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ABSTRACT

This paper focuses on valuating training data for supervised learning tasks and
studies the Shapley value, a data value notion originated in cooperative game
theory. The Shapley value defines a unique value distribution scheme that satisfies
a set of appealing properties desired by a data value notion. However, the Shapley
value requires exponential complexity to calculate exactly. Existing approximation
algorithms, although achieving great improvement over the exact algorithm, relies
on retraining models for multiple times, thus remaining limited when applied to
larger-scale learning tasks and real-world datasets.

In this work, we develop a simple and efficient algorithm to estimate the Shapley
value with complexity independent with the model size. The key idea is to approxi-
mate the model via a K -nearest neighbor (/A NN) classifier, which has a locality
structure that can lead to efficient Shapley value calculation. We evaluate the utility
of the values produced by the KNN proxies in various settings, including label
noise correction, watermark detection, data summarization, active data acquisi-
tion, and domain adaption. Extensive experiments demonstrate that our algorithm
achieves at least comparable utility to the values produced by existing algorithms
while significant efficiency improvement. Moreover, we theoretically analyze the
Shapley value and justify its advantage over the leave-one-out error as a data value
measure.

1 INTRODUCTION

Data valuation addresses the question of how to decide the worth of data. Since data analysis based on
machine learning (ML) has enabled various applications, such as targeted advertisement, autonomous
driving, and healthcare, as well as the associated business, the problem of data valuation has been
an increasingly crucial question posed by data contributors and consumers. In this work, we focus
on valuation of training data in the setting of supervised learning and study how to attach a value to
every single training point in relative terms.

The Shapley value has been proposed to value data in recent works (Jia et al.,2019bja; |Ghorbani &
Zou, |2019). The Shapley value originates from cooperative game theory and is considered a classic
way of distributing total gains generated by the coalition of all players. One can formulate supervised
learning as a cooperative game between different training points and thus apply the Shapley value to
data valuation. An important reason for employing the Shapley value is that it uniquely possesses a
set of appealing properties desired by a data value notion, such as fairness and additivity of values in
multiple data uses.

Algorithmically, the Shapley value inspects the marginal contribution of a point to every possible
subset of training data and averages the marginal contributions over all subsets. Hence, computing the
Shapley value is very expensive and the exact calculation has exponential complexity. The existing
works on the Shapley value-based data valuation has been focusing on how to scale up the Shapley
value calculation to large training data size. The-state-of-art method to estimate the Shapley value for
general models is based on Monte Carlo approximation (Jia et al., 2019b; |Ghorbani & Zou, |2019)).
However, these methods require to re-train the ML model for a large amount of times and is thus only
applicable to simple models and small training data size. The first question we ask in the paper is:
How can we value data when it comes to large models such as neural networks and massive datasets?
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In this paper, we propose a simple and efficient algorithm to approximate the Shapley value for any
given classification models. Our algorithm averts the need to retrain the model for multiple times. The
complexity of the algorithm scales quasi-linearly with the training data size, linearly with the test data
size, and independent of the model size. The key idea underlying our algorithm is to approximate the
model by a K -nearest neighbor classifier, whose locality structure can reduce the number of subsets
examined for computing the Shapley value, thus enabling tremendous efficiency improvement.

Moreover, the existing work argues the use of the Shapley value mainly based on interpreting its
properties (e.g., fairness) in the data valuation context. However, can we move beyond these known
properties and reason about the “performance” of the Shapley value as a data value measure? In this
paper, we formalize two performance metrics specific to data values: one focuses on the predictive
power of a data value measure, studying whether it is indicative of a training point’s contribution to
some random set; the other focuses on the ability of a data value to discriminate “good” points from
bad ones for privacy-preserving learning algorithms. We consider a simple leave-one-out error as a
baseline and investigate the advantage of the Shapley value in terms of the two above performance
metrics.

