
Under review as a conference paper at ICLR 2020

LEARNING NUMERAL EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Word embedding is an essential building block for deep learning methods for nat-
ural language processing. Although word embedding has been extensively studied
over the years, the problem of how to effectively embed numerals, a special subset
of words, is still underexplored. Existing word embedding methods do not learn
numeral embeddings well because there are an infinite number of numerals and
their individual appearances in training corpora are highly scarce. In this paper,
we propose two novel numeral embedding methods that can handle the out-of-
vocabulary (OOV) problem for numerals. We first induce a finite set of prototype
numerals using either a self-organizing map or a Gaussian mixture model. We
then represent the embedding of a numeral as a weighted average of the proto-
type number embeddings. Numeral embeddings represented in this manner can
be plugged into existing word embedding learning approaches such as skip-gram
for training. We evaluated our methods and showed its effectiveness on four intrin-
sic and extrinsic tasks: word similarity, embedding numeracy, numeral prediction,
and sequence labeling.

1 INTRODUCTION

Word embeddings, the distributed vector representations of words, have become the essential build-
ing block for deep learning approaches to natural language processing (NLP). The quality of pre-
trained word embeddings has been shown to significantly impact the performance of neural ap-
proaches to a variety of NLP tasks. Over the past two decades, significant progress has been made
in the development of word embedding techniques (Lund & Burgess, 1996; Bengio et al., 2003;
Bullinaria & Levy, 2007; Mikolov et al., 2013b; Pennington et al., 2014). However, existing word
embedding methods do not handle numerals adequately and cannot directly encode the numeracy
and magnitude of a numeral (Naik et al., 2019). Most methods have a limited vocabulary size and
therefore can only represent a small subset of the infinite number of numerals. Furthermore, most
numerals have very scarce appearances in training corpora and therefore are more likely to be out-
of-vocabulary (OOV) compared to non-numerical words. For example, numerals account for 6.15%
of all unique tokens in English Wikipedia, but in GloVe Pennington et al. (2014) which is partially
trained on Wikipedia, only 3.79% of its vocabulary is numerals. Previous work (Spithourakis et al.,
2016) also shows that the numeral OOV problem is even more severe when learning word embed-
dings from corpora with abundant numerals such as clinical reports. Even if a numeral is included
in the vocabulary, its scarcity in the training corpus would negatively impact the learning accuracy
of its embedding.

The inadequate handling of numerals in existing word embedding methods can be problematic in
scenarios where numerals convey critical information. Take the following sentences for example,

“Jeff is 190, so he should wear size XXL” (190 is a reasonable height for size XXL)

“Jeff is 160, so he should wear size XXL” (160 is an unreasonable height for size XXL)

“Jeff is 10, so he should wear size XS” (10 is an age instead of a height)

If the numerals in the example are OOV or their embeddings are not accurately learned, then it
becomes impossible to judge the categories of the numerals or the reasonableness of the sentences.

In this paper, we propose two novel methods that can produce reasonable embeddings for any nu-
merals. The key idea is to represent the embedding of a numeral as a weighted average of a small
set of prototype number embeddings. The prototype numerals are induced from the training corpus

1

Under review as a conference paper at ICLR 2020

using either a self-organizing map (Kohonen, 1990) or a Gaussian mixture model. The weights are
computed based on the differences between the target numeral and the prototype numerals, reflecting
the inductive bias that numerals with similar quantities are likely to convey similar semantic infor-
mation and thus should have similar embeddings. Numeral embeddings represented in this manner
can then be plugged into a traditional word embedding method for training. We empirically evaluate
our methods on four tasks: word similarity, embedding numeracy, numeral prediction, and sequence
labeling. The results show that our methods can produce high-quality embeddings for both numerals
and non-numerical words and improve the performance of downstream tasks.

2 RELATED WORK

Word Embedding Word embeddings are vector representations of words which carry semantic
meanings implicitly and are trained without supervision. Most existing word embedding train-
ing methods can be divided into two classes. The first class of methods (Lund & Burgess, 1996;
Rohde et al., 2006; Bullinaria & Levy, 2007; Lebret & Lebret, 2013) extract word co-occurrence
statistics from the training corpus, compute a word-word matrix based on measures such as PPMI,
and then apply dimension reduction techniques such as principle component analysis to produce a
low-dimensional vector representation for each word. The second class of methods (Bengio et al.,
2003; Collobert & Weston, 2008; Mikolov et al., 2013a;b) use a simple neural network to model the
relation between a word and its context within a sliding window in the training corpus. GloVe (Pen-
nington et al., 2014) has been proposed as a method that combines the advantages of both classes.
All the above methods have a finite vocabulary size and use a ‘UNK’ symbol to represent OOV
words. Recent work (Naik et al., 2019) shows that these popular methods do not handle numerals
adequately. Wallace et al. (2019) shows that existing word embedding methods can encode numer-
acy implicitly for high-frequency numerals, but the embedding’s numeracy for OOV numerals is not
investigated. Our goal is to design better numeral embedding methods that can be integrated into
traditional word embedding methods and handle the OOV problem for numerals.

