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ABSTRACT

Deep neural models, such as convolutional and recurrent networks, achieve phe-
nomenal results over spatial data such as images and text. However, when consid-
ering tabular data, gradient boosting of decision trees (GBDT) remains the method
of choice. Aiming to bridge this gap, we propose deep neural forests (DNF) – a
novel architecture that combines elements from decision trees as well as dense
residual connections. We present the results of extensive empirical study in which
we examine the performance of GBDTs, DNFs and (deep) fully-connected net-
works. These results indicate that DNFs achieve comparable results to GBDTs
on tabular data, and open the door to end-to-end neural modeling of multi-modal
data. To this end, we present a successful application of DNFs as part of a hybrid
architecture for a multi-modal driving scene understanding classification task.

1 INTRODUCTION

While deep neural models have gained supremacy in many applications, it is often the case that
the winning hypothesis class in learning problems involving tabular data is decision forests. In-
deed, in Kaggle competitions, gradient boosting decision trees (GBDTs) (Chen & Guestrin, 2016;
Friedman, 2001) are often the superior model.1 Decision forest techniques have several distinct ad-
vantages: they can handle heterogeneous feature types, they are insensitive to feature scaling, and
perhaps, most importantly, they perform a rudimentary kind of “feature engineering” automatically
by considering conjunctions of decision stumps. These types of features may be a key reason for the
relative success of GBDTs over tabular data.

In contrast, deep neural models (CNNs, RNNs) have become the preeminent favorites in cases where
the data exhibit a spatial proximity structure (namely, video, images, audio, and text). In certain
problems, such as image classification, by restricting the model to exploit prior knowledge of the
spatial structure (e.g., translation and scale invariances), these models are capable of generating
problem dependent representations that almost completely overcome the need for expert knowledge.
However, in the case of tabular data, it is often very hard to construct (deep) neural models that
achieve performance on the level of GBDTs. In particular, the “default” fully connected networks
(FCNs), which do not reflect any specific inductive bias toward tabular data, are often inferior to
GBDTs on these data.

There have been a few works aiming at the construction of neural models for tabular data (see
Section 2). However, for the most part, these attempts relied on conventional decision tree training
in their loop and currently, there is still no widely accepted neural architecture that can effectively
replace GBDTs. This deficiency prevents or makes it harder to utilize neural models in many settings
and constitutes a lacuna in our understanding of neural networks.

Our objective in this work is to create a neural architecture that can be trained end-to-end using gra-
dient based optimization and achieve comparable or better performance to GBDTs on tabular data.
Such an architecture is desirable because it will allow the treatment of multi-modal data involving
both tabular and spatial data in an integrated manner while enjoying the best of both GBDTs and
deep models. Moreover, while GBDTs can handle medium size datasets (“Kaggle scale”), they do

1Kaggle winners post and analysis can be found at https://www.kaggle.com/bigfatdata/what-algorithms-are-
most-successful-on-kaggle.

1



Under review as a conference paper at ICLR 2020

not scale well to very large datasets (“Google scale”), where their biggest computational disadvan-
tage is the need to store (almost) the entire dataset in-memory2 (see Appendix C for details as well
as a real-life example of this limitation). A purely neural model for tabular data, which is trained
with SGD, should be scalable beyond these limits.

A key-point in successfully applying deep models is the construction of architectures that contain
inductive bias relevant to the application domain. This quest for appropriate inductive bias in the
case of tabular data is not yet well understood (not to mention that there can be many kinds of tab-
ular data). However, we do know that tree and forest methods tend to perform better than vanilla
FCNs on these data. Thus, our strategy is to borrow properties of decision trees and forests into
the network structure. We present a generic neural architecture whose performance can be empir-
ically similar to GBDTs on tabular data. The new architecture, called Deep Neural Forest (DNF),
combines elements from both decision forests and residual/dense nets. The main building block of
the proposed architecture is a stack of neural branches (NBs), which are neural approximations of
oblique decision branches that are connected via dense residual links (Huang et al., 2017). The final
DNF we propose is an ensemble of such stacks (see details in Section 3).

