyama et al., 2007) for alleviate the issue, since importance reweighting would require estimat-
ing the clean posterior probability that is intractable for the IDN model.

To validate this fact, we generate a 3-class distribution of concentric circles (cf. Figure 2a), with
∀(x, y) ∈ R2 × {1, 2, 3}, P (ȳ 6= y|x) = 1

2

(
w·x
‖w‖‖x‖ + 1

)
with w = (0, 1) (cf. Figure 2b). We

then train a network on the top R(T ) small-loss instances at each epoch T based on the losses of
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(a) Clean data distribution (b) Data distribution with IDN (c) Density of selected small-loss in-
stances at epoch 10

Figure 2: The limitation of the small-loss approaches in the IDN model. (a) Clean distribution. (b)
instance-dependent noise in the direction w = (0, 1) with an average corruption rate of 40%: points
towards the upper region are more likely to be corrupted than points towards the bottom region. (c)
Density map of the instances selected by a small-loss approach at epoch 10. The sample selection
gets biased towards clean regions. Since the clean and noisy regions have different distributions,
selecting most instances from clean regions creates a covariate-shift between the training and test
distributions, which can greatly degrades performances.

the previous epoch, with R(T ) decreasing in T as described in Han et al. (2018). Figure 2c shows
the density of the top 50% small-loss instances selected after 10 epochs: since noisy regions are
associated to higher losses, the network eventually tends to select instances from the clean region
and neglect the noisy region, which leads to poor test accuracy because of the covariate-shift.

Limitation of pioneer IDN methods. The main challenge of the IDN model is the wide range
of possible noise functions included in its formulation. Since each Ti,j(·) is a function of the high-
dimensional input space X , it is challenging for a model to be flexible enough to fit any real-world
noise function while being trainable on corrupted datasets, let alone derive theoretical results. In-
stead, various recent works have considered stronger assumptions on noise functions.

For instance, boundary-consistent noise (BCN), first introduced by (Du & Cai, 2015) and general-
ized in Menon et al. (2018), considers stronger noise for samples closer to the decision boundary
of the Bayesian optimal classifier. This is a reasonable model for noise from human annotators,
since “harder” instances (i.e., instances closer to the decision boundary) are more likely to be cor-
rupted. Moreover, it is simple enough to derive some theoretical guarantees, as done in Menon et al.
(2018). Additionally, an extension of the BCN model was studied in Bootkrajang & Chaijaruwanich
(2018), where the noise function is a Gaussian mixture of the distance to the Bayesian optimal
boundary. However, the BCN model and its extension are restricted to binary classification, and
their geometry-based assumption becomes difficult to fathom for high-dimensional input spaces.

Furthermore, Cheng et al. (2017) recently studied a particular case of the IDN model, where the
probabilities that the true labels of samples flip into corrupted ones have upper bounds. They pro-
posed a method based on distilled samples, where noisy labels agree with the optimal Bayesian
classifier on the clean distribution. However, their method is limited to binary classification and has
only been tested on small UCI datasets. Table 1 summarizes the characteristics of those approaches.

2.3 CONFIDENCE-SCORED INSTANCE-DEPENDENT NOISE

Instead of simplifying assumptions on noise functions, we propose to tackle the IDN model from
the source. Namely, we consider that, for each instance, we have access to a measure of confidence
in the assigned label. As most of noisy datasets arise from crowdsourcing or automatic annotation,
such confidence scores can be easily derived during the dataset construction, often with no extra
cost. This allows for a good approximation of noise functions with weaker assumptions.
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Before introducing our proposed noise model confidence-scored instance-dependent noise (CSIDN,
Figure 1c), we first define what are the confidence scores, and explain why the confidence scores are
available in real-world applications.

Definition of confidence scores. For any data point (x, ȳ) sampled from the joint distribution
(X, Ȳ ), we define the confidence score rx as follows.

rx = P (Y = ȳ|Ȳ = ȳ, X = x). (2)

Namely, the probability that the assigned label is correct.

Availability of confidence scores. Our rationale is that in tasks involving instance-dependent
noise, the confidence information can be easily derived with no extra cost.

