
Under review as a conference paper at ICLR 2020

POSTERIOR SAMPLING FOR MULTI-AGENT REINFORCE-
MENT LEARNING: SOLVING EXTENSIVE GAMES WITH
IMPERFECT INFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Posterior sampling for reinforcement learning (PSRL) is a useful framework for
making decisions in an unknown environment. PSRL maintains a posterior distri-
bution of the environment and then makes planning on the environment sampled
from the posterior distribution. Though PSRL works well on single-agent rein-
forcement learning problems, how to apply PSRL to multi-agent reinforcement
learning problems is relatively unexplored. In this work, we extend PSRL to two-
player zero-sum extensive-games with imperfect information (TZIEG), which is
a class of multi-agent systems. More specifically, we combine PSRL with coun-
terfactual regret minimization (CFR), which is the leading algorithm for TZIEG
with a known environment. Our main contribution is a novel design of interaction
strategies. With our interaction strategies, our algorithm provably converges to
the Nash Equilibrium at a rate of O(

√
log T/T). Empirical results show that our

algorithm works well.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) provides a framework for decision-making
problems in an unknown environment, such as robotics control. In an RL problem, agents improve
their strategies by gaining information from iteratively interacting with the environment. One of the
key challenges in RL is how to interact with the environment.

Posterior sampling for RL (PSRL) (Strens, 2000) provides a useful framework for deciding how to
interact with the environment. PSRL maintains a posterior distribution for the underlying environ-
ment and uses an environment sampled from this posterior to compute its interaction strategies. The
interaction strategies are then used to interact with the environment to collect data. The design of the
interaction strategies relies on specific problems. For example, in a single-agent RL (SARL) prob-
lem, PSRL takes the strategy with the maximum expected reward on the sampled environment as
the interaction strategy (Osband et al., 2013).Theoretical and empirical results (Osband & Van Roy,
2016) both demonstrate that PSRL is one of the near-optimal methods for SARL. Although PSRL is
a Bayesian-style algorithm, empirical evaluation (Chapelle & Li, 2011) and theoretical analysis on
the multi-armed bandit problems (Agrawal & Goyal, 2017) suggest that it also enjoys good perfor-
mance in a non-Bayesian setting.

However, applying PSRL to multi-agent RL (MARL) requires additional design on the interaction
strategies. This is because the goal of MARL is quite different from that of SARL. In an MARL
problem, each agent still aims to maximize its own reward, but the reward of an agent relies not
only on the environment, but also on the strategies of other agents. Therefore, in MARL, the goal of
learning is generally referred to finding a Nash Equilibrium (NE) where no agent is willing to deviate
its strategy individually. So we should design the interaction strategies with which the agents can
find or approximate the NE efficiently.

More specifically, we consider the RL problem in extensive games (Osborne & Rubinstein, 1994).
Extensive games provide a unified model for sequential decision-making problems in which agents
take actions in turn. In particular, we concentrate on two-player zero-sum imperfect information
games (TZIEG) where there are two players gaining opposite rewards and a chance player to model
the transition of the environment. Imperfect information here means that agents can keep their

1

Under review as a conference paper at ICLR 2020

own private information, such as the private pokers in poker games. Games with imperfect infor-
mation are also fundamental to many practical issues such as economics and security. When the
environment (i.e. the transition functions of the chance player and the reward functions) is known,
counterfactual regret minimization (CFR) (Zinkevich et al., 2008) is the leading algorithm in approx-
imating the NE in a TZIEG. However, in the RL setting where the environment is unknown, CFR is
not applicable.

In this work, we present a posterior sampling algorithm for TZIEGs with the technique of CFR. That
is, we apply CFR to the environment sampled from the posterior distribution. Our main contribution
is to propose a novel design of interaction strategies for the RL problem of TZIEGs. With the
proposed strategies, we show that our algorithm can provably converge to an approximate NE at a
rate of O(

√
log T/T). Empirical results show that our algorithm works well.

2 PRELIMINARY

In this section, we formulate the problem of TZIEGs and then we introduce the framework of the
posterior sampling for reinforcement learning. Finally we briefly introduce the counterfactual regret
minimization.

2.1 PROBLEM FORMULATION

We now formulate the problem. Firstly, we present the definition of extensive games in Defn. 1 (See
(Osborne & Rubinstein, 1994, pg. 200) for a formal definition.).
Definition 1 (Extensive game). An extensive game can be described by a game tree, H . Each node
in H is a history which is a sequence of past actions. Suppose there are N players participating
in the game and let C denote the chance player. Let [N] = {1, 2, · · · , N} and P (h) ∈ [N] ∪ {C}
denote the player who is going to take an action at h. The game starts at the root of H , i.e., the empty
history. At each non-terminal history, there is one player taking an action, and then the game moves
to the next history accordingly. At a terminal history h, player i receives a reward sampled from
a distribution r∗,i(h). We assume the support of r∗,i(h) is in [0, 1]. For convenience, let Z ⊆ H
denote the set of terminal histories.

For convenience, let Hi ⊆ H, i ∈ [N] ∪ {C} denote the set of histories with P (h) = i and α(h)
denote the set of valid actions at h, i.e., ∀a ∈ α(h), we have (h, a) ∈ H . Let A = maxh |α(h)|. A
strategy σi for player i is a mapping from Hi to the distribution over valid actions, that is, σi(h, a) is
the probability of taking action a at h ∈ Hi. And a strategy profile σ consists of the strategies of all
players in [N], i.e., σ = {σi}i∈[N]. We will use σ−i to refer to the strategies of all players except i.
In extensive games with imperfect information, we further divides Hi into information sets (infoset).
Let Ii denote the set of infosets for player i. Since player i cannot distinguish h1, h2 ∈ I ∈ Ii, so
σi(h1), σ

i(h2) must be the same. With a little abuse of notations, we use σi(I) to denote the strategy
on infoset I . Let c∗(h, a), h ∈ HC denote the probability of C to take action a. For the convenience
of notation, we use d to denote the corresponding (c, r). Let ui(h|σ, d∗) denote the expected reward
of player i ∈ [N] at history h under σ. For convenience, let ui(σ, d∗) = ui(hr|σ, d∗) where hr is
the root of H and ui(h|r∗) is the expected reward for h ∈ Z.