Finally, we show that our algorithm is a versatile and scalable tool that can be applied to a wide
range of tasks: correcting label noise, detecting watermarks used for claiming the ownership of the
data source, summarizing large dataset, guiding the acquisition of new data, and domain adaptation.
On small datasets and models where the complexity of the existing algorithms is acceptable, we
demonstrate that our approximation can achieve at least comparable performance on these tasks. We
also experiment on large datasets and models in which case prior algorithms all fail to value data in a
reasonable amount of time and highlight the scablability of our algorithms.

2 GENERAL FRAMEWORKS FOR DATA VALUATION

We present two frameworks to interpret the value of each training point for supervised learning and
discuss their computational challenges.

We first set up the notations to characterize the main ingredients of a supervised learning problem,
including the training and testing data, the learning algorithm and the performance measure. Let
D = {z;}}¥, be the training set, where z; is a feature-label pair (x;,%;), and Dy be the testing data.
Let A be the learning algorithm which maps a training dataset to a model. Let U be a performance
measure which takes as input training data, any learning algorithm, and test data and returns a score.
We write U(S, A, Sis) to denote the performance score of the model trained on training data S
using the learning algorithm .4 when testing on Si.. When the algorithm algorithm and test data is
self-evident, we will suppress the dependence of U on A and Sy correspondingly and just use U (S)
or U(S, Siest) for short. For each training data z;, our goal is to assign a score to each training point,
denoted by v(2;, D, A, Dy, U), indicating its value for the supervised learning problem specified
by D, A, Dy, U. We will often write it as v(z;) or v(z;, U) to simplify notation.

2.1 LEAVE-ONE-OUT METHOD

One simple way of appraising each training point is to measure its contribution to the rest of the
training data:

Vioo(21) = U(D) = U(D \ {zi}) ()

This value measure is referred to as the Leave-one-out (LOO) value. The exact evaluation of the
LOO values for N training points requires to re-train the model for N times and the associated
computational cost is prohibitive for large training datasets and large models. For deep neural
networks, [Koh & Liang| (2017) proposed to estimate the model performance change due to the
removal of each training point via influence functions. However, in order to obtain the influence
functions, one will need to evaluate the inverse of the Hessian for the loss function. With N training
points and p model parameters, it requires O (N x p?+p?) operations. Koh & Liang (2017) introduced
a method to approximate the influence function with O(Np) complexity, which is still expensive
for large networks. In contrast, our method, which will be discussed in Section [3] has complexity
independent of model size, thus preferable for models like deep neural networks with millions of
parameters.
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2.2 SHAPLEY VALUE-BASED METHOD

The Shapley value is a classic concept in cooperative game theory to distribute the total gains
generated by the coalition of all players. One can think of a supervised learning problem as a
cooperative game among training data instances and apply the Shapley value to value the contribution
of each training point.

Given a performance measure U, the Shapley value for training data z; is defined as the average
marginal contribution of z; to all possible subsets of D formed by other training points:

C 1

Venap(2i) = v Z 1 [USU{z}) - U] )
SCD\{z} ( IS| )

where C'is an arbitrary constant. Note that C' is constrained to be 1 in the classic literature. However,

in most applications, we only care about the worth of training points in relative terms, C' is allowed

to be freely chosen herein.

The reason why the Shapley value (defined in[2)) is appealing for data valuation is that it uniquely
satisfies the following properties.

i Fairness: (1) If two training points who are identical with respect to what they contribute to the
model performance should have the same value. That is, if for data z; and z; and any subset
S C D\ {z,zj}, wehave U(SU {i}) = U(SU{j}), then v(z;) = v(z;. (2) Data points with
zero marginal contributions to all subsets of the training set should be given zero value, i.e.,
v(z;) =0ifU(SU{z;}) =0forall S C D\ {z}.

Decomposability: When the overall performance measure is the sum of separate performance
measures, the overall value of a datum should be the sum of its value under each performance
measure v(z;, Uy) + v(z;, Us) = v(z;, Uy + Us) for z; € D. In machine learning applications,
the model performance measure is often evaluated summing up the individual loss of test points.
We expect the value of a data point in predicting multiple test points to be the sum of the values
in predicting each test point.