Firstly, in crowdsourcing platforms, when multiple workers manually annotate datasets, an aggre-
gation step is often took to aggregate answers of different workers for each instance (e.g., majority
vote). An estimation of rx could then be derived by taking the ratio of votes for the assigned label
on the total number of workers. Moreover, since this estimation would of course be less reliable as
the number of workers decreases, an alternative could be to directly ask workers for self-reported
confidence scores of their responses (Cosmides & Tooby, 1996; Oyama et al., 2013).

Secondly, the confidence information can also be available in automatic annotation via a softmax
output layer of deep neural networks. This layer outputs an estimation of the probability that each
class is the true label: when a model outputs a given class with probability 0.9, we expect the pre-
dicted class to be true 9 times out of 10 on average. A model that estimates the accurate probability
is well-calibrated. Therefore, in the case of labels generated by a well-calibrated model, the softmax
probability of the assigned label can be directly interpreted as a confidence measure that the label
is correct. Even though Guo et al. (2017) showed that recent deep neural networks are not usually
well-calibrated (whereas early shallower networks were, as shown in Niculescu-Mizil & Caruana
(2005)), model calibration can be achieved in a relatively straightforward way at the validation time,
e.g., using temperature scaling (Section 4.2 in Guo et al. (2017)).

CSIDN: a tractable instance-dependent noise model. Recall the intrinsic difficulty of the IDN
model: to fully characterize this noise, one would need to estimate K2 functions Ti,j(·) over the
input space X . This is of course intractable with a finite noisy dataset. This is why pioneer solutions
to the IDN model have been so far limited by very strong assumptions.

However, considering additional confidence scores, one can wonder whether such information
would make the IDN model tractable with less restrictive assumptions. Hence, we introduce a
new and tractable instance-dependent noise model: confidence-scored instance-dependent noise
(CSIDN, Figure 1c). In this noise model, the training data takes the form S := {(xi, ȳi, rxi

), i =

1, . . . , N}, where {(xi, ȳi)}i
i.i.d.∼ D̄ and rxi

= P (Y = ȳi|Ȳ = ȳi, X = xi) is the previously
defined confidence scores in the assigned label of a given instance (Eq. (2)). The confidence infor-
mation rx is decisive for robustness to instance-dependent noise, as it provides a proxy for the noise
functions Ti,j of the training data that are often intractable otherwise.

3 BENCHMARK SOLUTION FOR HANDLING THE CSIDN MODEL

To tackle the CSIDN model, we propose a benchmark solution. Inspired by forward correction
(Patrini et al., 2017) for the CCN model, we want to correct each prediction P (ȳ|x) with the noise
transition matrix T (x). However, the transition matrix for the CSIDN model is instance-dependent,
and has to be estimated for each instance x. We term our solution instance-level forward correction.

3.1 ESTIMATING INSTANCE-DEPENDENT TRANSITION MATRIX

Using the confidence scores, we will first estimate the diagonal terms (Ti,i(·))Ki=1 of the transition
matrix, and then estimate the non-diagonal ones.

Diagonal terms. The diagonal terms of the transition matrix correspond to the probabilities that
assigned labels are equal to true labels. However, the confidence scores available are only relevant
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to the class corresponding to the observed label. Therefore, we need to proceed differently whether
the confidence scores are available for the considered class or not.

First, note that for each sample (x, ȳ, rx) ∈ Si := {(x, ȳ, rx) ∈ S|ȳ = i}, Ti,i(x) can be derived
for the most part from the confidence scores alone:

∀(x, ȳ, rx) ∈ Si, Ti,i(x) = P (Ȳ = i|Y = i,X = x)

= P (Y = i|Ȳ = i,X = x)
P (Ȳ = i|X = x)

P (Y = i|X = x)

= rx βi(x), (3)

where βi(x) = P (Ȳ =i|X=x)
P (Y =i|X=x) .

In practice, we use an iterative procedure to estimate in turn βi(·) and Ti,i(·) (see Section 3.2 for
details). Then, for the rest of samples (x, ȳ, rx) ∈ S\Si, rx does not give any direct information on
Ti,i(·). Hence, we simply set each function Ti,i(·) as its empirical mean µi estimated using samples
from Si at the current epoch:

∀(x, y, rx) ∈ S\Si, T̂i,i(x) =
1

|Si|
∑

(x′,ȳ′,r′x)∈Si

Ti,i(x
′) = µi, (4)

where |S| denotes the cardinality of S.