We will use πσ(h|d∗) to denote the probability of reaching h with σ and (c∗, r∗). It is easy to see that
we can decompose πσ(h|d∗) into the product of the contribution of each player, that is, πσ(h|d∗) =∏

i∈[N]∪C π
i
σ(h|d∗). And we will use D(h) to refer to the depth of h in the game tree and Di(h) to

refer to the number of h’s ancestors whose player is i. Obviously, D(h) = 1 +
∑

i∈{N}∪{C} D
i(h).

And let D = maxh D(h) and Di = maxh D
i(h).

Specifically, for a two-player zero-sum extensive game with imperfect information (TZIEG), N = 2
and u1(h) + u2(h) = 0 for all histories h ∈ Z.

Nash Equilibrium and exploitability: In a multi-agent system (MAS), a solution is often referred
to a Nash Equilibrium (NE) (Osborne & Rubinstein, 1994). In a TZIEG, σ = (σ1, σ2) is a NE
if and only if ui(σ|d∗) = maxσ∗,i(σ∗,i, σ−i|d∗). In this work, we focus on approximating NE.
More specifically, in TZIEGs, the approximation error of σ = (σ1, σ2) is usually measured by its
exploitability:

2

Under review as a conference paper at ICLR 2020

expl(σ|d∗) = max
σ∗,1

u1(σ∗,1, σ2|d∗) + max
σ∗,2

u2(σ1, σ∗,2|d∗) (1)

In MARL, d∗ is not known to the players, so players have to interact with the environment to
gain knowledge about d∗. We assume players 1 and 2 can repeatedly play the game and collect
observations in order to compute an approximate NE. Specifically, the collected data include the
path P from the root of H to the terminal history, say hz , and the reward. Thus, we observe samples
from c∗(h) for all h ∈ P, P (h) = C and the sample from r∗,i(hz). We summarize the process in
Alg. 1.

Algorithm 1 MARL for TZIEGs
Input: A TZIEG with unknown c∗ and r∗.
while Not End do

Compute an interaction strategy σ.
Simulate σ in the environment to get observations about c∗ and r∗.

end while
Output an approximate Nash Equilibrium σ̄.

2.2 POSTERIOR SAMPLING FOR REINFORCEMENT LEARNING (PSRL)

PSRL provides a framework under the Bayesian setting, where the environment is drawn from a
given prior distribution. The process of PSRL can be decomposed into two steps: (1) estimating the
parameters of the underlying environment with a posterior distribution; (2) sampling one environ-
ment from the posterior and computing strategies for agents according to the sampled environment.
The computed strategies are used to interact with the underlying environment to collect data, so we
call them interaction strategies. The two steps are repeated.

We also consider the TZIEG setting where the chance player and the reward functions follow a prior
distribution P0. That is, the underlying c∗ and r∗ (i.e. d∗) are sampled from P0(c, r). After playing
t games, players collect some samples from c∗ and r∗ and they can get the posterior distribution,
denoted as Pt. For example, in the case where r∗(h) is a Bernoulli distribution and its prior is a Beta
distribution, the posterior distribution Pt(r) is also a Beta distribution. Similarly if the prior for c∗
is a Dirichlet distribution, then Pt(c) is a Dirichlet distribution.

2.3 COUNTERFACTUAL REGRET MINIMIZATION (CFR)

Counterfactual regret minimization (CFR) (Zinkevich et al., 2008) is the state-of-the-art algorithm
to solve TZIEGs when d∗ is known. CFR is a self-play algorithm, which generates a sequence of
strategy profiles, {σt}Tt=1, by minimizing the following regrets:

R∗,i
T = max

σi

T∑
t=1

ui(σi, σ−i
t |d∗)−

T∑
t=1

ui(σt|d∗)

For convenience, we write σ̄T = 1
T

∑T
t=1 σt if σ̄i

T (I) =
∑

i,t π
i
σt

(I)σi
t(I)∑

i,t π
i
σt

(I) . One important observation
is that (Zinkevich et al., 2008), in a TZIEG:

expl(σ̄T |d∗) =
1

T
(R∗,1

T +R∗,2
T) (2)

Thus, minimizing R∗
T leads to the NE. CFR is an important sub-procedure in our algorithm.

Our algorithm is built in the frameworks of CFR and PSRL. In each round, we sample a dt from Pt

and then apply CFR to dt. The main challenge on combining CFR and PSRL is how to interact with
the environment. When there is only one player, PSRL selects the optimal strategy with respect to
the sampled environment. But when there are multi-players, what is the optimal strategy is not clear.
Later, we will show that we can use a time complexity only linear to the size of the game tree to
compute an interaction strategy which leads to a convergence rate of O(

√
log(T)/T).

3

Under review as a conference paper at ICLR 2020

3 METHOD

Algorithm 2 CFR-PSRL
while t < T do

Sample a chance player dt from the posterior Pt

for all i ∈ {1, 2}, I ∈ Di do
Sample dt ∼ Pt.
Select σt by exploiting CFR to minimize the regret: maxσi

∑
t≤T ui(σi, σ−i

t |dt) −∑
t≤T ui(σt|dt).

end for
Select a sequence of interaction strategies to simulate to gather data and compute Pt.

end while
Output: σ̄ = 1

t

∑T
t=1 σt .

In this section, we introduce our method. We adopt the framework in Alg. 1 to develop our algo-
rithm by combining PSRL and CFR, as well as designing the interaction strategies and procedure of
computing the approximate NE.

Our algorithm is presented in Alg. 2. To compute the approximate NE, we adopt a CFR algorithm
to minimize the following regret:

R̂i
T = max

σi

∑
t≤T

ui(σi, σ−i
t |dt)−

∑
t≤T

ui(σt|dt). (3)

where dt is sampled from Pt. And then we output σ̄ = 1
T

∑
t≤T σt. Obviously, simply minimizing

R̂T will not make expl(σ̄|d∗) small, as d∗ can be very different with dt, so we need the interaction
strategy to be efficient enough to make sure the difference between dt and d∗ is relatively small. The
following equation establishes a relation between expl(σ̄|d∗) and R̂i

T :

expl(σ̄|d∗) = 1

T
(R̂1

T + R̂2
T +

∑
i∈{1,2}

∑
t≤T

(ui(σ∗,i
T , σ−i

t |d∗)− ui(σ′i
T , σ

−i
t |dt))). (4)

where σ∗,i
T = argmaxσi

∑
t≤T ui(σi

T , σ
−i
t |d∗) and σ′i

T = argmaxσi

∑
t≤T ui(σi

T , σ
−i
t |dt). For

convenience, let Gi
T = 1

T

∑
t≤T (u

i(σ∗,i
T , σ−i

t |d∗)− ui(σ′i
T , σ

−i
t |dt))).