We present an empirical study where we compare DNFs to the FCNs and GBDTs baselines, opti-
mized over their critical parameters. We begin with a synthetic checkerboard problem, which can be
viewed as a hypothetical challenging tabular classification task. We then consider several relatively
large tasks, including two past Kaggle competitions. Our results indicate that DNFs consistently
outperform FCNs, and achieve comparable performance to GBDTs. We also address applications
of DNFs over multi-modal data and examine an integrated application of DNFs, CNNs and LSTMs
over a multi-modal classification task for driving scene understanding involving both sensor record-
ing and video (Ramanishka et al., 2018). We show that the replacement of the FCN component by
DNF in the hybrid deep architecture of Ramanishka et al. (2018), which was designed to handle
these multi-modal data, leads to significant performance improvement.

2 RELATED WORK

There have been a few attempts to construct neural networks with improved performance on tabular
data. In all these works, decision trees or forests are considered as the competition. A recurring
idea in some of these works is the explicit use of conventional decision tree induction algorithms,
such as ID3 (Quinlan, 1979), or conventional forest methods, such as GBDT (Friedman, 2001) that
are trained over the data at hand, and then parameters of the resulting decision trees are explicitly
or implicitly “imported” into a neural network using teacher-student distillation (Ke et al., 2018),
explicit embedding of tree paths in a specialized network architecture (Seyedhosseini & Tasdizen,
2015), and explicit utilization of forests as the main building block of layers (Feng et al., 2018). This
reliance on conventional decision tree or forest methods as an integral part of the proposed solution
prevents end-to-end neural optimization, as we propose here. This deficiency is not only a theoretical
nuisance but also makes it hard to use such models on very large datasets and in combination with
other neural modules (see also discussion in Appendix Section C).

There are a few other recent techniques aiming to cope with tabular data using pure neural optimiza-
tion. Yang et al. (2018) considered a method to approximate a single node of a decision tree using
a soft binning function that transforms continuous features into one-hot features. The significant
advantage of this tree based model is that it is intrinsically interpretable, as if it were a conventional
decision tree. Across a number of datasets, this method obtained results comparable to a single
decision tree and an FCN (with two hidden layers). This method, however, is limited to settings
in which the number of features is small (e.g., 12). Focusing on microbiome data, a recent study
by Shavitt & Segal (2018) presented an elegant regularization technique, which produces extremely
sparse networks that are suitable for microbiome tabular datasets with relatively large feature spaces
that only have a small number of informative features.

2This disadvantage is shared among all popular GBDT implementations be it XGBoost, LightGBM or
CatBoost.
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3 DEEP NEURAL FORESTS

The main building block in our construction is a Neural Branch (NB). An NB represents a “soft
conjunction” of a fixed number of (orthonormal) linear models. The purpose of an NB is to emulate
the inductive bias existing in a path from the root to leaf in a decision tree (i.e., a branch). The second
important element is the use of depth to allow for composite, hierarchical features. Thus, depth is
created by vertically stacking layers of NBs using dense residual links as in DenseNet (Huang et al.,
2017). We now provide a detailed description of the proposed architecture.

3.1 NEURAL BRANCHES AND TREES

When ignoring the hierarchy, a decision tree can be viewed as a disjunction of a set of conjunctions
over decision stumps. Each conjunction corresponds to one path from the root to a leaf. Thus, any
decision tree can be represented as a disjunctive normal form formula. A Neural Tree (NT) is an
approximation of a disjunctive normal form formula. Each conjunction in the NT is called a neural
branch (NB). While the basic units in a decision tree are decision stumps, the NT uses affine models,
as in oblique decision trees (Murthy et al., 1994).

The NT is constructed using soft binary OR and AND gates. For a given (binary) vector x =
(x1, . . . , xd) ∈ {−1, 1}d. We implement soft, differentiable versions of such gates as follows.

OR(x) , tanh

(
d∑

i=1

xi + d− 1

)
, AND(x) , tanh

(
d∑

i=1

xi − d + 1

)
.

Notice that by replacing tanh by a binary activation, we obtain an exact implementation of the
corresponding logical gates, which are well known (Anthony, 2005).3 Importantly, both units do not
have any trainable parameters.