Non-diagonal terms. For non-diagonal terms, we have:

∀i 6= j,∀x ∈ X , Ti,j(x) = P (Ȳ = j|Y = i,X = x)

= P (Ȳ = j, Ȳ 6= i|Y = i,X = x)

= P (Ȳ = j|Ȳ 6= i, Y = i,X = x)P (Ȳ 6= i|Y = i,X = x)

= αi,j(x)(1− Ti,i(x)), (5)

where αi,j(x) = P (Ȳ = j|Ȳ 6= i, Y = i,X = x).

In Eq. (4), αi,j(x) refers to the probability that an instance xwith true label i has an observed label j,
once we know that the observed label is different from the true one. Then, a reasonable assumption
is that ∀i 6= j,∀x ∈ X , αi,j(x) = αi,j : once knowing that the observed label is erroneous, the class
transitions are not influenced by the instance x. In other words, the dependence in x of the noise
function only impacts the “magnitude” of the noise and not the class transitions.

To illustrate this assumption, consider a crowdsourcing task of object recognition with adjacent
classes which annotators can only differentiate with details that can be more or less visible depending
on the instance. For example, objects from a given class may have distinctive traits, but those can
be more or less visible in the pictures. When those traits are present, the annotators can confidently
predict the right class. Otherwise, they will make errors towards adjacent classes. In this case, the
probability that the assigned label is wrong highly depends the instance (with distinctive traits being
visible or not). Nonetheless, once we know that the instance is corrupted, i.e., because those traits
were not visible enough on the image, the transition probabilities to the adjacent classes are not
influenced by the instance itself.

With the previous assumption, we obtain ∀i 6= j,∀x ∈ X , Ti,j(x) = αi,j(1 − Ti,i(x)) with αi,j ∈
[0, 1]. This allows us to estimate theK(K−1) constants (αi,j)i 6=j once, and derive the non-diagonal
noise functions of T (x) directly from our estimates of the diagonal noise functions (Eq. (5)).

3.2 OVERALL ALGORITHM: INSTANCE-LEVEL FORWARD CORRECTION

Estimating Ti,i and βi. To train a classifier h with the instance-level forward correction method,
we need to estimate both Ti,i(x) and βi(x) = P (Ȳ =i|X=x)

P (Y =i|X=x) from Eq. (3), for all x ∈ Si. Firstly,
the noisy posterior P (Ȳ = i|X = x) can be easily estimated by training a naive classifier on the
noisy dataset. Secondly, the true posterior P (Y = i|X = x) can be estimated using the output of
the classifier h(x) = P̂ (Y = i|X = x) at the previous epoch.
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Therefore, we iteratively update β̂ and T̂ with the following steps: 1) ∀x ∈ X , initialize β̂i(x) = 1

and train a naive classifier hnoisy on the noisy data D̄ to obtain hnoisy(x) = P̂ (Ȳ |X = x). 2)
∀i ∈ [1,K], for each sample (x, ȳ, rx) ∈ Si, compute T̂i,i(x) = rxβ̂i(x) and train classifier h
for one epoch. 3) ∀i ∈ [1,K], for each sample (x, ȳ, rx) ∈ Si, update β̂i(x) =

hnoisy(x)i
h(x)i

. Then,
we repeat steps 2) and 3) through training. In this way, for every epoch, each function Ti,i(·) is
estimated for the samples from Si. Lastly, for the rest of samples with noisy label j 6= i, Ti,i(·) is
estimated at each epoch using Eq. (4):

∀(x, y, rx) ∈ S\Si, T̂i,i(x) =
1

|Si|
∑

(x′,ȳ′,r′x)∈Si

r′xβ̂i(x
′) = µi. (6)

Computing αi,j . The computation of αi,j boils down to approximating non-diagonal terms of the
transition matrix in the CCN model. As ∀i 6= j,∀x ∈ X , Ti,j(x) = αi,j(1− Ti,i(x)), we have:

Ex [Ti,j(x)] = αi,j (1− Ex [Ti,i(x)])⇔ αi,j =
Ex [Ti,j(x)]

1− Ex [Ti,i(x)]
.