The remaining challenge is to design interaction strategies to minimize Gi. In round t, we first draw
c̃t, r̃t ∼ Pt. Also, we denote d̃t = (c̃t, r̃t). And then for i ∈ {1, 2}, we compute

σ̃i
t = argmax

σi

t∑
t′=1

(
ui(σi, σ−i

t′ |d̃t)− ui(σi, σ−i
t′ |dt′)

)
. (5)

Interaction strategy: We adopt the following interaction strategies:

σ̂1,T = (σ̃1
T , σ

2
T) and σ̂2,T = (σ̃2

T , σ
1
T) (6)

The computation of σ̃ can be implemented in time O(|H|) . With the interaction strategies (σ̃1
T , σ

2
T)

and (σ̃2
T , σ

1
T), we can prove the following bound on expl(σ̄).

Theorem 1. Let ξi =
∑D

j=1

√
maxσi

∑
I∈Ii,D(I)=j π

i
σi(I) denote a game-dependent parameter.

If the true game is sampled from a prior P0 over the chance player nodes and terminal nodes, then

4

Under review as a conference paper at ICLR 2020

for σ̄T computed by Alg. 2, we have

1

T
(R̂1

T + R̂2
T) =O

(
1

T

(
(ξ1 + ξ2)

√
AT
))

,

Gi
T =O

(
1

T

(√
|Z|T ln(|Z|T) +

√
|HC |DCAT ln(|HC |T)

))
,

Ed∗expl(σ̄T |d∗) =O

(
1

T

(
(ξ1 + ξ2)

√
AT +

√
|Z|T ln(|Z|T) +

√
|HC |DCAT ln(|HC |T)

))
.

The present theorem is significant at least in the following aspects.

Firstly, the per round running time is linear to the size of game tree and the bound is sublinear to T .
Thus, we can expect our algorithm to reach a certain approximate error in a finite time.

Secondly, our theorem holds for any prior distribution over d∗. In practical TZIEGs, it is possible
that the priors for h1 and h2, h1, h1 ∈ HC , are independent. Our theorem and algorithms can also
be applied to such situations.

Lastly, our interaction strategies σ̂1,T and σ̂2,T only contribute to the bound for Gi
T , which can be

treated as the error for interaction strategy’s exploring the environment. If we apply PSRL to a
single-agent tree game, the Bayesian regret might be considered as some error caused by interacting
with the environment. Using the analysis in (Osband et al., 2013), we can get that PSRL enjoys an
averaged Bayesian regret bound of order O(

√
|Z| ln(|Z|T)/T +

√
|HC |DCA ln(|HC |T)/T) for a

general prior. Therefore, our bound for Gi
T has a comparable order to the bound for the average

Bayesian regret in PSRL.

3.1 PROOF SKETCH OF THEOREM 1

Before diving into details, we introduce some additional notations. For episode t, we generate two
trajectories by interacting with the environment. More specifically, we use Ti,t (i ∈ {1, 2}) to denote
the trajectory generated by σ̂i,t in environment d∗. We use ETi,t

to denote the expectation over all
trajectories for episode t. Then we denote T C

i,t = {hC
1,t, h

C
2,t, ..., h

C
mi,t,t} the trajectory for the chance

player in episode t, and here mi,t denotes the length of T C
i,t. Furthermore, we denote the terminal

node for episode t as zi,t. Besides, we denote the collection of T1,1, T2,1..., T1,t−1, T2,t−1 and the
related rewards as Ht, which represents all the observations before episode t. For each history h, we
further use nt(h) to denote the count that h has been visited in Ht.

Below we give the key part for the proof. Obviously, we need to bound the regret of CFR, i.e., R̂i
T ,

and Gi
T . We can directly apply the technique in (Neil, 2018) to bound R̂i

T . Now we show the key
part for bounding Gi

T .

With straight-forward calculations, we have:

Gi
T ≤ 1

T

∑
t≤T

(ui(σ∗,i
T , σ−i

t |d∗)− ui(σ∗,i
T , σ−i

t |dt)))

≤ 1

T
max
σi

∑
t≤T

(ui(σi, σ−i
t |d∗)− ui(σi, σ−i

t |dt))).

And then, in Lemma 1 and 2, we decompose the bound into weighted sum of |c∗(h) − ct(h)| and
|r∗(h)− rt(h)|. And soon later we will show how to minimize each term by interaction.
Lemma 1. With σ̂ defined in Eq. (6), we have:

EHT

{
Ed∗

[
Gi
T

∣∣∣HT

]}
≤ 1

T

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
+

1

T

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d∗)− ui(σ̃i

t, σ
−i
t |dt)

] ∣∣∣Ht

}
. (7)

5

Under review as a conference paper at ICLR 2020

Lemma 1 decomposes the expectation of Gi
T into two terms, representing the difference between d∗

and d̃t and the difference between d∗ and dt. Below we give an intuitive sketch for bounding the
first term ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗).

Lemma 2. With ETi,t
denoting the expectation over trajectories, the following inequality holds

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
≤EHt

Ed̃t,d∗ETi,t

mi,t∑
j=1

∑
a∈α(h)

|c̃t(hC
j,t, a)− c∗(hC

j,t, a)|

 ∣∣∣Ht


+ EHt

{
Ed̃t,d∗ETi,t

[
ui(st|r̃t)− ui(zi,t|r∗)

] ∣∣∣Ht

}
. (8)

According to the definition of the expectation Ed̃,d∗ETi,t
, we can see that Eq. (8) is a weighted sum

of |ct(h) − c∗(h)| and |ui(h|r̃t) − ui(h|r∗)|. Recall that ui(h|r) refers to the expectation of r(h)
for player i. Intuitively, we can use concentration bound on |ct(h) − c∗(h)|, so that for h with a
large weight, we should visit it for more times. Notice that the weight in Eq. (8) is essentially the
probability of reaching h under our interaction strategy σ̂ and the real environment c∗. Hence if we
use σ̂ to interact with the environment, we can expect our algorithm can visit h with large weight
for sufficient times.