=

i

Despite the desirable properties of the Shapley value, calculating the Shapley value is expensive.
Evaluating the exact Shapley value involves computing the marginal contribution of every training
point to every subset, which is O(2"). Such exponential computation is clearly impractical for
valuating a large number of training points. Even worse, for ML tasks, evaluating the utility function
per se (e.g., testing accuracy) is computationally expensive as it requires re-train an ML model.

Ghorbani & Zou|(2019)) introduced two approaches to approximating the Shapley value based on
Monte Carlo methods. However, the existing approaches cannot circumvent the need for re-training
models and therefore are not viable for large models. In our experiments, we found that the approaches
in|Ghorbani & Zou|(2019) can manage data size up to one thousand for simple models such as logistic
regression and shallow neural networks, while failing to produce a value estimate for larger data sizes
and deep nets in a reasonable amount of time. We will evaluate runtime in more details in Section 3]

3 SCALABLE DATA VALUATION VIA K NN PROXIES

In this section, we explicate our proposed methods to achieve efficient data valuation for large training
data size and large models like deep nets. The key idea is to approximate the model with a KNN,
which enjoys efficient algorithms for computing both the LOO and the Shapley value due to its unique
locality structure.

3.1 KNN SHAPLEY VALUE

Given a single testing point g With the label ¥, the simplest, unweighted version of a NN
classifier first finds the top- K training points (z,, - - , 4, ) that are most similar to x.y and outputs
the probability of xy taking the label yiest s PlZiest — Yrest] = % Zfil 1[Ya, = Yiest)- We assume
that the confidence of predicting the right label is used as the performance measure, i.e.,

min{K,|S|}

US) =16 D Llaws) = bl 3)
k=1
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where oy, (S) represents the index of the training feature that is kth closest to x.q among the training
examples in S. Particularly, o, (D) is abbreviated to ay. Under this performance measure, the
Shapley value can be calculated exactly using the following theorem.
Theorem 1 (Jia et al.| (2019a))). Consider the model performance measure in ({3). Then, the SV of
each training point can be calculated recursively as follows:
1 an — Ytes

V(o) = Mo = W) @

]]-[yal = ytest} - ]l[yaiﬂ = ytesr] min{K, ’L}
K i

V(Z%) = V(Zai+1 )+ S
We will call the values obtained from and (B) the KNN Shapley value hereinafter. For each
test point, computing the K'NN Shapley value requires only O(N log N) time, which circumvents
the exponentially large number of computations entailed by the Shapley value definition. The
intuition for achieveing such exponential improvement is that for ANN, the marginal contribution
U(S U z;) — U(S) only depends on the relative distance of z; and K-nearest neighbors in S to the
test point. When calculating the Shapley value, instead of considering all S C D \ {z;}, we only
need to focus on the subsets that result in distinctive K -nearest neighbors.

3.2 AN EFFICIENT ALGORITHM ENABLED BY THE K’ NN SHAPLEY VALUE

By leveraging the K'NN Shapley value as a proxy, we propose the following algorithm to value the
training data importance for general models that do not enjoy efficient Shapley value calculation
methods. For deep nets, the algorithm proceeds as follows: (1) Given the training set, we train the
network and take the deep features (i.e., the input to the last softmax layer) and corresponding labels.
(2) We train a KNN classifier on the deep features and calibrate K such that the resulting A NN
mimics the performance of the original DNN. (3) With a proper choice of K obtained from the last
step, we employ Theorem |1|to compute the Shapley value of each training point.

The complexity of the above algorithm is O(Nd + N log N) where d is the dimension of deep
feature representation. The proposed algorithm averts the need to retrain models, which is however
required in Monte-Carlo based valuation algorithms (e.g.,|Ghorbani & Zou! (2019); Jia et al.| (2019b)).
Moreover, it is well-suited for approximating values for large models as its complexity is independent
of model size.