A simple and reliable way is to use anchor points, i.e., points for which we can know the true class
almost surely. These points may be directly available when some training data has been curated, or
they can be identified either theoretically as in Liu & Tao (2015) or heuristically as in Patrini et al.
(2017). Having S∗i := {(x, ȳ, rx) ∈ S|P (Y = i|X = x) ≈ 1} a set of class i anchor points, we
simply need compute:

∀(x, ȳ, rx) ∈ S∗i ,∀j 6= i, Ti,i(x) = rxP (Ȳ = i|X = x) and Ti,j(x) = P (Ȳ = j|X = x).

Two noisy posteriors can be estimated using the same classifier hnoisy trained on the noisy distribu-
tion hnoisy(x) = P̂ (Ȳ |X = x) aforementioned. Thus, αi,j can be estimated as follows:

∀1 ≤ i, j ≤ K, j 6= i, αi,j =

1
|S∗i |

∑
(x,ȳ,rx)∈S∗i

hnoisy(x)j

1− 1
|S∗i |

∑
(x,ȳ,rx)∈S∗i

rxhnoisy(x)i
. (7)

Summary of the training procedure. Given samples S and K sets of anchor points (S∗i )Ki=1, we
want to train a classifier h(·) equipped with a loss l. For any loss l : y, ŷ 7→ l(y, ŷ), we define the
T -corrected loss as lT : y, ŷ 7→ l(y, T ŷ). The overall procedure is in Algorithm 1 (Appendix B).

4 EXPERIMENTS

We compare our instance-level forward correction (ILFC) method with four representative baselines:
forward correction (FC) (Patrini et al., 2017), mean absolute error (MAE) (Ghosh et al., 2017), Lq-
norm (LQ) (Zhang & Sabuncu, 2018) and co-teaching (CT) (Han et al., 2018). Details are shown in
Appendix C. Note that the pioneer IDN methods cannot work for multi-class cases.

4.1 SYNTHETIC DATASET

Generation process. We generate a synthetic dataset (Appendix D) consisting in three classes of
concentric circles (Figure 5a). We then apply the following instance-dependent noise to each label:
P (Ȳ 6= Y |X = x) = ρ

(
w·x
‖w‖‖x‖ + 1

)
/2 with w = (0, 1) and ρ controlling the mean noise rate. If

corrupted, each label is flipped to another class uniformly.

Empirical results. Figure 3 shows the test accuracy of different methods on the synthetic dataset.
Each experiment is repeated 5 times and we plot the confidence intervals of each curve. On low-level
noise, all methods show good performances (Figure 3a). On mild-level noise, both Co-teaching and
ILFC show good performances and outperform other baselines (Figure 3b). On high-level noise, the
performance of all the baselines collapse, whereas ILFC constantly maintains good performances
(Figures 3c and 3d). More experiments are shown in Appendix E.
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(a) ρ = 0.25 (b) ρ = 0.35 (c) ρ = 0.45 (d) ρ = 0.50

Figure 3: The test accuracy on synthetic datasets with different levels of IDN noise.

4.2 REAL-WORLD DATASET

Generation process. In order to corrupt labels from clean datasets such as SVHN and CIFAR10,
we adopt the following procedure: (1) train a classifier h : x 7→ σ(g(x)) on a small subset of the
clean dataset; (2) using a small validation set, calibrate the classifier by selecting the temperature
t that maximizes the expected calibration error as in Guo et al. (2017); (3) for each instance x,
set: ȳ = argmaxi ht(x)i and rx = maxi ht(x)i. With this process, we attempt to emulate the
construction of a real-world dataset (Appendix F).

Empirical results. Figures 4a and 4b show the test accuracy on SVHN with 25% and 45%
instance-dependent noise, respectively. We can clearly observe that, on both low-level and high-
level noise, ILFC shows good performances with a fast convergence rate, and outperforms other
baselines. Figures 4c and 4d show the test accuracy on CIFAR10 with 25% and 45% instance-
dependent noise, respectively. On low-level noise, all methods show good performances. However,
on high-level noise, ILFC shows a fast convergence rate and outperforms other baselines.

(a) SVHN, IDN-25% (b) SVHN, IDN-45% (c) CIFAR10, IDN-25% (d) CIFAR10, IDN-45%

Figure 4: The test accuracy on real-world datasets with different levels of IDN noise.