To simplify the derivation, we tentatively assume that d̃t and d∗ are identically distributed for nodes
hC
j,i and zi,t conditioning on Ht. That is, for any node h, with Pr referring to the probability of

some event, we here assume that

Pr(d∗|Ht, h) = Pr(d̃t|Ht, h).

In fact this assumption fails when h is reached, because the probability to reach h is influenced by d∗

and d̃. We will remove this assumption and provide a rigorous proof in Appendix A. For (hC
j,i, a) and

zi,t, we can insert the empirical mean estimations c̄t(h
C
j,i, a) and ūi

t(zi,t) and use the frequentists’
concentration bound (Hoeffding, 1994; Weissman et al., 2003). Then for any δ ∈ (0, 1), we have
the following inequalities:

EHt

Ed̃t,d∗ETi,t

 ∑
a∈α(hC

j,t)

|c̃(hC
j,t, a)− c∗(hC

j,t, a)|

 ∣∣∣Ht

 ≤ EHt

[
2

√
2 ln(2A/δ)

max(nt(hC
j,t), 1)

∣∣∣Ht

]
+ 2|HC |δ,

EHt

{
Ed̃t,d∗ETi,t

[
ui(h|r̃t)− ui(h|r∗)

] ∣∣∣Ht

}
≤ EHt

[
2

√
2 log(2/δ)

max(nt(zi,t), 1)

∣∣∣Ht

]
+ 4|Z|δ.

Then for a history h ∈ Z∪HC , we have
nt(h)∑
n=i

√
1/i ≤

√
nt(h). Then we use the Jensen’s inequality

to the summation over Z and HC to get the below bound:

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
= O(

√
|Z|T ln(|Z|T)+

√
|HC |DCAT ln(|HC |T)).

We can apply the same method to
T∑

t=1
EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d∗)− ui(σ̃i

t, σ
−i
t |dt)

] ∣∣∣Ht

}
and fin-

ish the proof of the theorem 1.

4 RELATED WORK

Fictitious Play: Fictitious play (FP) (Brown, 1951) is another popular algorithm for approximating
NE in two-player zero-sum games. In FP, the agent takes the best response to the average strategy

6

Under review as a conference paper at ICLR 2020

(a) Leduc-4 (b) Leduc-5

Figure 1: Results for different algorithms on variants of Leduc-4 and Leduc-5.

of its opponent. Heinrich et al. (2015) extends FP to TZIEGs. Though it maybe easier to com-
bine FP with other machine learning techniques than CFR, when the chance player is known, the
convergence rate of FP is usually worse than CFR variants.

MDP: SARL problems is often formalized as the Markov Decision Process (MDP). In the sim-
plest MDP with no transitions, i.e. the Multi-armed bandit problems, the problem-dependent re-
gret upper bound of PSRL (also named Thompson Sampling in bandit problems) is carefully ana-
lyzed (Agrawal & Goyal, 2017). The problem-dependent bounds for general MDP is still an open
problem. Besides PSRL, there is another kind of provable algorithms for MDP (Jaksch et al., 2010;
Azar et al., 2013) following the Optimal in the Face of Uncertainty principle. They estimate the
uncertainty of the underlying MDP and then use the currently optimal policy to interact with the
environment.

Stochastic Games: the stochastic game (Littman, 1994) is also one kind MAS. In a stochastic game,
players take actions at each state and then the environment transits to a new state and returns imme-
diate rewards. Nash Q-learning (Hu & Wellman, 2003) converges to approximate NE by extending
Q-learning to games, but it lacks finite-time analysis. Some other work (Szepesvári & Littman, 1996;
Perolat et al., 2015; Wei et al., 2017) concentrates on two-player zero-sum stochastic games in RL
setting. This kind of games don’t involve imperfect information, and this makes them different from
TZIEG.

5 EXPERIMENTS

To empirically evaluate our algorithm, we test it on imperfect-information poker games. In this
section, we first introduce our baseline methods and then present the details of the games. Finally,
we show the results.

We choose two kinds of methods as our baseline methods. The first one is Fictitious Play (FP), an
algorithm for solving MARL. Thus we can compare the performance of our algorithm and existing
FP. We choose two variants of our algorithm as the other kind of baselines, which is used to compare
different choices of interaction strategies. Details of baselines are given below:

• Fictitious Play (FP): FP is another popular algorithm to solve games in the RL setting. In
FP, when d∗ is known, each player chooses the best response of its opponent’s average
strategy. When d∗ is not known, we need other RL algorithms to learn the best response.
Heinrich et al. (2015) suggests to use a Fitted-Q iteration (FQI) algorithm (Ernst et al.,
2005) to learn the best response. However, to use FQI, we have to specify the learning
step size and the size of replay memory in advance, which is not needed in our algorithm.
Instead, we use a combination of FP and PSRL: In round t, we compute player i’s best
response under dt ∼ Pt, that is, argmaxσi

∑
t′<t u

i(σi, σ−i
t′ |dt).

7

Under review as a conference paper at ICLR 2020

• Variants of Alg. 2: Though we proved the convergence of Alg. 2 with interaction strat-
egy (σ̃i, σ−i), the proposed method does not necessarily work well in practice. In our
experiments, we evaluate three interaction strategies: 1) Random: the players take actions
randomly; 2) Naive: the players use the output of the CFR procedure, i.e., σt, to interact
with the environment; 3) the interaction strategies in Eq. (6).

We test these algorithms on variants of Leduc Hold’em poker (Southey et al., 2012) which is widely
used in imperfect-information game solving. We generate games by keeping the tree structure of the
Leduc Hold’em poker and replacing c and r by randomly generated functions. More specifically,
when generating the tree structure, to control the sizes of the generated game tree, we restrict each
player not to bid more than 4 or 5 times the big blind. The numbers of histories in the generated
games are 9435 and 34776 respectively. The reward function ri(h) is a binary distribution. With a
probability p the value of r(h) is −1 and with probability 1 − p, the value is 1. The prior P0(r(h))
is a uniform [0, 1] distribution over parameter p. Let ed denote the vector in Rd with every element
is 1. c(h) is sampled from Dirichlet(e|A(h)|).