Numeracy in natural language Numeral understanding has been found important in textual en-
tailment (Lev et al., 2004; De Marneffe et al., 2008; Roy et al., 2015) and information extraction
(Intxaurrondo et al., 2015; Madaan et al., 2016), but existing systems often use manually defined
task-specific features and logic rules to identify numerals, which is hard to generalize to other tasks.
A lot of research has been done trying to solve math problems, using either manually designed fea-
tures and rules (Roy et al., 2015; Mitra & Baral, 2016; Roy & Roth, 2016; Upadhyay et al., 2016)
or sequence-to-sequence neural networks Wang et al. (2017), but the quantity of numerals is not
important in this task and hence existing methods often replace numerals by dummy symbols such
as n1 and n2. Spithourakis & Riedel (2018) studied different strategies to better model numerals
in language models. Chen et al. (2019) created Numeracy-600K dataset and studied the ability of
neural network models to learn numeracy. Our work differs from previous work in that we aim to
produce general-purpose numeral embeddings that can be employed in any neural NLP approach.

3 METHODS

Given a training corpus C, we first extract all the numerals using regular expressions and form a
dataset X containing all the numbers represented by these numerals. A number (e.g., 2000) may
appear for multiple times in X if its corresponding numerals (e.g., ‘2000’, ‘2,000’, etc.) appear
for multiple times in C. We then induce a finite set P of typical numerals (i.e., prototypes) from
X using a self-organizing map (Kohonen, 1990) or a Gaussian mixture model. We also define a
function sim(n1, n2) outputting the similarity between two arbitrary numbers n1 and n2. Now we
represent the embedding of any target numeral n as a weighted average of the prototype number
embeddings with the weights computed by the similarity function:

e(n) = ·
∑
p∈P

α · sim(n, p) · e(p),
∑
p∈P

α · sim(n, p) = 1 (1)

We use e(·) to denote the embedding of a number α is the normalization factor. This formulation
satisfies the intuition that numerals with similar quantities are likely to convey similar semantic
information and thus should have similar embeddings.

2

Under review as a conference paper at ICLR 2020

Our numeral embeddings can be integrated into traditional word embedding methods such as skip-
gram for training. During training, we back-propagate the error gradient to update the prototype
number embeddings. In this way, the prototype number embeddings (and hence all the numeral
embeddings) are learned jointly with non-numerical word embeddings.

3.1 SQUASHING NUMBERS TO LOG-SPACE

Inspired by psychological evidence that our brain compresses large quantities nonlinearly using a
logarithmic scale on the mental number line (Nieder & Miller, 2003; Dehaene, 2011), we design the
following squashing function to transform all the numbers in X into the log-space before prototype
induction. Alternatively, we can apply the function only in the similarity function.

f(x) =

{
log(x) + 1, if x > 1
x, if x ∈ [−1, 1]
− log(−x)− 1, if x < −1

(2)

3.2 PROTOTYPE INDUCTION

We develop two methods for inducing a small prototype set P from the number dataset X . Denote
the number of prototypes by m.

Self-Organizing Map A self-organizing map (SOM) (Kohonen, 1990) is an artificial neural net-
work that learns a discretized representation of the input space of the training samples in an unsuper-
vised way. After training a SOM on the dataset X , each neuron in the SOM represents a prototype
number. One advantage of using a SOM in comparison with traditional clustering methods is that it
distributes prototypes more evenly on the number line and may assign prototypes to number ranges
with few training samples, which we expect would lead to better generalizability.
Gaussian Mixture Model Inspired by psychological study of the mental number line (Dehaene
et al., 2003) and previous work on language modeling (Spithourakis & Riedel, 2018), we train a
Gaussian mixture model (GMM) to induce number prototypes. A GMM is defined as follows.

p(U = n) =

m∑
k=1

P (Z = k)P (U = n|Z = k) =

m∑
k=1

πkN (n;µk, σ
2
k) (3)

where Z is a latent variable representing the mixture component for random variable U , and N is
the probability density function of a normal distribution, and πk, µk, σk ∈ R represent the mixing
coefficient, mean and standard deviation of the k-th Gaussian component. We train a GMM on the
number dataset X using the expectation-maximization (EM) or hard-EM algorithm and regard the
means of the learned Gaussian components as our prototypes P = {µ1, · · · , µm}. We use three
GMM initialization methods described in Appendix A.

3.3 SIMILARITY FUNCTION

For SOM-induced prototypes, we define the following similarity function:

sim(p, n) = |g(p)− g(n)|−β , β > 0, p ∈ P (4)

where function g is equal to the squashing function f defined in Eq.2 if we do not apply log transfor-
mation before prototype induction and is the identity function I otherwise. β is a hyper-parameter
set to 1.0 by default.

For GMM-induced prototypes, we can naturally use the posterior probability of the component
assignment to define the similarity function.

sim(pk, n) ∝ P (Z = k|U = n) =
πkN (n;µk, σ

2
k)∑m

k=1 πkN (n;µk, σ2
k)
, pk ∈ P (5)

3.4 EMBEDDING TRAINING

We now describe how to integrate our numeral embeddings into traditional word embedding meth-
ods for training. We choose skip-gram with negative sampling (Mikolov et al., 2013a;b) as the word

3

Under review as a conference paper at ICLR 2020

Figure 1: The computational graph when the center word is ‘is’ and the context words are ‘he’
and the numeral ‘190’. We look up the embedding vectors of non-numerical words directly from
the embedding matrices and use the weighted average of prototype embeddings as the numeral
embedding. Negative sampling is not shown in the figure.

embedding method here, but many other word embedding methods such as CBOW (Mikolov et al.,
2013a), HAL (Lund & Burgess, 1996) and GloVe (Pennington et al., 2014) can be used as well.