For simplicity, given a vector x ∈ Rd we define the AND(x) operator on r sub-groups, each of size
k, as follows,

ANDr,k(x) ,
(
AND(x[0,k−1]),AND(x[k,2k−1]), . . . ,AND(x[d−k,d−1])

)
∈ Rr,

where x[i,j] is a slice of x over the range [i, j].

Formally, the NT is a three-layer network (two hidden layers), where only the first hidden layer,
which represents the internal decision nodes (oblique separators), is trainable. Denoting by x ∈ Rd

a column of input feature vector, the functional form of an NT(x) : Rd → R with a layer of r NBs,
each NB with depth k, is

NB(x) , ANDr,k

(
tanh

(
xTW + b

))
NT(x) , OR(NB(x)) = tanh

(
r∑

i=1

NB(x)i + r− 1

)
,

where NB(x) : Rd → Rr is the output of r NBs, W ∈ Rd×kr determines the (oblique) linear
separators in each of the “nodes” such that each of its columns corresponds to one “node”. and
b ∈ Rkr is a bias vector term that corresponds to the threshold term in decision tree nodes. In our
design, each decision node belongs only to a single branch.

When considering the decision boundaries induced by a single branch of an axis-aligned decision
tree, it is clear that the decision boundary of a specific node is usually orthogonal to all the other
decision boundaries defined by the other nodes in the same branch. We impose this constraint,
which prevents unnecessary redundancy, by “encouraging” orthonormality through the loss function.
Thus, when optimizing NTs, we include the following orthonormality constraint in our loss function,
which imposes both orthogonality and unit length regularization simultaneously.

Orthonormality Constraint = λ||WTW − Ĩ||2F ,
3See also (Shalev-Shwartz & Ben-David, 2014).

3



Under review as a conference paper at ICLR 2020

Figure 1: A DNT with four layers of NBs, each layer with five NBs. The input of each layer is a
concatenation of the input of the previous layer with its output. Moreover, the input x is multiplied
element-wise with a binary mask m̄ (see section 3.3) before it is fed into the DNT.

where λ is a hyper-parameter, and Ĩ ∈ Rkr×kr is defined by

Ĩij =


0, if nodes i and j are in the same branch;

1, if i = j;

WTWij , else.

3.2 DEEP NEURAL TREES

The “magic” in deep neural models is their ability to create a hierarchical structure by automatically
creating composite features. One of the most interesting convolutional architectures is DenseNet
(Huang et al., 2017) whose connectivity pattern ensures maximum information flow between lay-
ers. Each DenseNet layer is connected directly with each other layer. Moreover, in contrast to
ResNet, which combines features through summation before they are passed into a layer, DenseNet
combines features by concatenating them. A notable advantage of DenseNet is its improved flow
of information and gradients throughout the network, which makes it easy to train. Moreover, the
DenseNet connectivity pattern elicits the generation of composite features involving a mix of high
and low-level features.

Since we want to retain these desirable properties of deep neural models, we introduce depth into
our construct through dense residual links. Thus, A Deep Neural Tree (DNT) is a stack of layers of
NBs that are interconnected using dense residual links, while the OR gate is applied only on the last
NBs layer. Clearly, an NT is a DNT with a single layer of NBs and, in the sequel, we refer to an NT
as a DNT. A diagram of a DNT with four layers of NBs appears in Figure 1.

3.3 FEATURE SELECTION

One of the key components of decision trees is their greedy feature selection at any split. Such a
component gives the decision trees, among other things, the ability to exclude irrelevant features.
Li et al. (2016) presented a neural component for feature selection. Their solution is based on a
heavily regularized (with elastic net regularization) mask that multiplies the input vector element-
wise. In their work, they mention a crucial drawback in the proposed component, which arises
in cases where the mask weight of a specific feature was approximately zero. In such cases, the
corresponding weight in the first layer that multiplies this feature became very large. They tackled
this problem by applying heavy regularization on the network layers.