We generate 20 variants for Leduc(4) and Leduc(5) respectively. And on each generated game,
each algorithm updates its strategies for 10000 times, and after each update, it interacts with the
environment for 2 rounds. The result is in Fig. 1. As the figure shows, the exploitability of naive
CFR fails to decrease after 10000 rounds on both Leduc 4 and 5. This might be caused by the lack
of efficient exploration of the environment. Random interaction and FP can gradually decrease the
exploitability, but our algorithm decrease at a higher speed. Thus the empirical result shows that our
algorithm outperforms baselines on the two games.

6 CONCLUSION AND DISCUSSION

In this work, we consider the problem of posterior sampling for TZIEGs, which is a class of multi-
agent reinforcement learning problems. By a novel design of interaction staregies, we combine
PSRL and CFR and present a provably convergent algorithm for TZIEGs. Our algorithm empirically
works well. There is a large room to improve the result in the future, at least from the following
directions:

At first, our bound is a Bayesian bound describing the expected performance. Considering one
sample from the prior, Frequentists’ methods such as UCBVI (Azar et al., 2013) also give a high
probability regret bound for SARL of a similar order to PSRL. Further, comparing with the worst-
case bound, the problem-dependent performance is much more important. Though it is possible
that our method has a better performance on a specific TZIEG than the bound in Theorem 1, our
algorithm is very possibly not the best in the sense of problem-dependent performance.

Secondly, our method heavily relies on the structure of TZIEGs and the solution concept Nash
Equilibrium. Thus, further work is needed to extend posterior sampling to more complicated multi-
agent systems, such as stochastic games (Littman, 1994) and extensive games with more than two
players.

REFERENCES

Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal of
the ACM (JACM), 64(5):30, 2017.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds on the
sample complexity of reinforcement learning with a generative model. Machine learning, 91(3):
325–349, 2013.

George W Brown. Iterative solution of games by fictitious play, 1951. Activity Analysis of Produc-
tion and Allocation (TC Koopmans, Ed.), pp. 374–376, 1951.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in
neural information processing systems, pp. 2249–2257, 2011.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6(Apr):503–556, 2005.

8

Under review as a conference paper at ICLR 2020

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games.
In International Conference on Machine Learning, pp. 805–813, 2015.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In The Collected
Works of Wassily Hoeffding, pp. 409–426. Springer, 1994.

Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Burch Neil. Time and space: Why imperfect information games are hard. 2018.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforce-
ment learning? arXiv preprint arXiv:1607.00215, 2016.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pp. 3003–3011, 2013.

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier Pietquin. Approximate dynamic programming
for two-player zero-sum markov games. In International Conference on Machine Learning (ICML
2015), 2015.

Finnegan Southey, Michael P Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings,
and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. arXiv preprint arXiv:1207.1411,
2012.

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pp.
943–950, 2000.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Csaba Szepesvári and Michael L Littman. Generalized markov decision processes: Dynamic-
programming and reinforcement-learning algorithms. In Proceedings of International Conference
of Machine Learning, volume 96, 1996.

Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Online reinforcement learning in stochastic games. In
Advances in Neural Information Processing Systems, pp. 4987–4997, 2017.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. In-
equalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep,
2003.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. In Advances in neural information processing systems, pp.
1729–1736, 2008.

9

Under review as a conference paper at ICLR 2020

A PROOF FOR THEOREM1

Let let σ̄ = 1
T

∑
t≤T σt. We decompose the exploitability at episode T into the CFR regret and an

extra exploration term:

expl(σ̄|d∗) = 1

T
(R̂1

T + R̂2
T +

∑
i∈{1,2}

∑
t≤T

(ui(σ∗,i
T , σ−i

t |d∗)− ui(σ′i
T , σ

−i
t |dt))),

where R̂i
T and σ′i

T are formally defined as:

R̂i
T = max

σi

∑
t≤T

ui(σi, σ−i
t |dt)−

∑
t≤T

ui(σt|dt),

σ′i
T = argmax

σi

T∑
t=1

ui(σi, σ−i
t |dt).

Here dt are sampled from the posterior distribution Pt. The proof for this decomposition is given
below:

Proof. With straight-forward computations, we have:∑
t≤T

ui(σ∗,i
T , σ−i

t |d∗) =
∑
t≤T

(ui(σ∗,i
T , σ−i

t |d∗)− ui(σ′i
T , σ

−i
t |dt) + ui(σ′i

T , σ
−i
t |dt))

=
∑
i,t

(ui(σ∗,i
T , σ−i

t |d∗)− ui(σ′i
T , σ

−i
t |dt)) +

∑
t≤T

ui(σt|dt) + R̂i
T

Moreover, with u1(σt|dt) + u2(σt|dt) = 0 and the definition of expl, we finish the proof.

By directly applying the result in (Neil, 2018), we can upper bound the CFR regret with

R̂i
T ≤ 1

T

(
ξi
√
AT
)
,

where ξi =
∑D

j=1

√
|Bi(j)|.

For convenience, let Gi
T = 1

T

∑
t≤T (u

i(σ∗,i
T , σ−i

t |d∗)− ui(σ′i
T , σ

−i
t |dt))). We can use the standard

analysis for CFR (Zinkevich et al., 2008; Neil, 2018) to bound R̂i
T . Thus, we only need to bound

Gi.

Obviously, Gi
T depends on the difference between c∗ and ct. So that we need to design a suitable

interaction strategy to make sure that Gi
T is small. We upper bound Gi

T with

Gi
T ≤ 1

T

∑
t≤T

(ui(σ∗,i
T , σ−i

t |d∗)− ui(σ∗,i
T , σ−i

t |dt)))

≤ 1

T
max
σi

∑
t≤T

(ui(σi, σ−i
t |d∗)− ui(σi, σ−i

t |dt))).