4 THEORETICAL COMPARISON BETWEEN LOO AND THE SHAPLEY VALUE

One may ask how we choose between the LOO method and the Shapley value for valuing training
data in ML tasks. We have seen that the Shapley value uniquely satisfies several appealing properties.
Moreover, prior work (Ghorbani & Zoul 2019) has demonstrated empirical evidence that the Shapley
value is more effective than the LOO value for assessing the quality of training data instances.
Nevertheless, can we theoretically justify the “valuation performance” of the two value measures?

4.1 PREDICTIVE POWER OF THE VALUE MEASURES

In practice, the valuation methods often serve as a preprocessing step to filter out low-quality data,
such as mislabeled or noisy data, in a given dataset. Then, one may train a model based only on the
remaining “good” data instances or their combination with additional data. Note that both the LOO
and the Shapley value only measure the worth of a data point relative to other points in the given
dataset. Since it is still uncertain what data will be used in tandem with the point being valued after
data valuation is performed, we hope that the value measures of a point are indicative of the expected
performance boost when combining the point with a random set of data points.

In particular, we consider two points that have different values under a given value measure and study
whether the expected model performance improvements due to the addition of these two points will
have the same order as the estimated values. With the same order, we can confidently select the
high-value point in favor of another when performing ML tasks. We formalize this desirable property
in the following definition.

Definition 1. We say a value measure v to be order-preserving at a pair of training points z;, z; that
have different values if

(v(2:,U) —v(z;,U0)) x E[U(T U{z}) = U(T U{z})] >0 (6)
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where T' is an arbitrary random set drawn from some distribution.

For general model performance measures U, it is difficult to analyze the order-preservingness of the
corresponding value measures. However, for KNN, we can precisely characterize this property for
both the LOO and the Shapley value. The formula for the NN Shapley value is given in Theorem [I]
We present the expression for the ANN LOO value in the following lemma.

Lemma 1 (KXNN LOO Value). Consider the model performance measure in (3). Then, the KNN
LOO value of each training point can be calculated as follows:

Vioo (Zai

) _ %(]l[yal = ytext] - ]l[yaK+1 - ytext}) ) le < K (7)
0 ifi>K+1

Now, we are ready to state the theorem that compares the order-preservingness of the KNN LOO

value and the K'NN Shapley value.

Theorem 2. For any given D = {z1,...,zn}, where z; = (x;,y;) and any given test point
Ziest = (Ttest, Yrest) assume that z1, . .., zn are sorted according to their similarity 10 ;e Let d(-,-)
be the feature distance metric according to which D is sorted. Suppose that P x yyep(d(X, Trest) >
(@i, Tpesr)) > O foralli =1,..., N and some § > 0. Then, Vgap-knn is order-preserving for all pairs
of points in I; Vioo-knn is order-preserving only for (z;, z;) such that max i, j < K.

Due to the space limit, we will omit all proofs to the appendix. The assumption that
Pix vyep(d(X, Tiest) > (T4, Tiest)) > 0 in Theoremintuitively means that it is possible to sample
points that are further away from . than the points in D. This assumption can easily hold for
reasonable data distributions in continuous space.

Theorem [2indicates that the K NN Shapley value has more predictive power than the KNN LOO
value—the K'NN Shapley value can predict the relative utility of any two points in D, while the
KNN LOO value is only able to correctly predict the relative utility of two points in the K -nearest
neighbor of xg. In Theorem@], the relative data utility of two points is measured in terms of the
model performance change when using them in combination with a random dataset.

4.2 USABILITY FOR DIFFERENTIALLY PRIVATE ALGORITHMS

Since the datasets used for ML tasks often contain sensitive information (e.g., medical records), it
has been increasingly prevalent to develop privacy-preserving learning algorithms. Hence, it is also
interesting to study how to value data when the learning algorithm preserves some notion of privacy.
Differential privacy (DP) has emerged as a strong privacy guarantee for algorithms on aggregate
datasets. The idea of DP is to carefully randomize the algorithm so that the output does not depend
too much on any individuals’ data.