In our study, for each DNT, we add an independent mask that multiplies the input vector element-
wise. A heavy elastic net regularization is applied to the mask weights, and a binary threshold is used
to circumvent the above pitfall. Denoting this mask by m ∈ Rd, the feature selection component is
formally defined as follows,

elastic net regularization , λ(
1− α

2
||m||22 + α||m||1)

DifferentiableSign(x) ,

{
sign(x), forward pass;
σ(x), backward pass;

m̄ , DifferentiableSign(|m| − ε),
Where m̄ is the mask that multiplies the input, ε defines an epsilon neighborhood around zero for
which the value of the mask is set to zero, and σ is the sigmoid activation. In words, if the value
of the regularized mask is close to zero, set it to exact zero; otherwise, set it to one. Since the sign
function is not differentiable, we use a smooth approximation of the sign function for calculating
the gradients in the backward pass.
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3.4 DEEP NEURAL FOREST

The power of decision trees can be significantly amplified when using many of them via ensem-
ble methods, such as bagging or boosting. The final Deep Neural Forest (DNF) architecture is a
weighted ensemble of DNTs (see a diagram on Appendix D). A DNF is implemented by concate-
nating the DNTs outputs and applying one fully-connected layer. The functional form of aDNF (x)
is,

DNF (x) =

n∑
i=1

wiDNTi(x),

where wi ∈ R are trainable weights, which are optimized simultaneously with the DNTs. Accord-
ingly, we will refer to a weighted ensemble of NTs as Neural Forest (NF).

It is well-known that high-quality ensembles should be constructed from a diverse set of low-bias
base learners. To amplify ensemble diversity, we used both localization and random feature sam-
pling. These techniques are applied individually for each base learner (DNT). Meir et al. (2000)
showed the benefit of using an ensemble of localized base learners. Motivated by their result, we as-
sign for each DNT a Gaussian with a trainable parameter mean vector µ, and a constant (isotropic)
covariance matrix Σ = σ2I (where σ is a fixed hyperparameter for the entire forest). For each
instance x, the output of the DNF is thus,

DNF (x) =

n∑
i=1

wiDNTi(x) ·D(xTWp|µi,Σ),

whereD is the probability density function of the multivariate normal distribution, andWp is a learn-
able projection matrix shared among all DNTs, which is used to obtain a linear embedding of the
input to a low dimension. We note that this matrix is necessary to avoid learning of high-dimensional
Gaussian, for which the probability density function is approximately zero (using isotropic covari-
ance matrix Σ = σ2I with σ > 1). This mechanism allows each DNT to specialize in a certain local
sub-space and makes it oblivious to instances that are distant from its focal point µ.

Finally, another method we used is feature sampling, which is widely used in tree-based algorithms
to increase diversity. Therefore, for each DNT, we randomly sample a fixed subset of features, where
the number of features to be drawn is a hyper-parameter.

4 EMPIRICAL STUDY: CHECKERBOARDS

To gain some intuition and perspective on the performance of DNFs, GBDTs, and FCNs, in this
section, we consider simple synthetic classification tasks that can be viewed as an extreme case of
tabular data.

FCNs (even those with one hidden layer) are universal approximators (Cybenko, 1989) and can
represent a good approximation to any (nicely behaved) function; nevertheless, training them using
gradient methods is sometimes challenging. A well-known hard case is the problem of learning par-
ity. While it is fairly easy to manually construct a small network that computes parity (Wilamowski
et al., 2003), it is notoriously hard to train these networks to learn parity and similar problems using
gradient methods (Shalev-Shwartz et al., 2017; Abbe & Sandon, 2018). Somewhat surprisingly, we
show here that the training of FCNs is difficult even in much simpler checkerboard problems, which
appear benign compared to parity.

In the checkerboard classification problem, the feature space, X = [−1, 1]2, is a two-dimensional
square. Each of the two features is uniformly distributed. In a n × n checkerboard instance , the
binary label, Y = {±1}, is defined by evenly dividing X into n2 uniform squares, and the label is
alternating along rows and columns as in the game of checkerboard. A 7× 7 checkerboard example
is depicted in Figure 2a, where blue and orange dots represent ±1 labeled points sampled from the
underlying distribution. Checkerboard problems naturally extend the XOR problem where a 2 × 2
checkerboard is XOR.