5 CONCLUSION

In this paper, we give an overview of label-noise learning from class-conditional noise (easier) to
instance-dependent noise (harder). We explain why existing approaches cannot handle instance-
dependent noise well, and try to address this challenge via confidence scores. Thus, we formally
propose the confidence-scored instance-dependent noise (CSIDN) model. To tackle the CSIDN
model, we design a practical algorithm termed instance-level forward correction (ILFC). Our ILFC
method robustly outperforms existing methods, especially in the case of high-level noise. In future
works, we would like to extend label correction and sample selection approaches with the confidence
scores from the CSIDN model.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Vibhu Agarwal, Tanya Podchiyska, Juan M Banda, Veena Goel, Tiffany I Leung, Evan P Minty,
Timothy E Sweeney, Elsie Gyang, and Nigam H Shah. Learning statistical models of phenotypes
using noisy labeled training data. Journal of the American Medical Informatics Association, 23
(6):1166–1173, 2016.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343–370,
1988.

Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look
at memorization in deep networks. In ICML, 2017.

Jakramate Bootkrajang and Jeerayut Chaijaruwanich. Towards instance-dependent label noise-
tolerant classification: a probabilistic approach. Pattern Analysis and Applications, pp. 1–17,
2018.

Steve Branson, Grant Van Horn, and Pietro Perona. Lean crowdsourcing: Combining humans and
machines in an online system. In CVPR, 2017.

Nontawat Charoenphakdee, Jongyeong Lee, and Masashi Sugiyama. On Symmetric Losses for
Learning from Corrupted Labels. ICML, 2019.

Jiacheng Cheng, Tongliang Liu, Kotagiri Ramamohanarao, and Dacheng Tao. Learning with
bounded instance-and label-dependent label noise. stat, 1050:12, 2017.

Leda Cosmides and John Tooby. Are humans good intuitive statisticians after all? rethinking some
conclusions from the literature on judgment under uncertainty. Cognition, 58(1):1–73, 1996.

Jun Du and Zhihua Cai. Modelling class noise with symmetric and asymmetric distributions. In
AAAI, 2015.

Aritra Ghosh, Naresh Manwani, and P S. Sastry. Making risk minimization tolerant to label noise.
Neurocomputing, 160, 2014.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label noise for deep
neural networks. In AAAI, 2017.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. In ICLR, 2017.

Melody Y Guan, Varun Gulshan, Andrew M Dai, and Geoffrey E Hinton. Who said what: Modeling
individual labelers improves classification. In AAAI, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In ICML, 2017.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
NeurIPS, 2018.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In ICML, 2018.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing - STOC 93, 1993.

Ashish Khetan, Zachary C. Lipton, and Anima Anandkumar. Learning from noisy singly-labeled
data. In ICLR, 2018.

Samuli Laine and Timo Aila. Temporal Ensembling for Semi-Supervised Learning. ICLR, 2017.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. IEEE
Transactions on pattern analysis and machine intelligence, 38(3):447–461, 2015.

9



Under review as a conference paper at ICLR 2020

Xingjun Ma, Yisen Wang, Michael E. Houle, Shuo Zhou, Sarah Erfani, Shutao Xia, Sudanthi Wi-
jewickrema, and James Bailey. Dimensionality-driven learning with noisy labels. In ICML, 2018.

Naresh Manwani and P. S. Sastry. Noise tolerance under risk minimization. IEEE Transactions on
Cybernetics, 43:1146–1151, 2013.

Hamed Masnadi-shirazi and Nuno Vasconcelos. On the Design of Loss Functions for Classification:
theory, robustness to outliers, and SavageBoost. In NeurIPS. 2009.

Aditya Menon, Brendan Van Rooyen, Cheng Soon Ong, and Bob Williamson. Learning from cor-
rupted binary labels via class-probability estimation. In ICML, pp. 125–134, 2015.

Aditya Krishna Menon, Brendan Van Rooyen, and Nagarajan Natarajan. Learning from binary
labels with instance-dependent corruption. arXiv preprint arXiv:1605.00751, 2016.

Aditya Krishna Menon, Brendan van Rooyen, and Nagarajan Natarajan. Learning from binary labels
with instance-dependent noise. Machine Learning, 107(8-10):1561–1595, September 2018.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993, 2018.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
Noisy Labels. In NeurIPS. 2013.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learn-
ing. In ICML, 2005.