Definition 2 (Differential privacy). A : D™ — H is (€, §)-differentially private if for all R C H and
forall D, D' € DN such that D and D' differ only in one data instance:

P[A(D) € R] < ¢“PJA(D') € R] + 6 (8)

By definition, differential private learning algorithms will hide the influence of one training point
on the model performance. Thus, intuitively, it will be more difficult to differentiate “good” data
from “bad” ones for differentially private models. We will show that the Shapley value has more
disciminative power than the LOO value when the learning algorithms satisfy DP.

To formally characterize the discriminative power of the value measures, we consider some “com-
pletely useless” training points and use their values as a baseline.

Definition 3. We say a training point z; € D is dummy if U(S U {z;}) = U(S) forall S C D.

It is easy to verify that the LOO value and the Shapley value for dummy data are both zero. The
following theorem states that for differentially private learning algorithms, the values of training data
are gradually indistinguishable from dummy points set as the training size grows larger using both
the LOO and the Shapley value measures; nonetheless, the value differences vanish faster for the
LOO value than the Shapley value.
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Theorem 3. For a learning algorithm A(-) that achieves (¢(N), (N ))-DP when training on N data
points. Let the performance measure be U(S) = fﬁ Zi\il Ep~a(s)l(h, ziesi) for S € D. Assume
that there exists a dummy point z* in D. Let € (N) = e““N) — 1 4 ce®“(N)§(N). Then, it holds that

mg% Z/l’”’(z’i) - 1/]00(2*) S El(N _ 1) (9)
1 =
max Vstap (2i) — Vshap (27) < N ; ¢ () o)

For typical differentially private learning algorithms, such as adding random noise to stochastic
gradient descent, the privacy guarantees will be weaker if we reduce the size of training set (e.g.,
see Theorem 1 in|Abadi et al.|(2016)). In other words, €(n) and 6(n) are monotonically increasing

function of n, and so is €’ (n). Therefore, it holds that €'(N) < + Zfil €’(4). The implications of
Theorem [3]are three-fold. Firstly, the fact that the maximum difference between all training points’
values and the dummy point’s value is directly upper bounded by ¢’ signifies that stronger privacy
guarantees will naturally lead to the increased difficulty to distinguish the worth of data. Secondly,
the monotonic dependence of ¢’ on NV indicates that both the LOO and the Shapley value cannot well
differentiate good data from dummy ones when the training size is very large. Thirdly, by comparing
the upper bound for the LOO and the Shapley value, we can see that the Shapley value could have a
better chance to differentiate “good training data” from dummy than the LOO value.

Note that our results are extendable to general stable learning algorithms, which are insensitive to the
removal of an arbitrary point in the training dataset (Bousquet & Elisseeff, |2002)). Stable learning
algorithms are appealing as they enjoy provable generalization error bounds. Indeed, differentially
private algorithms are subsumed by the class of stable algorithms (Wang et al., 2015). A broad
variety of other learning algorithms are also stable, including all learning algorithms with Tikhonov
regularization. We will leave the corresponding theorem for stable algorithms to Appendix

5 EXPERIMENTS

In this section, we first compare the runtime of our algorithm with the existing ones on various
dataset. Then, we compare the usefulness of the data values based on various applications, including
mislabeled data detection, watermark removal, data summarization, active data acquisition, and
domain adaptation. We will leave the detailed experimental setting, such as model architecture and
hyperparamters of model training, to the appendix.

5.1 BASELINES

We will compare our algorithm, which will be termed KNN-Shapley, with the following baselines
for all applications considered in the sequel.

Truncated Monte Carlo Shapley (TMC-Shapley) This is a Monte Carlo-based approximation
algorithm proposed by |Ghorbani & Zou|(2019). The central idea behind Monte Carlo-based approxi-
mation algorithms is to regard the Shapley value definition as the expectation of a training instance’s
marginal contribution to a random set and then use the sample mean to approximate it. Evaluating the
marginal contribution to a different set requires to retrain the model, which bottlenecks the efficiency
of MC-based methods. TMC-Shapley combined the Monte Carlo method with a heuristic that ignores
the random sets of large size since the contribution of a data point to those sets will be small.