We select the interaction strategy as follows: draw d̃t ∼ Pt. For i ∈ {1, 2}, compute

σ̃i
t = argmax

σi

∑
t′≤t

ui(σi, σ−i
t |d̃t)− ui(σi, σ−i

t |dt) (9)

And then we use (σ̃1
t , σ

2
t) and (σ̃2

t , σ
1
t) to interact with the environment. Following lemma provides

an upper bound on Gi
t . Then we get below lemma:

10

Under review as a conference paper at ICLR 2020

Lemma 3. With σ̃i
t defined in Eq. (9), we have:

EHT

{
Ed∗

[
Gi
T

∣∣∣HT

]}
≤ 1

T

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
+

1

T

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d∗)− ui(σ̃i

t, σ
−i
t |dt)

] ∣∣∣Ht

}
. (10)

This lemma decompose Gi
T into two terms, which can be bounded with careful analysis of the

posterior distribution. We first give the proof for this lemma.

Proof. We have

EHT

{
Ed∗

[
max
σ̂i

(
T∑

t=1

(ui(σ̂i, σ−i
t |d∗)− ui(σ̂i, σ−i

t |dt))

)] ∣∣∣HT

}

=EHT

{
Ed̃T

[
max
σ̃i

(
T∑

t=1

(ui(σ̃i, σ−i
t |d̃T)− ui(σ̃i, σ−i

t |dt))

)] ∣∣∣HT

}

=EHT

{
Ed̃T

[
T∑

t=1

(ui(σ̃i
T , σ

−i
t |d̃T)− ui(σ̃i

T , σ
−i
t |dt))

] ∣∣∣HT

}

=EHT

{
Ed̃T

[
T−1∑
t=1

(ui(σ̃i
T , σ

−i
t |d̃T)− ui(σ̃i

T , σ
−i
t |dt))

] ∣∣∣HT

}
+ EHT

{
Ed̃T

[
ui(σ̃i

T , σ
−i
T |d̃T)− ui(σ̃i

T , σ
−i
T |dT)

] ∣∣∣HT

}
≤EHT

{
Ed̃T

[
max
σ̃i

(
T−1∑
t=1

(ui(σ̃i, σ−i
t |d̃T)− ui(σ̃i, σ−i

t |dt))

)] ∣∣∣HT

}
+ EHT

{
Ed̃T

[
ui(σ̃i

T , σ
−i
T |d̃T)− ui(σ̃i

T , σ
−i
T |dT)

] ∣∣∣HT

}
=EHT−1

{
Ed̃T−1

[
T−1∑
t=1

(ui(σ̃i
T−1, σ

−i
t |d̃T−1)− ui(σ̃i

T−1, σ
−i
t |dt))

] ∣∣∣HT−1

}
+ EHT

{
Ed̃T

[
ui(σ̃i

T , σ
−i
T |d̃T)− ui(σ̃i

T , σ
−i
t |dT)

] ∣∣∣HT

}
≤

T∑
t=1

EHt

{
Ed̃t

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |dt)

] ∣∣∣Ht

}
=

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
+

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d∗)− ui(σ̃i

t, σ
−i
t |dt)

] ∣∣∣Ht

}
.

The first equality holds since d∗ and d̃T are identical distributed conditioning on Ht.

Therefore, we finish the proof.

Then we only to give upper bounds for the two terms. Also mentioned in sec.3.1, we introduce
some additional notations. For episode t, we generate two trajectories by interacting with the en-
vironment. More specifically, we use Ti,t (i ∈ {1, 2}) to denote the trajectory generated by σ̂i,t

with d∗. We use ETi,t
to denote the expectation over all trajectories for episode t. Then we denote

T C
i,t = {hC

1,t, h
C
2,t, ..., h

C
mi,t,t} the trajectory for the chance player in episode t, and here mi,t denotes

11

Under review as a conference paper at ICLR 2020

the length of T C
i,t. Furthermore, we denote the terminal node for episode t as zi,t. Besides, we de-

note the collection of T1,1, T2,1..., T1,t−1, T2,t−1 as Ht, which represents all the observations before
episode t. For each history h, we further use nt(h) to denote the count that h has been visited in Ht.

Then we concentrate on the first term
T∑

t=1
EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
and

the second term has similar proof. Since the strategy tuple is the same for the two utilities, we can
decompose their difference with below lemma.
Lemma 4. With ETi,t

denoting the expectation over trajectories, the following inequality holds

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
=EHt

Ed̃t,d∗ETi,t

mi,t∑
j=1

∑
a∈α(h)

(c̃t(h
C
j,t, a)− c∗(hC

j,t, a))u
i(hC

j,t|σ̃i
t, σ

−i
t , d̃t)

 ∣∣∣Ht


+ EHt

{
Ed̃t,d∗ETi,t

[
ui(zi,t|r̃t)− ui(zi,t|r∗)

] ∣∣∣Ht

}
.

Proof. From the root node to hC
1,t, players take actions according to (σ̃i

t, σ
−i
t). Thus we should have

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
=EHt

{
Ed̃t,d∗ETi,t

[
ui(hC

1,t|σ̃i
t, σ

−i
t , d̃t)− ui(hC

1,t|σ̃i
t, σ

−i
t , d∗)

] ∣∣∣Ht

}
=EHt

Ed̃t,d∗ETi,t

 ∑
a∈α(hC

1,t)

(c̃t(h
C
1,t, a)u

i(hC
1,t|σ̃i

t, σ
−i
t , d̃t)− c∗(hC

1,t, a)u
i(hC

1,t|σ̃i
t, σ

−i
t , d∗))

 ∣∣∣Ht


=EHt

Ed̃t,d∗ETi,t

 ∑
a∈α(hC

1,t)

(c̃t(h
C
1,t, a)− c∗(hC

1,t, a))u
i(hC

1,t|σ̃i
t, σ

−i
t , d̃t)

 ∣∣∣Ht


+ EHt

Ed̃t,d∗ETi,t

 ∑
a∈α(hC

1,t)

c∗(hC
1,t, a)(u

i(hC
1,t|σ̃i

t, σ
−i
t , d̃t)− ui(hC

1,t|σ̃i
t, σ

−i
t , d∗))

 ∣∣∣Ht


=EHt

Ed̃t,d∗ETi,t

 ∑
a∈α(hC

1,t)

(c̃t(h
C
1,t, a)− c∗(hC

1,t, a))u
i(hC

1,t|σ̃i
t, σ

−i
t , d̃t)

 ∣∣∣Ht


+ EHt

{
Ed̃t,d∗ETi,t

[
ui(hC

2,t|σ̃i
t, σ

−i
t , d̃t)− ui(hC

2,t|σ̃i
t, σ

−i
t , d∗)

] ∣∣∣Ht

}
=EHt

Ed̃t,d∗ETi,t

mi,t∑
j=1

∑
a∈α(hC

j,t)

(c̃t(h
C
j,t, a)− c∗(hC

j,t, a))u
i(hC

j,t|σ̃i
t, σ

−i
t , d̃t)

 ∣∣∣Ht


+ EHt

{
Ed̃t,d∗ETi,t

[
ui(zi,t|r̃t)− ui(zi,t|r∗)

] ∣∣∣Ht

}
.