Skip-gram is a word embedding method based on the idea of context word prediction. The training
corpus C is regarded as a sequence of words (x1, . . . , xT). For token xt, we define the preceding
and following c tokens as the context of xt. Skip-gram aims to maximize p(xt+j |xt) (−c ≤ j ≤ c),
the probability of a context word given the center word xt. To formulate p(xt+j |xt), skip-gram
associates each word xi with two vector representations: the input embedding vixt

for being a center
word and the output embedding voxt

for being a context word. The input and output embeddings
of all the words in the vocabulary V constitute matrices EI ∈ RD×|V| and EO ∈ RD×|V| respec-
tively, where D is the dimension of word embeddings. The conditional probability p(xt+j |xt) is
then defined to based on the dot product s(xt+j |xt) = vixt

T
voxt+j

. Nagative sampling is used to
approximate the normalization factor for the conditional probability.

log p(xt+j |xt) ≈ log σ(voxt+j

T vixt
) +

k∑
i=1

E
xi∼Pn(x)

[log σ(−voxi

T vixt
)] (6)

where σ denotes the sigmoid function, and Pn(x) is the negative word sampling distribution used to
draw k negative samples.

We modify skip-gram by computing numeral embeddings differently from non-numerical word em-
beddings. We associate each prototype number with an input embedding and an output embed-
ding. The input and output embeddings of all the prototypes constitute matrices MI ∈ RD×|P| and
MO ∈ RD×|P| respectively. For any numeral, we can compute its input and output embeddings by
taking a weighted average of the prototype input and output embeddings respectively based on Eq.1
and use them in exactly the same way as the embeddings of non-numerical words to compute the
learning objective (Eq.6). When drawing negative samples, we first set the ratio of numerals and
non-numerical words to their actual ratio in the training corpus, to guarantee a sufficient number
of numeral negative samples. Then we sample numerals and non-numerical words separately from
their respective distributions in the training corpus raised to the power of 3

4 . During training, we
optimize the objective function Eq.6 by back-propagating the gradient of error to update both the
embedding matrices both the non-numerical word embedding matrices EI , EO and the prototype
number embedding matrices MI , MO. In this way, the embeddings of non-numerical words and
numerals are learned jointly in the same space. We show an example in Figure 1.

4 EXPERIMENTS AND RESULTS

We evaluate our methods on four intrinsic and extrinsic tasks: word similarity, embedding numer-
acy, numeral prediction, and sequence labeling. We report results of our methods based on SOM
and GMM separately. We choose the hyper-parameters (e.g., the number of prototypes, GMM ini-

4

Under review as a conference paper at ICLR 2020

Non-numerical
Word Vocabulary

Numeral
Vocabulary

SOM,
GMM,

D-LSTM,
Fixed

{In-vocab word},
UNKword

all numerals

NumAsTok {In-vocab word},
UNKword

{In-vocab
numerals},
UNKnum

Table 1: Vocabularies of different methods.

Methods WS353 MEN SIM999
SOM 64.40 71.79 36.09
GMM 64.90 71.89 36.29

NumAsTok 65.30 71.83 35.85
D-LSTM 63.60 71.82 34.58

Fixed 64.35 72.17 36.27
SG GoogleNews-100B 70.00 74.10 44.20

GloVe Wiki-6B 52.20 73.70 37.10

Table 2: Results on word similarity tasks trained
on Wiki-1B. For reference, we also show the re-
sults of the official skip-gram and GloVe trained
on larger corpora.

tialization and training methods) using validation sets and report the best hyper-parameters for each
experiment in Appendix B.

4.1 BASELINES

NumAsTok This baseline treats numerals and non-numerical words in the same way, which is very
similar to the original skip-gram. The vocabulary includes both high-frequency words and high-
frequency numerals. OOV non-numerical words are replaced with symbol UNKword and OOV
numerals are replaced with symbol UNKnum.

D-LSTM Character-level RNNs are often used to encode OOV words (Graves, 2013). Here we
apply an LSTM (Hochreiter & Schmidhuber, 1997) to the digit sequence of a numeral and use
the last hidden state of the LSTM as the embedding of the numeral. We use the embedding to
compute the skip-gram objective function and propagate the gradients back to update the LSTM.
The vocabulary of digits is: {0-9, ‘.’, ‘+’, ‘−’, ‘e’}.

Fixed This baseline fixed embeddings for numerals with no training. We define the embedding a
numeral with value n as [f(n);1]/Z where f is the squashing function defined in Eq.2, 1 ∈ RD−1 is
an all-ones vector, and Z is a constant used to keep the vector norm close to those of non-numerical
words and is set to 2×D by default.

We compare the vocabularies of different methods in Table 1. Our methods, D-LSTM, and Fixed
have finite non-numerical vocabularies but infinite numeral vocabularies. In contrast, the NumAsTok
baseline has a finite numeral vocabulary and treats all the OOV numerals as UNKnum.

4.2 WORD SIMILARITY FOR NON-NUMERICAL WORDS

To ensure that our methods can still generate high quality embeddings for non-numerical words, we
evaluate our trained embeddings on classical intrinsic word similarity tasks, including WordSim-
353, (Finkelstein et al., 2001), MEN (Bruni et al., 2014) and Simplex-999 (Hill et al., 2014). We
train 300-dimensional word embeddings on the 1B Wikipedia dump and set the context window size
to 5, the number of negative samples to 5, and the vocabulary size to 3× 105. We use the evaluation
tools1 provided by Jastrzebski (Jastrzebski et al., 2017). Note that while the training data contains
numerals, the evaluation tasks do not involve numerals and are only designed to evaluate quality of
non-numerical word embeddings. The results are shown in Table 2.