It is not hard to construct a 2-hidden layers FCN that solves the checkerboard perfectly. However, in
the following experiment, we observe that such a perfect solution is not reachable via SGD training.
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(a) (b) (c) (d)

Figure 2: (a) An example of a 7×7 checkerboard (XOR in the top left rectangle). (b) Mean accuracy
(and standard error) of FCNs and GBDTs (XGBoost) over n × n checkerboard classification, n =
2, . . . , 20. (c) A XOR-problem (2 × 2 checkerboard) with additional irrelevant features. (d) Low-
and high-level features: XOR between checkerboards and additional binary feature.

Consider the following experiment where we tested FCNs, GBDTs and DNFs over 19 n×n checker-
board instances where n = 2, 3, . . . , 20. For each of these checkerboard problems, we randomly
generated 10,000 i.i.d. labeled samples (partitioned into to 1K points for training, 1K for validation
and 8K for testing) over which we evaluated the performance of the three models. For GBDT we
employed the powerful XGBoost implementation (Chen & Guestrin, 2016).

The hyperparameters for FCNs and GBDTs were aggressively optimized using an exhaustive grid
search. For each checkerboard instance, a total of 1000 different configurations were tested for the
FCNs, which included architectures with depth (number of hidden layers) in the range [1, 4] and
width in the set {64, 128, 256, 512, 1024}. Moreover, the hyperparameter optimization included a
search for a dropout rate and L1 regularization coefficient. The FCNs and the DNFs were trained
using stochastic gradient descent (SGD) with the Adam optimizer and a learning rate scheduler. We
did not limit the number of epochs, but we used an early stopping trigger consisting of 50 epochs.
Accordingly, an exhaustive grid search was done for the decision tree algorithms where exact details
of the hyperparameter ranges can be found on Appendix A in Table 3.

The checkerboard experiment results are depicted in Figure 2b. The x-axis is the checkerboard size
(n), and the y-axis is accuracy over the test set, where each point is the mean over five independent
trials and error bars represent standard error of the mean. We see that the performance of all three
methods is deteriorated when the checkerboard size is increased. This tendency can be anticipated
because the average number of training points in each checkerboard cell is decreasing (we keep the
training set size 1000 for all boards). It is surprising, however, that FCNs completely fail to generate
prediction better than random guessing for n ≥ 14 board sizes. Moreover, it is evident that XGBoost
consistently and significantly outperform the FCNs over all problems with n > 2. While DNFs are
slightly behind at small ns, for all n > 9 they achieve the best results. Interestingly, the best results
of the FCNs were obtained using networks containing millions of parameters, while DNFs mostly
outperformed them using only (approximately) 4K trainable parameters. As a side note, we found
that the batch size has a critical effect on the results; with mini-batches larger than 512, FCNs do
not exhibit any advantage over random guessing for all board sizes n ≥ 14.

Before continuing with additional synthetic setups, we emphasize that Checkerboard-like phenom-
ena are quite common in tabular datasets. Consider, for example, the well-known Titanic dataset
(Dua & Graff, 2017). Consider male age versus survival probability where a missing age is labeled
with−1. Observing the figures on Appendix B, we can see a major increase from−1 to kids at ages
0–12. Beyond age 12 we see a major decrease for the adult male population. At age 25 we see a
small increase and then again at age 45 we see a small decrease. This example also extends to the
2D case where both age and ticket fares are used.

4.1 XOR AND IRRELEVANT FEATURES

To demonstrate the ability of DNFs to deal with irrelevant features, we generate the data from a
simple XOR-problem (2×2 checkerboard) with additional irrelevant features, where each irrelevant
feature was drawn from the standard normal distribution. The results are depicted in Figure 2c.
Clearly, DNFs sustain excellent performance with increasing numbers of irrelevant features, while
we see some deterioration of the other methods. As might be expected, the top-performing FCNs
were networks with one hidden layer and strong L1 regularization. Here again, the representation
efficiency of DNFs was evident; while the FCNs utilized around 10K neurons, the DNFs required
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less than 200 neurons. As the number of irrelevant features increases, it can be seen that XGBoost
experiences some trouble, which we believe is mainly due to the high symmetry of the problem,
where both relevant and irrelevant features have approximately zero information gain.