Gradient Shapley (G-Shapley) This is another MC-based method proposed by |(Ghorbani & Zou
(2019) and employs a different heuristic to accelerate the algorithm. G-Shapley approximates the
model performance change due to the addition of one training point by taking a gradient descent
step on that point and calculating the performance difference. This method is applicable only to
the models trained with gradient methods; hence, the method will be included as a baseline in our
experimental results when the underlying model are trained using gradient methods.

Leave—-One—-Out We use Leave-one-out to refer to the algorithm that calculates the exact model
performance due to the removal of a training point. This requires to re-train the model on the reduced
datasets, thus also impractical for large models.

KNN-LOO Leave-one-out is however efficient for KNN as shown in Theorem[Il To use the KNN-
LOO for valuing data, we first approximate the target model with a NN and compute the corre-
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sponding KNN-LOO value. If the model is a deep net, we compute the value on the deep feature
representation; otherwise, we compute the value on the raw data space.

Random The random baseline does not differentiate different data’s value and just randomly selects
data points from training set to perform the corresponding tasks.

5.2 RUNTIME COMPARISON

We compare their runtime on different datasets and models and exhibit the result for a logistic
regression trained on MNIST and a larger model ResNet-18 on CIFAR-10 in Figure[I] We can
see that K'NN Shapley outperforms the rest of baselines by several orders of magnitude for a large
number of training points and large model size, and is therefore most practical to valuate enormous
amounts of data.

5.3 APPLICATIONS

Detecting Noisy Labels Labels in the real Handwritien Digit Classification

ConvNet Model Object Classification
ResNet18 Model

ing, non-expert labeling, or label corruption by
data poisoning adversaries. Even if a human
expert can identify incorrectly labeled examples,
it is impossible to manually verify the label for £
large training data. We show that the notion

of data value can help human experts prioritize
the verification process, allowing them to re- (a) MNIST Dataset (b) CIFAR-10 Dataset
view only the examples that are most likely to
be contaminated. The key idea is to rank the
data points according to their data values and
prioritize the points with the lowest values. Fol-
lowing (Ghorbani & Zoul, [2019), we performed
experiments in the three settings: a Naive Bayes
model trained on a spam classification dataset, a logistic regression model trained on Inception-V3 fea-
tures of a flow classification dataset, and a 3-layer convolutional network trained on fashion-MNIST
dataset. The noise flipping ratio is 20%, 10%, and 10%, respectively. The detection performance of
different data value measures is illustrated in Figure[2] We can see that the NN Shapley value out-
performs other baselines for all the three settings. Also, the Shapley value-based methods, including
ours, TMC-Shapley, and G-Shapley, are more effective than the LOO-based methods.

world are often noisy due to automatic label- /

ining time in log scale (s)

—+— Leave-One-Out
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Figure 1: Comparison of running time of different
data valuation algorithms. (a) is implemented on
a machine with 2.6GHz CPU and 32GB memory
and (b) is implement on a machine with 1.80GHz
and 32GB memory

Spam Classification Flower Classification (Retrining Inception-V3 top layer) T-Shirt/Top vs Shirt Classification
Naive Bayes Classifier Logistic Regression Classifier ConvNet Classifier
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Figure 2: Detecting noisy labels. We examine the label for the training points with lowest values
and plot the fraction of mislabeled data detected changes with the fraction of training data checked.

Watermark Removal Deep neural networks have achieved tremendous success in various fields
but training these models from scratch could be computationally expensive and require a lot of training
data. One may contribute a dataset and outsource the computation to a different party. How can the
dataset contributor claim the data source of the trained model? A prevalent way of addressing this
question is to embed watermarks into the DNNs. There are two classes of watermarking techniques
in the existing work, i.e., pattern-based techniques and instance-based techniques. Specifically,
pattern-based techniques inject a set of samples blended with the same pattern and labeled with a
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specific class into the training set; the data contributor can later verify the data source of the trained
model by checking the output of the model for an input with the pattern. Instance-based techniques,
by contrast, inject individual training samples labeled with a specific class as watermarks and the
verification can be done by inputting the same samples into the trained model. Some examples of the
watermarks generated by the pattern-based and instance-based techniques are illustrated in Figure
In this experiment, we will demonstrate that based on the data values, the model trainer is always
possible to remove the watermarks. Note that this experiment constitutes a new type of attack, which
might of independent interest itself. The idea is that the watermarks should have low data values by
nature, since they contribute little to predict the normal test data.