It can be seen that our methods can achieve scores comparable to those of the baselines. The per-
formance of SG trained on 100B GoogleNews is much better than all the other methods probably
because of its much larger training corpus. The results show that adding our numeral embedding
methods into skip-gram does not harm the quality of non-numerical word embeddings. Additional
results of our methods can be found in Appendix C.

1https://github.com/kudkudak/word-embeddings-benchmarks

5

https://github.com/kudkudak/word-embeddings-benchmarks

Under review as a conference paper at ICLR 2020

Magnitude Numeration
Metrics OVA SC BC AVGR OVA SC BC AVGR
SOM 67.72 71.86 99.40 15.91 3.54 62.83 100.00 28.98
GMM 57.86 58.63 100.00 1.75 4.42 65.49 100.00 25.97

NumAsTok 12.17 51.02 95.99 144.13 7.08 61.95 99.12 27.08
D-LSTM 7.26 51.79 92.83 158.82 1.77 54.87 89.38 53.55

Fixed 83.90 78.22 100.00 1.17 0.89 49.56 99.12 56.00

Table 3: Magnitude and numeration evaluation results for our methods and baselines. Accuracies
of OVA, SC and BC are expressed as percentages. Lower AVGR indicates better performance.
Numbers indicating top-2 performance are highlighted.

4.3 MAGNITUDE AND NUMERATION OF EMBEDDINGS

Naik et al. (2019) propose a framework for evaluating the ability of numeral embeddings to capture
magnitude and numeration. Given a target numeral, its embedding is evaluated against a set of
numerals using the OVA (One-vs-All), SC (Strict Contrastive) and BC (Broad Contrastive) tests:

• OVA: The embedding vector distance between the target and its nearest neighbor on the number
line should be smaller than that between the target and any other numeral in the set.

• SC: The embedding vector distance between the target and its nearest neighbor on the num-
ber line should be smaller than that between the target and its second nearest neighbors on the
number line.

• BC: The embedding vector distance between the target and its nearest neighbor on the number
line should be smaller than that between the target and its furthest neighbors on the number line.

We follow the settings described by Naik et al. (2019): for magnitude evaluation, we run the tests
using a set of 2342 numerals sampled from Wikipedia-1B; and for numeration evaluation, we run
the tests using 113 English words that represent numbers (e.g., ‘three’, ‘billion’) sampled from the
same corpus and we measure the distance between the target numeral embedding and the word
embeddings of these words. We report the accuracy of various embedding models on these three
tests, along with the average rank (denoted as AVGR) of the target numeral’s nearest neighbor
among all the candidates based on their vector distances to the target. We use the embeddings
trained on Wikipedia-1B.

Table 3 shows the results. The Fixed baseline has the best performance in the magnitude evaluation,
which is unsurprising because the numeral embedding vector explicitly contains the (squashed) mag-
nitude. NumAsTok performs very well in the numeration evaluation, which is because the number-
representing words used in the evaluation are mostly high-frequency words and their embeddings
are adequately trained. Except for these two special cases, our methods can be seen to outperform
the baselines with a large margin.

4.4 NUMERAL PREDICTION

To evaluate the quality of numeral embeddings, we design a new numeral prediction task: choosing
the right numeral from a set of candidates given the context of the numeral in a sentence.

We randomly sample 2000 sentences containing numerals from a subset of Wikipedia that is not
used in training, with 600 for validation and 1400 for testing. For each sentence, we use the five
words preceding and following the target numeral as its context. An example is shown below, where
the ten bold words are the context and 2.31 is the target numeral.

In Hollywood, the average household size was [2.31] and the average family size was 3.00.

We use all the 1400 numerals in the test set as the candidates from which one has to select the right
numeral for each test sentence. Given the learned word and numeral embeddings, we define two
score functions to rank candidate numerals given the context. Following the skip-gram model, we
first define the score of center numeral n predicting context word cj as s(cj |n) = vocj

T vin and the
score of context word cj predicting the center numeral n as s(n|cj) = von

T vicj . Our first candidate-
ranking score function SA is the sum of log probabilities of center numeral n predicting each context

6

Under review as a conference paper at ICLR 2020

Wikipedia-1B, dim 300 Numeracy-600k, dim 300
SA SB SA SB

Metrics AVGR MdAE MdAPE AVGR MdAE MdAPE AVGR Micro-
F1

Macro-
F1

AVGR Micro-
F1

Macro-
F1

SOM 381.41 825.79 0.9836 455.01 1184.60 0.9880 2.91 37.99 13.50 2.02 42.74 13.66
GMM 343.50 1184.85 0.9450 444.15 1081.50 0.9866 2.19 41.86 18.47 2.02 44.07 13.77

NumAsTok 600.17 1918.00 0.9965 600.28 32772.50 19.07 4.21 9.74 5.47 6.16 24.28 4.88
D-LSTM 357.45 1310.65 0.9369 466.81 1080.5 0.9908 3.98 27.98 8.80 4.49 16.49 8.42

Fixed 685.58 50371.50 42.82 672.47 50525.00 61.59 3.23 0.00 0.01 3.23 0.00 0.00

Table 4: The results of the numeral prediction tasks.

word cj . We use softmax here to calculate the probability.

SA(n) =
∑
j

log p(cj |n) ≈
∑
j

log
es(cj |n)∑

ck∈Vt
es(ck|n)

=
∑
j

s(cj |n)−
∑
j

logZ(n) (7)

where Vt is the vocabulary of non-numerical words and Z(n) is the normalization factor. The
other candidate-ranking score function SB is the sum of log probabilities of each context word cj
predicting center numeral n.