Therefore we finish the proof.

We upper bound the term ui(zi,t|r̃t) − ui(zi,t|r∗) first. We can refer to the technique of previous
work in PSRL. Recall that in episode t, players reaches terminal node zi,t with a visited count
nt(zi,t). We denote that ūi

t(zi,t) as the empirical mean of ui(zi,t|r∗). Simply we insert ūi
t(zi,t) to

get
ui(zi,t|r̃t)− ui(zi,t|r∗) ≤ |ui(zi,t|r̃t)− ūi

t(zi,t)|+ |ūi
t(zi,t)− ui(zi,t|r∗)|.

First we consider the second one |ūi
t(zi,t)−ui(zi,t|r∗)|. Conditioning on r∗(zi,t), we can apply the

Chernoff-Hoeffding bound (Hoeffding, 1994). For δ ∈ (0, 1)

Pr

(
|ūi

t(zi,t)− ui(zi,t|r∗)| ≥

√
ln(2/δ)

2max(nt(zi,t), 1)

∣∣∣r∗(zi,t)) ≤ δ, (11)

12

Under review as a conference paper at ICLR 2020

where Pr denote the probability.

Then we use the above inequality to get below lemma:

Lemma 5.

EHt

{
Ed̃t,d∗ETi,t

[
|ūi

t(zi,t)− ui(zi,t|r∗)|
] ∣∣∣Ht

}
≤ EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}
+ 2|Z|δ.

Proof. Notice that Eq. 11 holds conditioning on r∗(zi,t) and the expectation is taken over the prior
P0. Then we need to carefully apply the Eq. 11. For the convenience of notation, we use πt(h|d∗)
to represent πσ̃i

t,σ
−i
t
(h|d∗). We further use I(·) to indicate the identical function. Then we expand

the expectation into integration

EHt

{
Ed̃t,d∗ETi,t

[
|ūi

t(zi,t)− ui(zi,t|r∗)|
] ∣∣∣Ht

}
=
∑
z∈Z

∫
|ūi

t(z)− ui(z|r∗)|πt(z|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d
∗, dt,Ht)

≤
∑
z∈Z

∫ √
ln(2/δ)

2max(nt(z), 1)
πt(z|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d

∗, dt,Ht)

+
∑
z∈Z

∫
2I

(
|ūi

t(z)− ui(z|r∗)| ≥

√
ln(2/δ)

2max(nt(z), 1)

)
Pr(d∗|Ht)Pr(Ht)d(d

∗,Ht) (12)

=EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}

+
∑
z∈Z

∫
2I

(
|ūi

t(z)− ui(z|r∗)| ≥

√
ln(2/δ)

2max(nt(z), 1)

)
Pr(Ht|d∗)P0(d

∗)d(d∗,Ht)

≤EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}
+ 2|Z|δ.

Therefore we finish the proof.

For another term |ui(zi,t|r̃t)− ūi
t(zi,t)|, we can still apply Lemma 5 to get below lemma:

Lemma 6.

EHt

{
Ed̃t,d∗ETi,t

[
|ui(zi,t|r̃t)− ūi

t(zi,t)|
] ∣∣∣Ht

}
≤ EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}
+ 2|Z|δ.

13

Under review as a conference paper at ICLR 2020

Proof. We can directly prove that

EHt

{
Ed̃t,d∗ETi,t

[
|ui(zi,t|r̃t)− ūi

t(zi,t)|
] ∣∣∣Ht

}
=
∑
s∈Z

∫
|ui(s|r̃t)− ūi

t(s)|πt(s|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d
∗, dt,Ht)

≤
∑
s∈Z

∫ √
ln(2/δ)

2max(nt(s), 1)
πt(s|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d

∗, dt,Ht)

+
∑
s∈Z

∫
2I

(
|ui(s|r̃t)− ūi

t(s)| ≥

√
ln(2/δ)

2max(nt(s), 1)

)
Pr(d̃|Ht)Pr(Ht)d(d

∗,Ht) (13)

=EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}

+
∑
s∈Z

∫
2I

(
|ui(s|r̃t)− ūi

t(s)| ≥

√
ln(2/δ)

2max(nt(s), 1)

)
Pr(Ht|d∗)P0(d

∗)d(d∗,Ht)

≤EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}
+ 2|Z|δ.

Since d∗ and d̃t are identically distributed conditioning on Ht, then we apply below equality to
Eq. (13):

I

(
|ui(s|r̃t)− ūi

t(s)| ≥

√
ln(2/δ)

2max(nt(s), 1)

)
Pr(d̃t|Ht)Pr(Ht)

=I

(
|ui(s|r∗)− ūi

t(s)| ≥

√
ln(2/δ)

2max(nt(s), 1)

)
Pr(d∗|Ht)Pr(Ht).

Then we finish the proof.

Hence we combine the results in Lemma 5 and 6 and get the conclusion that for any δ ∈ (0, 1),

EHt

{
Ed̃t,d∗ETi,t

[
ui(zi,t|r̃t)− ui(zi,t|r∗)

] ∣∣∣Ht

}
≤ EHt

{
Ed̃t,d∗

[
2

√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}
+ 4|Z|δ.

Using a pigeon-hole principle and choosing δ = 1/(|Z|T), we have below lemma:
Lemma 7. At episode T ,

EP0

[
T∑

t=1

ui(zi,t|r̃t)− ui(zi,t|r∗)

]
= O(

√
|Z|T ln(|Z|T)).