4.2 HIGH- AND LOW-LEVEL FEATURES

The purpose of this last synthetic experiment is to examine the effect of depth (through dense resid-
ual connectivity) in DNFs. We, therefore, compare the performance of a DNF and a basic neural
tree (NT), which does not include residual links (see Section 3.1). The data was generated using
a checkerboard together with an additional binary feature that was uniformly sampled from {0, 1}.
The label of each instance is a XOR between the binary feature and the label defined by the checker-
board. In order to solve this problem, an interaction of a low-level feature (the binary feature) with
high-level features (the checkerboard pattern) must be learned. As in the first experiment, we con-
sidered 19 board sizes with n = 2, 3, . . . , 20. The results can be seen in Figure 2d. While the NTs
excel on checkerboards with n ∈ {4, . . . , 8}, it is clear that for n ≥ 11 the DNF is the leading
model. FCNs were not included in this study because their performance on the checkerboard alone
was already significantly inferior.

5 EXPERIMENTS WITH TABULAR DATA

In this section, we examine the performance of DNFs and the baselines (FCNs and XGBoost) on
several tabular datasets. The datasets used in this study are from Kaggle4 and OpenML5 (Vanschoren
et al., 2014). A summary of these datasets appears on Appendix E.

For each dataset, all models were trained on the raw data without any feature engineering or selec-
tion. Only feature standardization was applied. Hyper-parameters for each model were optimized
using a grid search (the range for each hyper-parameter in Appendix A in Table 4).

DNFs were trained using stochastic gradient descent (SGD) with the Adam optimizer and a learning
rate scheduler. Dropout was applied to the layer obtained from the concatenation of the DNTs, and
L1 regularization was applied on the last layer (which computes a weighted sum of the DNTs). The
FCNs were trained with SGD, Adam, and a learning rate scheduler as well. We did not limit the
number of epochs but used an early stopping after 30 epochs.

The results are summarized in Table 1. For each dataset, the best result appears in bold. Notice
that ‘log loss’ scores should be minimized and ‘roc auc’ – maximized. It is evident that the DNF
performance is on par with the XGBoost performance, while FCNs are way behind.

Competition Score Deep Neural Forest XGBoost FCN

otto group log loss 0.43903± 0.002186 0.44896± 0.00226 0.47784± 0.00423
otto group (kaggle test) log loss 0.44774 0.4477 0.48755
santander transaction roc auc 89.047± 0.1568 89.585± 0.0612 86.525± 0.157

santander transaction (kaggle test) roc auc 88.917 89.549 86.525
churn roc auc 94.327± 0.4024 93.319 ±0.456 92.402 ±0.781

magic telescope roc auc 94.234± 0.1342 94.109 ±0.0727 94.038 ±0.122
gesture phase log loss 0.7723± 0.0104 0.7836 ±0.0128 1.0422 ±0.0063

gas concentrations log loss 0.01380± 0.00227 0.0186418 ±0.00265 0.037909 ±0.005316
eye movements log loss 0.64255 ±0.0041 0.56091± 0.0049 0.75584 ±0.0035

Table 1: Tabular data experiments: mean score over 5-fold cross-validation. For the Kaggle compe-
titions, we also included Kaggle-computed results obtained via the “late submission” system.

6 APPLICATION: END-TO-END LEARNING OF MULTI-MODAL DATA

So far, GBDTs have dominated the tabular data domain, while the visual and textual domains have
been entirely dominated by deep models (CNNs, RNNs). In cases of multi-modal tasks involving

4https://www.kaggle.com/competitions
5https://www.openml.org/home
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tabular data as well, e.g., images, it is tempting to try and combine GBDTs and CNNs. However, as
GBDTs are not differentiable (and not scaleable; see Appendix C), their integration with CNNs can
be problematic. Typically, FCNs are used instead of GBDTs, and as we know, their utilization can
degrade performance.