SB(n) =
∑
j

log p(n|cj) ≈
∑
j

log
es(n|cj)∑

nk∈Vn
es(nk|cj)

=
∑
j

s(n|cj)− Constant (8)

where Vn is the set of numerals in the dataset. There are a few other possible score functions, but
we find that they lead to results similar to SA and SB.

We use three metrics to evaluate numeral prediction (Spithourakis & Riedel, 2018). MdAE is the
median of the absolute errors between the predicted and true numerals, MdAPE is the median of
the absolute percentage errors between the predicted and true numerals, and AVGR is the average
rank of the true numeral among the candidates. Detailed formulas of the three metrics are shown in
Appendix D.

We train embeddings on Wikipedia-1B and report the evaluation results in the left part of Table 4.
Our methods significantly outperform the NumAsTok and Fixed baselines on all the three metrics.
D-LSTM also performs well but needs more parameters and computing time than our methods.

We also conduct a slightly different numeral prediction task on the recently released Numeracy-
600K dataset (the Article Title part) (Chen et al., 2019). This dataset contains 600k sentences with
numerals and in each sentence, one numeral is selected and tagged with its order of magnitude.
There are eight possible orders of magnitude and the goal is to predict the correct one for the target
numeral from its context. To solve this multi-class classification problem, we sample 100 numer-
als for each order of magnitude and use the mean of their numeral embeddings to create a ‘meta’
embedding; we then use these ‘meta’ embeddings to replace the numeral embeddings in the score
functions SA and SB and the highest-scoring order of magnitude is returned.

We split the dataset to 450k sentences for training, 50k for validation and 100k for testing. We use
micro-F1 and macro-F1 in addition to AVGR as the evaluation metrics. The result is shown in the
right part of Table 4. The result shows that our methods achieve much better performance compared
to the baselines.

4.5 SEQUENCE LABELING ON CUSTOMER SERVICE DATA

To verify the effectiveness of our methods in practice, we evaluate our methods with a sequence
labeling task on a dataset of customer service chat log from an online apparel shopping website.
This dataset contains a large number of numerals related to height, weight, foot length, etc., and
therefore is a good testbed for evaluating numeral embeddings.

The task is to assign a label to each word or numeral in the dataset indicating its information type.
We shows two examples below:

W O H O O O O O O W H O O O
82 kg 177 cm what size shall I choose 82 177 what size ?

7

Under review as a conference paper at ICLR 2020

Original Augmented Hard
Acc P R F1 Acc P R F1 Acc P R F1

100%

GMM 97.12 91.19 90.46 90.83 97.02 91.28 90.18 90.72 96.19 86.66 85.91 86.28
SOM 97.04 90.74 90.45 90.60 97.03 91.19 90.43 90.81 96.06 86.18 85.93 86.06

D-LSTM 96.72 89.84 88.80 89.32 96.72 90.40 88.99 89.69 95.52 84.19 83.30 83.74
Fixed 95.75 86.19 87.42 86.80 95.86 87.13 87.65 87.39 93.97 78.39 80.18 79.27

NumAsTok 96.88 91.37 89.29 90.32 96.36 90.99 87.39 89.15 96.00 87.11 85.12 86.10

30%

GMM 96.21 89.55 86.07 87.78 95.92 89.07 85.33 87.16 95.27 84.42 81.62 82.99
SOM 96.20 89.50 86.18 87.81 95.88 89.12 85.29 87.16 95.23 84.44 81.50 82.94

D-LSTM 95.55 86.83 83.88 85.33 95.30 86.22 83.13 84.64 94.32 80.10 78.17 79.12
Fixed 94.67 83.51 82.69 83.10 94.48 83.40 82.02 82.71 92.92 75.03 75.18 75.10

NumAsTok 95.58 89.18 83.55 86.27 94.57 88.39 79.94 83.95 94.65 84.42 79.06 81.65

10%

GMM 93.43 82.36 75.01 78.51 92.78 81.48 72.85 76.92 93.19 80.26 72.71 76.30
SOM 93.48 82.13 75.11 78.46 92.87 80.96 73.22 76.89 93.24 79.47 73.04 76.11

D-LSTM 92.53 77.71 71.45 74.45 91.99 76.24 69.96 72.96 92.10 73.26 68.72 70.92
Fixed 91.90 75.39 71.41 73.34 91.48 73.96 70.20 72.02 91.06 69.50 67.47 68.46

NumAsTok 92.31 81.98 70.51 75.81 90.77 80.10 64.95 71.73 92.00 79.64 67.95 73.32

Table 5: The results of sequence labeling. We report the accuracy, precision, recall, F1 score for the
original, augmented, and harder test sets with different training data sizes. Accuracy is in the token
level and the other metrics are in the entity level.

W, H, O are labels representing weight, height and ordinary word respectively. We show the statistics
of the dataset in Appendix F. In order to better evaluate the generalizability, we create two additional
test sets. The first one is created by ‘augmenting’ the original test set with new sentences containing
slightly perturbed numerals. For example, we can create new sentences by replacing ‘177’ in the
above example with ‘176’ and ‘178’. The second one contains ‘hard’ sentences from the original
test set that do not have explicit cues for label prediction. For example, the first sentence above
contains ‘kg’ and ‘cm’ that can greatly facilitate the prediction of W and H, but the second sentence
above does not contain such cues and hence is a ‘hard’ sentence. More details about the two test
sets can be found in Appendix E. Finally, we also test the low-resource settings in which only 30%
or 10% of the training set is used.