Satoshi Oyama, Yukino Baba, Yuko Sakurai, and Hisashi Kashima. Accurate integration of crowd-
sourced labels using workers’ self-reported confidence scores. In IJCAI, 2013.

Giorgio Patrini, Frank Nielsen, Richard Nock, and Marcello Carioni. Loss factorization, weakly
supervised learning and label noise robustness. In ICML, 2016.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In CVPR, 2017.

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich. Training deep neural networks on noisy labels with bootstrapping. ICLR, 2015.

Clayton Scott, Gilles Blanchard, and Gregory Handy. Classification with asymmetric label noise:
Consistency and maximal denoising. In COLT, pp. 489–511, 2013.

Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss mini-
mization. In ICML, 2019.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Guillaume Stempfel and Liva Ralaivola. Learning SVMs from sloppily labeled data. In International
Conference on Artificial Neural Networks, pp. 884–893, 2009.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. Covariate shift adaptation by
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A RELATED WORKS

Besides the works aforementioned, we survey other approaches to learning with noisy labels.

Robust losses. Various approaches propose to use a provably robust loss function in the learning
process. In the case of class-dependent label noise, Natarajan et al. (2013) constructed an unbiased
estimator of any loss function under the noisy distribution. Masnadi-shirazi & Vasconcelos (2009)
introduced a robust non-convex loss. Recently, works on symmetric losses showed that such loss
offer theoretical robustness results to various types of noise (Ghosh et al., 2017; Charoenphakdee
et al., 2019). Motivated by the robustness to noise of the mean absolute error loss (MAE) shown in
Ghosh et al. (2017), Zhang & Sabuncu (2018) introduced generalized cross entropy loss that allows
for a trade-off between the efficient learning properties of the CCE loss and the noise-robustness of
MAE. Shen & Sanghavi (2019) introduced a trimmed loss with an iterative minimization process
that allows for theoretical guarantees in the simpler setting of generalized linear models.

Annotator-level modelling. Another recent line of related works attempts to model labels and
worker’s quality directly during the crowdsourcing annotation process, in order to produce more ac-
curate labels efficiently. Branson et al. (2017) modeled the annotators’ skill and instances difficulty
while incrementally training a computer vision model during the annotation process, effectively re-
ducing the time burden of the annotation process as well as the error rate in the assigned labels.
Guan et al. (2018) modeled each annotator individually in order to better aggregate labels based on
each worker’s skill and area of expertise. Khetan et al. (2018) introduced a method that allows to
learn each workers’ skill even when each example is only annotated once, by jointly modelling the
assigned labels and the workers during the annotation process.

Explicit/implicit regularizers. Recently, several other regularization techniques have shown good
robustness in weakly-supervised settings. Temporal Ensembling (TE) (Laine & Aila, 2017) method
labels some additional unlabeled instances using a consensus of predictions from models from pre-
vious epochs and with different regularizations and input augmentation conditions. Mean-teacher
(MT) (Tarvainen & Valpola, 2017) instead uses predictions from a model obtained by averaging
the weights of a set of models similar to TE, as using the prediction from a unique model is more
efficient when a large amount of unlabeled data is available. Virtual Adversarial Training (Miyato
et al., 2018) regularizes the network using a measure of local smoothness of the conditional label
distribution given the input, defined as the robustness of the prediction to local adversarial pertur-
bations in the input space. Introduced in Zhang et al. (2018), mixup trains a neural network on
convex combinations of instance pairs and their respective labels, and has been shown to reduce the
memorization of corrupted labels.

B ALGORITHM

We present Algorithm 1 here, which can be referred to Section 3.2 in details.

C BASELINES

Forward correction. Introduced in Patrini et al. (2017), forward correction estimates a fixed tran-
sition matrix T before training, and trains a classifier with the corrected loss lT : (y, ŷ) 7→ l(y, T ŷ).

Mean absolute error loss. Due to its symmetric property, the Mean Absolute Error (MAE) has
been theoretically justified to be robust to label noise under assumptions (Ghosh et al., 2017). How-
ever, this loss is more difficult to train, especially on complex datasets.