Then we consider chance player node hC
j,t. We also denote c̄(hC

j,t, a) as the empirical mean of chance
player’s probability to choose a at hC

j,t. Notice that the utility is bounded in [−1, 1]. We have∑
a∈α(hC

j,t)

(c̃t(h
C
j,t, a)− c∗(hC

j,t, a))u
i(hC

j,t|σ̃i
t, σ

−i
t , d̃t)

≤2
∑

a∈α(hC
j,t)

|c̃t(hC
j,t, a)− c∗(hC

j,t, a)|

≤2
∑

a∈α(hC
j,t)

|c̃t(hC
j,t, a)− c̄(hC

j,t, a)|+ 2
∑

a∈α(h)

|c̄(hC
j,t, a)− c∗(hC

j,t, a)|.

14

Under review as a conference paper at ICLR 2020

Then conditioning on c∗(hC
j,t, a), we use the concentration bound for L1 norm (i.e. the deviation

inequality (Weissman et al., 2003) to get that for δ ∈ (0, 1)

Pr

 ∑
a∈α(hC

j,t)

|c̄(hC
j,t, a)− c∗(hC

j,t, a)| ≥

√
2 ln(2A/δ)

max(nt(hC
j,t), 1)

∣∣∣c∗(hC
j,t, a)

 < δ.

Similar to the analysis in r, we give below lemma:

Lemma 8. ∑
a∈α(hC

j,t)

EHt

{
Ed̃t,d∗ETi,t

[
|c̄(hC

j,t, a)− c∗(hC
j,t, a)|

] ∣∣∣Ht

}

≤EHt

{
Ed̃t,d∗

[√
2 ln(2A/δ)

max(nt(hC
j,t), 1)

] ∣∣∣Ht

}
+ |HC |δ.

Proof. We use similar techniques to get

EHt

Ed̃t,d∗ETi,t

 ∑
a∈α(hC

j,t)

|c̄(hC
j,t, a)− c∗(hC

j,t, a)|

 ∣∣∣Ht


=
∑

h∈HC

∫ ∑
a∈α(h)

|c̄(h, a)− c∗(h, a)|πt(h|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d
∗, dt,Ht)

≤
∑

h∈HC

∫ √
2 ln(2A/δ)

max(nt(h), 1)
πt(s|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d

∗, dt,Ht)

+
∑

h∈HC

∫
I

 ∑
a∈α(h)

|c̄(h, a)− c∗(h, a)| ≥

√
2 ln(2A/δ)

max(nt(h), 1)

Pr(d∗|Ht)Pr(Ht)d(d
∗,Ht)

(14)

=EHt

{
Ed̃t,d∗

[√
2 ln(2A/δ)

max(nt(h), 1)

] ∣∣∣Ht

}

+
∑

h∈HC

∫
I

 ∑
a∈α(h)

|c̄(h, a)− c∗(h, a)| ≥

√
2 ln(2A/δ)

max(nt(h), 1)

Pr(Ht|d∗)P0(d
∗)d(d∗,Ht)

≤EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}
+ |HC |δ.

Therefore we finish the proof.

Once again, we get below lemma:

Lemma 9. ∑
a∈α(hC

j,t)

EHt

{
Ed̃t,d∗ETi,t

[
|c̃(hC

j,t, a)− c̄(hC
j,t, a)|

] ∣∣∣Ht

}

≤EHt

{
Ed̃t,d∗

[√
2 ln(2A/δ)

max(nt(hC
j,t), 1)

] ∣∣∣Ht

}
+ |HC |δ.

15

Under review as a conference paper at ICLR 2020

Proof. We use similar techniques to get

EHt

Ed̃t,d∗ETi,t

 ∑
a∈α(hC

j,t)

|c̃(hC
j,t, a)− c̄(hC

j,t, a)|

 ∣∣∣Ht


=
∑

h∈HC

∫ ∑
a∈α(h)

|c̃(h, a)− c̄(h, a)|πt(h|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d
∗, dt,Ht)

≤
∑

h∈HC

∫ √
2 ln(2A/δ)

max(nt(h), 1)
πt(s|d∗)Pr(d∗, dt|Ht)Pr(Ht)d(d

∗, dt,Ht)

+
∑

h∈HC

∫
I

 ∑
a∈α(h)

|c̃(h, a)− c̄(h, a)| ≥

√
2 ln(2A/δ)

max(nt(h), 1)

Pr(d̃|Ht)Pr(Ht)d(d
∗,Ht)

(15)

=EHt

{
Ed̃t,d∗

[√
2 ln(2A/δ)

max(nt(h), 1)

] ∣∣∣Ht

}

+
∑

h∈HC

∫
I

 ∑
a∈α(h)

|c̄(h, a)− c∗(h, a)| ≥

√
2 ln(2A/δ)

max(nt(h), 1)

Pr(Ht|d∗)P0(d
∗)d(d∗,Ht)

≤EHt

{
Ed̃t,d∗

[√
2 log(2/δ)

max(nt(zi,t), 1)

] ∣∣∣Ht

}
+ |HC |δ.

Therefore we finish the proof.

Next, we use a pigeon-hole principle and choosing δ = 1/(|HC |T), we have below lemma:
Lemma 10. At episode T ,

EP0

 T∑
t=1

mi,t∑
j=1

∑
a∈α(h)

|c̃t(hC
j,t, a)− c∗(hC

j,t, a)|

 = O(
√

|HC |DCAT ln(|HC |T)).

Therefore we use the conclusion in Lemma7 and 10 to get

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d̃t)− ui(σ̃i

t, σ
−i
t |d∗)

] ∣∣∣Ht

}
= O(

√
|Z|T ln(|Z|T)+

√
|HC |DCAT ln(|HC |T)).

The similar proof can be applied to the second term to get the same upper bound by simply replacing
d̃t with dt:

T∑
t=1

EHt

{
Ed̃t,d∗

[
ui(σ̃i

t, σ
−i
t |d∗)− ui(σ̃i

t, σ
−i
t |dt)

] ∣∣∣Ht

}
= O(

√
|Z|T ln(|Z|T)+

√
|HC |DCAT ln(|HC |T)).

Sum the analysis together, we get to the conclusion that

EHT

{
Ed∗

[
Gi
T

∣∣∣HT

]}
= O(

√
|Z| ln(|Z|T)

T
+

√
|HC |DCA ln(|HC |T)

T
)

16

	Introduction
	Preliminary
	Problem formulation
	Posterior sampling for reinforcement learning (PSRL)
	Counterfactual regret minimization (CFR)

	Method
	Proof sketch of Theorem 1

	Related Work
	Experiments
	Conclusion and discussion
	Proof for theorem1