We learn embeddings from the training set using our methods and the baselines and use a validation
set to do model selection. We plug the learned embeddings into the Neural-CRF model (Yang &
Zhang, 2018) 2 to do sequence labeling without using part-of-speech and character-level features
and embedding fine-tuning.

The results are shown in Table 5. Our methods consistently outperform all the baselines on the Ac-
curacy, Recall, and F1 metrics in different configurations. NumAsTok trained with 100% training
samples has the highest precision on the original and hard test sets probably because it learns high-
quality embeddings for high-frequency numerals included in its vocabulary; but its recall is lower
than that of our methods, most likely because of its numeral OOV problem. Comparing the results
on the original and augmented test sets, we see that NumAsTok shows a more significant drop in
performance than the other methods, which suggests that NumAsTok does not generalize well be-
cause of the numeral OOV problem. In the low-resource settings, the advantage of our methods over
the baselines becomes even larger, indicating better generalizability and less annotation required for
our methods to achieve a promising performance.

5 CONCLUSION

In this paper, we propose two novel numeral embedding methods that represents the embedding of
a numeral as a weighted average of a set of prototype numeral embeddings. The methods can be
integrated into traditional word embedding approaches such as skip-gram for training. We evaluate
our methods on four intrinsic and extrinsic tasks, including word similarity, embedding numeracy,
numeral prediction, and sequence labeling, and show that our methods can improve the performance
of numeral-related tasks and has better generalizability. Our code and sample data can be found at
path/to/code/.

2https://github.com/jiesutd/NCRFpp

8

path/to/code/
https://github.com/jiesutd/NCRFpp

Under review as a conference paper at ICLR 2020

REFERENCES

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Johannes Blömer and Kathrin Bujna. Simple methods for initializing the em algorithm for gaussian
mixture models. CoRR, 2013.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. Multimodal distributional semantics. J. Artif. Int.
Res., 49(1):1–47, January 2014. ISSN 1076-9757. URL http://dl.acm.org/citation.
cfm?id=2655713.2655714.

John A Bullinaria and Joseph P Levy. Extracting semantic representations from word co-occurrence
statistics: A computational study. Behavior research methods, 39(3):510–526, 2007.

Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura, and Hsin-Hsi Chen. Numeracy-600k: Learn-
ing numeracy for detecting exaggerated information in market comments. In Proceedings of the
57th Conference of the Association for Computational Linguistics, pp. 6307–6313, 2019.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pp. 160–167. ACM, 2008.

Marie-Catherine De Marneffe, Anna N Rafferty, and Christopher D Manning. Finding contradic-
tions in text. Proceedings of ACL-08: HLT, pp. 1039–1047, 2008.

Stanislas Dehaene. The number sense: How the mind creates mathematics. OUP USA, 2011.

Stanislas Dehaene, Manuela Piazza, Philippe Pinel, and Laurent Cohen. Three parietal circuits for
number processing. Cognitive neuropsychology, 20(3-6):487–506, 2003.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and
Eytan Ruppin. Placing search in context: The concept revisited. In Proceedings of the 10th
International Conference on World Wide Web, WWW ’01, pp. 406–414, New York, NY, USA,
2001. ACM. ISBN 1-58113-348-0. doi: 10.1145/371920.372094. URL http://doi.acm.
org/10.1145/371920.372094.

Alex Graves. Generating sequences with recurrent neural networks. Computer Science, 2013.

Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. CoRR, abs/1408.3456, 2014. URL http://arxiv.org/abs/
1408.3456.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Ander Intxaurrondo, Eneko Agirre, Oier Lopez De Lacalle, and Mihai Surdeanu. Diamonds in the
rough: Event extraction from imperfect microblog data. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 641–650, 2015.

Stanislaw Jastrzebski, Damian Lesniak, and Wojciech Marian Czarnecki. How to evaluate word em-
beddings? on importance of data efficiency and simple supervised tasks. CoRR, abs/1702.02170,
2017. URL http://arxiv.org/abs/1702.02170.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

Rémi Lebret and Ronan Lebret. Word emdeddings through hellinger PCA. CoRR, abs/1312.5542,
2013. URL http://arxiv.org/abs/1312.5542.

Iddo Lev, Bill MacCartney, Christopher Manning, and Roger Levy. Solving logic puzzles: From
robust processing to precise semantics. In Proceedings of the 2nd Workshop on Text Meaning and
Interpretation, 2004.

9

http://dl.acm.org/citation.cfm?id=2655713.2655714
http://dl.acm.org/citation.cfm?id=2655713.2655714
http://doi.acm.org/10.1145/371920.372094
http://doi.acm.org/10.1145/371920.372094
http://arxiv.org/abs/1408.3456
http://arxiv.org/abs/1408.3456
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1312.5542

Under review as a conference paper at ICLR 2020

Kevin Lund and Curt Burgess. Hyperspace analogue to language (hal): A general model semantic
representation. In Brain and Cognition, volume 30, pp. 5–5. ACADEMIC PRESS INC JNL-
COMP SUBSCRIPTIONS 525 B ST, STE 1900, SAN DIEGO, CA , 1996.

Aman Madaan, Ashish Mittal, Ganesh Ramakrishnan, Sunita Sarawagi, et al. Numerical relation
extraction with minimal supervision. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. Proceedings of the International Conference on Learning Representations
(ICLR 2013), 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
26, pp. 3111–3119. Curran Associates, Inc., 2013b.