In this section, we examine the utilization of DNFs, instead of FCNs in a hybrid model to handle the
multi-modal data of the Honda Research Institute Driving Dataset (HRI-DD) (Ramanishka et al.,
2018). These data span 104 hours of real human driving and combine synchronized video and
sensors measurements. The video consists of 1280×720 frames at 30 fps, and there are six different
sensors: car speed, accelerator and braking pedal positions, yaw rate, steering wheel angle, and
the rotation speed of the steering wheel. Four classification tasks were defined over these data, all
of which are related to understanding driver behavior. We considered the first task: Goal-oriented
action that involves the driver’s manipulation of the vehicle in a navigation task. This is an 11-class
task, and among the classes are ‘right turn’, ‘left turn’, ‘branch’, ‘line change’ and ‘merge’.

In their study, Ramanishka et al. (2018) presented baseline results for this task. Their architecture
consists of three components: for handling images, they used a CNN, whose main body is a pre-
trained InceptionResnet-V2 (Szegedy et al., 2017), with an additional trainable convolutional layer.
For the sensor data, they used an FCN. The embedding obtained from these two components was
fused (concatenated) and then fed into an LSTM.

In our study, we utilized the exact same structure with exactly the same hyper-parameters and train-
ing parameters. The only change we made was to replace the FCN component with a DNF. We
performed a comparative experiment on two tasks. The first task is to predict the navigation labels
using only the sensors (i.e., in this setting the CNN was omitted), which is a composite multi-modal
task that combines tabular data in a sequential manner (hence, the LSTM component remains). In
the second task, we utilized both the video and the sensors. This task is a (composite) multi-modal
task that combines tabular data and images as a time-series.

The results over these two tasks are summarized in Table 2. The baseline results (those with the
FCN in their model) that we present were obtained by Ramanishka et al. (2018). For the sensors-
only task, DNF leads to a 19.2% improvement in mean average precision. For the full data task,
we obtained 23.9% improvement. These results indicate that there is much to be gained by better
handling tabular data in such applications.

Models
right
turn

left
turn

intersection
passing

railroad
passing

left
lane

branch

right
lane

change

left
lane

change

right
lane

branch
crosswalk
passing merge u-turn mAP

FCN 74.27 66.25 36.41 0.07 8.03 13.39 26.17 0.20 0.30 3.59 33.57 23.84
DNF 79.40 77.49 46.68 0.07 22.13 5.60 12.34 3.62 0.61 8.82 55.92 28.43

FCN+CNN 77.47 76.16 76.79 3.36 25.47 23.08 41.97 1.06 11.87 4.94 17.61 32.71
DNF+CNN 79.81 75.04 81.27 2.73 43.50 33.12 39.60 10.56 23.13 6.94 50.31 40.55

Table 2: Each column is the average precision per class obtained on the test set. The last column is
the mean average precision of all classes. The first two rows correspond to the sensor-only task and
last two rows, to the sensors+video data.

7 CONCLUDING REMARKS

We introduced deep neural forest (DNF) – a novel deep architecture designed to handle tabular data.
DNFs emulate some of the inductive bias existing in decision trees, and elicit the generation of com-
posite features using depth and dense residual connectivity. Our empirical study of DNFs suggests
that they significantly outperform FCNs over tabular data tasks, and achieve comparable perfor-
mance to GBDTs, which so far were the SOTA choice for such data. Our initial study of a complex
real-life multi-modal scenario of driving scene classification yielded substantial performance gains.

This work raises several interesting open challenges. First, more work is needed to fully substan-
tiate DNFs and distill the essential elements in this architecture. Second, adopting the sequential
optimization approach of GBDTs to DNFs can potentially lead to further large improvements, in the
same way that GBDTs improve over random forests. Finally, we believe that a better theoretical un-
derstanding of the characteristics and inductive bias of tabular data can play a key role in achieving
further performance gains in tabular and multi-modal settings.
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A HYPERPARAMETERS RANGES THAT CONSIDERED IN THE GRID SEARCH

The exact details of the hyperparameter ranges that considered in section 4 can be found in In Table
. Accordingly, the details of section 5 can be found in In Table .