Lq norm. Introduced in Zhang & Sabuncu (2018), Lq norm attempts to bring the best of both
worlds between the CCE and the MAE loss: the CCE is easy to train, while the MAE is robust to
label noise. The authors therefore define this loss using the negative box-cox transformation:

Lq (h(x), ej) =
(1− hj(x)q)

q
,
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Algorithm 1: Instance-level Forward Correction
Input confidence-annotated samples S := {(xi, ȳi, rxi), i = 1, . . . , N}, any loss l, classifier h(·), anchor

points sets (S∗
i )Ki=1 ;

(1) Train naive classifier hnoisy on samples {(xi, ȳi)}Ni=1;
(2) ∀1 ≤ i, j ≤ K, i 6= j, compute α[i, j] from Eq. 7 with anchor points set S∗

i ;
(3) ∀1 ≤ i ≤ K, initialize βi(·) = 1 ;
for epoch N = 1, . . . , Nmax do

// Update diagonal constants
(4) ∀1 ≤ i ≤ K, compute µ[i] from Eq. 6;
for (x, ȳ, rx) ∈ S do

Set i = ȳ ;
// Compute diagonal terms
(5) Set T [i, i] = rxβi(x) and ∀k ∈ [[1,K]]\{i}, T [k, k] = µ[k];
// Compute non-diagonal terms
(6) Set ∀1 ≤ i, j ≤ K, s.t. i 6= j, T [i, j] = α[i, j](1− T [i, i]);
// Train classifier with instance-level corrected loss
(7) Train h(·) on sample (x, ȳ, rx) with loss lT ;
// Update density ratio estimate

(8) Update ∀1 ≤ i ≤ K, ∀x ∈ Si, βi(x) =
hnoisyi (x)

hi(x)
;

end
end
(9) Output classifier h(·).

so that the Lq tends to the CCE when q → 0 and to the MAE when q = 1. In the following
experiments, we set q = 0.7, suggested by authors.

Co-teaching (Han et al., 2018). Co-teaching algorithm is a small-loss approach where two clas-
sifiers are trained in parallel. At each epoch, each classifier selects the instances with the smallest
loss, and feed them to the other network as a training set for the next iteration. This recent work has
proved to be a leading benchmark in the field of noisy labels.

D SYNTHETIC DATASET

Figure 5 shows three synthetic datasets, which cover clean, IDN and CSIDN models.

(a) Clean (b) IDN (c) CSIDN

Figure 5: Synthetic dataset. The clean distribution (a) consists in three classes of concentric circles.
In the IDN setting (b), each point x has a probability P (Ȳ 6= Y |x) = ρ

(
w·x
‖w‖‖x‖ + 1

)
/2 with

w = (0, 1) of being corrupted, where ρ is a parameter controlling the mean noise rate. Therefore
the noise is the strongest towards the direction (0, 1) and the weakest in the direction (0,−1). If
corrupted, the label is flipped to another class uniformly. The CSIDN setting (c) is similar to the
IDN setting, but each point is associated with measure of the confidence in the assigned label. A
lower confidence is represented by a lower opacity in the figure.
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E DECISION BOUNDARIES

Figure 6 shows the decision boundaries of our approach versus the ones of a benchmark model, for
different levels of noise. With high levels of noise, a model that does not include any instance-level
modelling will degenerate around the most noisy region of the input space. On the other hand,
our model successfully accounts for the high noise in this region and is able to keep consistent
predictions.

F EXAMPLES OF REAL-WORLD DATASETS

For example, the method would be similar to constructing a dataset with images scraped from the
web, and automatically labelling them from neighbouring text fields using a classifier such as a
recurrent neural network. Then, a small subset of curated images could be used at the beginning
of the process to calibrate the classifier, in order to make the predictions of the softmax output
faithful to the confidence in each label. This way, we could construct a very large dataset for a very
low-cost that, while involving some instance-dependent noise, would be equipped with confidence
information and therefore could be tackled with our proposed algorithm.
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(a) ILFC, ρ = 0.30 (b) LQ, ρ = 0.30

(c) ILFC, ρ = 0.40 (d) LQ, ρ = 0.40

(e) ILFC, ρ = 0.50 (f) LQ, ρ = 0.50

Figure 6: Decision boundaries of the learned classifier for the ILFC model (left column) and the
Lq norm model (right column). In the presence of highly noisy regions, a classifier that does not
include any instance-level information will degenerate in those regions, while the ILFC approach
stays consistent with the clean distribution.
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