Arindam Mitra and Chitta Baral. Learning to use formulas to solve simple arithmetic problems. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pp. 2144–2153, 2016.

Aakanksha Naik, Abhilasha Ravichander, Carolyn Rose, and Eduard Hovy. Exploring numeracy in
word embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 3374–3380, 2019.

Andreas Nieder and Earl K Miller. Coding of cognitive magnitude: Compressed scaling of numeri-
cal information in the primate prefrontal cortex. Neuron, 37(1):149–157, 2003.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Douglas LT Rohde, Laura M Gonnerman, and David C Plaut. An improved model of semantic
similarity based on lexical co-occurrence. Communications of the ACM, 8(627-633):116, 2006.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Subhro Roy, Tim Vieira, and Dan Roth. Reasoning about quantities in natural language. Transac-
tions of the Association for Computational Linguistics, 3:1–13, 2015.

Georgios Spithourakis and Sebastian Riedel. Numeracy for language models: Evaluating and im-
proving their ability to predict numbers. In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp. 2104–2115, Melbourne,
Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1196.
URL https://www.aclweb.org/anthology/P18-1196.

Georgios P. Spithourakis, Isabelle Augenstein, and Sebastian Riedel. Numerically grounded lan-
guage models for semantic error correction. CoRR, abs/1608.04147, 2016. URL http:
//arxiv.org/abs/1608.04147.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang, and Wen-tau Yih. Learning from explicit and
implicit supervision jointly for algebra word problems. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 297–306, 2016.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. Do nlp models know
numbers? probing numeracy in embeddings. 2019.

Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pp. 845–854, Copenhagen, Denmark, September 2017. Association for Computational Lin-
guistics. doi: 10.18653/v1/D17-1088. URL https://www.aclweb.org/anthology/
D17-1088.

10

https://www.aclweb.org/anthology/P18-1196
http://arxiv.org/abs/1608.04147
http://arxiv.org/abs/1608.04147
https://www.aclweb.org/anthology/D17-1088
https://www.aclweb.org/anthology/D17-1088

Under review as a conference paper at ICLR 2020

Jie Yang and Yue Zhang. Ncrf++: An open-source neural sequence labeling toolkit. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, 2018. URL http:
//aclweb.org/anthology/P18-4013.

A GMM INITIALIZATION

Both EM and hard-EM are sensitive to initialization and we use the initialization methods described
in (Blömer & Bujna, 2013). We first initialize the mean µk of the k-th Gaussian component using
one of the following three strategies:

Random initialization: choose µk from X randomly. This is suitable when X contains a wide
range of numbers, e.g., numbers collected from Wikipedia.

SOM-based initialization: initialize µk to pk ∈ P produced by the SOM method.

K-means initialization: run randomly initialized k-means on X and then use k-means centroids to
initialize µk.

We then assign the data samples to their closest means. The standard deviation of the data samples
assigned to the k-th mean becomes σk.

B HYPER-PARAMETERS

We list all of the important hyper-parameters we tune for each model.

General hyper-parameters: embedding dimension, context window size, SGD learning rate, batch
size, vocabulary size, etc.

SOM hyper-parameters: number of prototypes, stage of applying the log-squashing function (stage
1: before prototype induction; stage 2: only in the similarity function).

GMM hyper-parameters: number of prototypes, whether we apply the log-squashing function to
the numerals, EM initialization (from SOM, random initialization, or k-means initialization), type
of EM (hard-EM or soft-EM).

We show the values of the SOM and GMM hyper-parameters in Table 6 and the values of the general
hyper-parameters of all the methods in Table 7. We find that the general hyper-parameters influence
the performance of our methods and the baselines in the same way, so in most cases, these hyper-
parameters are set to be identical for all the methods. For large training corpora (Wiki1B, Numeracy-
600k), we use 2048 as the batch size for D-LSTM, because D-LSTM consumes much more GPU
memory. We set the batch size of the other methods to 4096. For the sequence labeling tasks,
because the data is relatively small and confined to a very specific domain (chat log from online
apparel shops), we set a small vocabulary size of 500 for all the methods except NumAsTok and
set the vocabulary size of NumAsTok to 550 to ensure that different methods have similar numbers
of parameters for word embedding training. Consequently, our methods have (500 + |P|) × D
parameters for word embedding training and NumAsTok has 550 × D parameters, where P is the
prototype set, whose size is typically smaller than 50, and D is the embedding dimension.

SOM GMM
prototype number log transform stage prototype number log transform initialization EM

Word similarity (Wiki1B) 200 dataset 200 True random hard
Magnitude (Wiki1B) 200 dataset 300 True random soft
Numeration (Wiki1B) 300 similarity function 500 True random soft

Numeral Prediction (Wiki1B) 300 similarity function 300 False random hard
Numeral Prediction (Numeracy-600k) 50 dataset 200 False random hard

Sequence Labeling 100 % 15 dataset 30 False random soft
Sequence Labeling 30 % 10 dataset 15 False k-means soft
Sequence Labeling 10 % 25 similarity function 20 False from-som soft

Table 6: Hyper-parameter values for GMM and SOM based methods for each experiment.

11

http://aclweb.org/anthology/P18-4013
http://aclweb.org/anthology/P18-4013

Under review as a conference paper at ICLR 2020

embedding
dim

context
window

negative
samples

epoch batch size learning
rate

vocabulary
size

Word similarity (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Magnitude (-MAG) (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Numeration (-NUM) (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Numeral Prediction (Wiki1B) 300 5 5 1 4096, 2048 5× 10−3 3× 105

Numeral Prediction (Numeracy-600k) 300 2 5 10 4096, 2048 5× 10−3 1× 105

Sequence Labeling 100% 30% 10% 50 2 5 10 50 5× 10−2 500, 550

Table 7: Values of general hyper-parameters for each experiment.