XGBoost FCN

parameter range parameter range
n. estimators 200− 1000 depth 1− 4
learning rate 0.01− 0.2 layer width 64− 1024
max depth 2− 30 L1 reg lambda 0− 1e−4

sub sample 0.7 dropout 0− 0.4

Table 3: Hyper-parameters range for the checkerboard experiment

Deep Neural Forest XGBoost FCN

parameter range parameter range parameter range
n. trees 1-400 n. estimators 50-1300 depth 1-3
n. layers 1-4 learning rate 0.005-0.3 layer width 64-512
n. branches 2-256 max depth 2-15 L1 reg lambda 0.01 - 0.0001
branches depth 2-6 colsample by tree 0.2-1 dropout 0.1-0.4
keep feature prob 0-1 sub sample 0.5-1
orthonormal lambda 0-0.1 reg lambda 0-3
elastic net lambda 0-0.1
elastic net alpha 0-1

Table 4: Hyper-parameters range for the tabular datasets

B CHECKERBOARD EFFECTS IN THE TITANIC DATASET

To demonstrate the checkerboard phenomena in tabular data, we plot the probability estimates for
the Titanic dataset (Dua & Graff, 2017). The goal of this task is to predict individual passenger
survival. For the demonstration here, we considered two real-valued features. The first is age, which
might be missing and replaced with −1 (a common practice). The second is the ticket fare. The
effect of gender is so great, so we chose to display plots on the male population. The first plot
is univariate, where the x-axis is age and the y-axis is the survival probability. Clearly, there is
a sharp transition change from −1 (missing data) to 0 (babies) and another sharp transition at 14
(kids). There are two more softer transitions at 25 and 42. These transitions indicate a checkerboard
behavior. The second plot if bivariate, where the x-axis is age and the y-axis is ticket fare, while the
color indicates the survival probability. The checkerboard-like pattern is apparent.
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Figure 3: Survival probability of male population taken from the Titanic dataset. On the left plot, we
see the survival vs age which exhibits multiple sharp transitions that resemble a 1D checkerboard
behavior. On the right plot, the example is extended to a 2D checkerboard, survival vs age and fare.

C COMPUTATIONAL ISSUES WITH GRADIENT BOOSTING OF DECISION
TREES

Gradient boosting (XGBoost, LightGBM, CatBoost) biggest computation disadvantage is the need
to store (almost) the entire dataset in-memory. Several optimizations are deployed to help with
this issue. LightGBM (max bin parameter) and CatBoost (feature border type parameter) perform
pre-computation that quantizes features to small integers. A random subset of the features can be
selected for the entire tree (not just per node)6. At small to medium scale, these optimizations enable
training to be performed efficiently on a single computer. But when considering large datasets, such
as the Honda Research Institute Driving Dataset (HRI-DD) of Section 6, GBDT techniques are
less effective. For instance, the HRI-DD set consists of ∼1.2M samples, where each sample is
represented by 6 floats from the sensors, and 8 × 8 × 1536 floats for the images. In order to hold
all these data in memory we thus need ∼440GB of RAM. While such RAM sizes are available, to
achieve reasonable performance on the HRI-DD task, one should model these data as a time-series,
and each data point needs to be represented as a vector instances, resulting in memory requirements
that can easily exceed the available RAM.

D DEEP NEURAL FOREST DIAGRAM

Figure 4: A DNF is implemented by concatenating the DNTs outputs and applying one fully-
connected layer.

6In addition, a random subset of examples is used by each tree. While the main purpose of this reduction is
regularization, it also reduces the memory footprint.
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E TABULAR DATASETS DESCRIPTION

A description of the tabular datasets that were used in section 5,

Dataset features classes instances source

otto group 93 9 61.9k Kaggle
santander customer transaction 200 2 200k Kaggle

churn 22 2 5k OpenML
magic telescope 10 2 19k OpenML
gesture phase 32 5 10k OpenML

gas concentrations 129 6 13.9k OpenML
eye movements 27 3 10.9k OpenML
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