(a) Numerals in Wikipedia 1B (b) Prototypes of SOM-500 (c) Prototypes of GMM-500-soft

Figure 2: Histograms of numerals and learned prototypes that range from 0 to 1013. The horizontal
axis represents the numeral quantity and the vertical axis represents the number of occurrences,
‘500’ means the number of prototypes, ‘soft’ means soft-EM.

C MORE RESULTS ON WIKIPEDIA-1B

We show the histograms of numerals in the Wikipedia-1B dataset and the prototypes learned by
SOM and GMM in Fig.2. It can be seen that the prototypes induced by our methods have a similar
distribution compared to the original numerals.

We also show some examples of prototypes and their nearest non-numerical words in Table 8. We
use the embedding trained by the SOM model with 200 prototypes on Wikipedia-1B, and use log
transformation in the similarity function.

Prototype Value Most Related Non-numerical Words
8186446.58 million, billion, total, budget, funding, estimated, dollars
10372.49 thousand, approximately, thousands, millions, roughly, hundreds
2000.06 nearly, millennium, decade, internet, twentieth, worldwide, latest
1598.79 johann, renaissance, giovanni, dutch, baroque, vii, shakespeare
10.00 ten, six, eleven, pm, seconds, eight

Table 8: Examples of prototypes and their nearest non-numerical words.

In addition, we select several typical numerals and non-numerical words and project their embed-
dings to 2D using t-SNE (Figure 3). We use embeddings learned on Wikipedia-1B corpus using the
SOM and GMM methods. The examples and the figures show that our model does capture some
semantic relations between numeral quantities and normal words.

Method SOM GMM NumAsTok D-LSTM Fixed
Speed (sent/s) 13590.93 12691.18 22907.97 8421.66 13055.08

Table 9: Training speed for each methods.

We show the training speed of each embedding method on the Wikipedia-1B dataset in Table 9. The
batch size is set to 2048 for all the methods. Our methods are slower than NumAsTok but are faster
than D-LSTM.

12

Under review as a conference paper at ICLR 2020

(a) t-SNE plot for embedding trained by the SOM-based method with 200
prototypes.

(b) t-SNE plot for embedding trained by the GMM-based method with 300
prototypes, random initialization and soft-EM training.

Figure 3: 2D t-SNE results for the SOM-based and GMM-based methods.

13

Under review as a conference paper at ICLR 2020

Number of Sentences
Train Dev Original Test Augmented Test Hard Test
1389 793 1802 8052 726

Statistics of Training Set
Token Vocab Numeral Vocab Avg sent length Numeral Ratio labels

505 234 10.42 15.89 % 21

Table 10: Statistics of low-resource customer-service dataset.

D NUMERAL PREDICTION EVALUATION METRICS

We denote the target numeral by ni, the numeral with the highest ranking score by n̂i, and the rank
of the target numeral by ri. The error ei and percentage error pei can be calculated as:

ei = ni − n̂, pei =
ni − n̂i
ni

(9)

Then we use the median of the absolute errors, the median of the absolute percentage errors, and the
average rank as the evaluation metrics.

MdAE = median{|ei|}, MdAPE = median{|pei|}, AV GR = ri (10)

E AUGMENTED AND HARD TEST SETS IN SEQUENCE LABELING

The augmented test set is created by reasonably perturbing the numerals in a sentence. For example,
for a numeral ‘173’ that describes height, we generate new samples by changing ‘173’ to ‘174’
or ‘175’ while keeping the other non-numerical words in the sentence unchanged. For a decimal
such as ‘1.7 meters’, we change it to ‘1.6’ or ‘1.8’. The perturbation will not change the decimal
places of numerals and will only change the quantity slightly, which makes the generated sentences
reasonable.

The hard test set is created by manually collect ‘hard’ samples in the original test set. Hard samples
do not have explicit patterns, meaning that a numeral’s tag cannot be easily inferred by its adjacent
words. For example, tags of numerals followed by units like ‘cm’, ‘m’, ‘kg’, ‘years’ and ‘feet’ can
be figured out easily, so we exclude them from the hard test set. Customers are very likely to use
ambiguous expressions like: ‘I’m 16.5, can I buy 24?’, where 16.5 is about foot length and 24 is the
shoe size. These ambiguous sentences are included in the hard test set.

F STATISTICS OF SEQUENCE LABELING DATASET

We show the statistics of the customer-service dataset in the Table 10. The vocabulary is small
because the dataset is confined to a specific domain: online customer service chat log about apparel
purchase. In this dataset, most of the sentences are about sizes of various kinds of clothes and are
very short and ambiguous.

14

	Introduction
	Related Work
	Methods
	Squashing numbers to log-space
	Prototype Induction
	Similarity Function
	Embedding Training

	Experiments and Results
	Baselines
	Word Similarity for Non-numerical Words
	Magnitude and Numeration of Embeddings
	Numeral Prediction
	Sequence Labeling on Customer Service Data

	Conclusion
	GMM Initialization
	Hyper-parameters
	More Results on Wikipedia-1B
	Numeral Prediction Evaluation Metrics
	Augmented and Hard Test Sets in Sequence Labeling
	Statistics of Sequence Labeling Dataset