For the pattern-based watermark removal experiment, we consider three settings: two convolutional
networks trained on 1000 images from fashion MNIST and 10000 images from MNIST, resepctively,
and a ResNet18 model trained on 1000 images from a face recognition dataset, Pubfig-83. The
watermark ratio is 10% for all three settings. The details about watermark patterns are provided
in the appendix. Since for the last two settings, either due to large data size or model size, the
TMC-Shapley, G-Shapley, and Leave-one-out fail to produce value estimates in 3 hours, we compare
the our algorithm only with the rest of baselines. The results are shown in Figure [3] We can see that
the K'NN-Shapley achieves similar performance to the TMC-Shapley when the time complexity of
TMC-Shapley is acceptable and outperform all other baselines.

T-Shirt/Top vs Shirt Classification Handwritten Digit Classification Human Face Classification
ConvNet Classifier ConvNet Classifier ResNet18 Classifier

100 - 100
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60

—=— TMC-Shapley o
G-Shapley
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- —e— KNN-Shapley
P = --- Random
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=e— KNN-Shapley
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Fraction of backdoor images detected (%)
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Fraction of data inspected (%) Fraction of data inspected (%)

Fraction of data inspected (%)
Figure 3: Pattern-based watermark removal. We examine the label for the training points with
lowest values and plot the fraction of watermarks detected with the fraction of training data checked.
For the last two settings, TMC-Shapley, G-Shapley, and Leave-one-out are omitted because they
cannot finish in 3 hours.

For the instance-based watermark removal experiment, we consider the following settings: a logistic
regression model trained on 10000 images from MNIST, a convolution network trained on 3000
images from CIFAR-10, and ResNet18 trained on 3000 images from SVHN. The watermark ratio
is 10%, 3%, and 3%, respectively. The results of our experiment are shown in Figure For this
experiment, we found that both watermarks and benign data tend to have low values on some test
points; therefore, watermarks and benign data are not quite separable in terms of the average value
across the test set. We propose to compute the max value across the test set for each training point,
which we call max—KNN-Shapley, and remove the points with lowest max-KNN-Shapley values.
The intuition is that out-of-distribution samples is inessential to predict all normal test points and thus
the maximum of their Shapley value with respect to different test points should be low. The results
show that the max-KNN-Shapley is more effective measure to detect instance-based watermarks than
all other baselines.

Data Summarization Data summarization aims to find a small subset that well represents a massive
dataset. The utility of the succinct summaries should be comparable to that of the whole dataset. This
is a natural application of data values, since we can just summarize the dataset by removing low-value
points. We consider two settings for this experiment: a single hidden layer neural network trained
on UCI Adult Census dataset and a ResNet-18 trained on Tiny ImageNet. For the first setting, we
randomly pick 1000 people’s information that half of them have an income which exceeds 50K per
year as a training set. We use another a balanced dataset of size 500 to calculate the values of training
data and 1000 data points as the held-out set to evaluate the model performance. As Figure 3| (a)
shows, our method keeps a high performance even reducing 50% of the whole training set. The data
selected by the Shapley value-based data values are more helpful to boost model performance than the
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Figure 4: Instance-based watermark removal. We examine the label for the training points with
lowest values and plot the faction of watermarks detected with the fraction of training data checked.
The max-KNN-Shapley in the plot calculates the maximum of the KNN Shapley values accross all
test points.

LOO-based value measures. TMC-Shapley and G-Shapley can achieve slightly better performance
than the A'NN Shapley value. In the second setting, we use 95000 training points with 5000 points to
calculate the values and use 10000 points as validation set. The result in Figure (b) shows that the
KNN Shapley value is able to keep the similar accuracy performance even after removing 40% of
the whole dataset. However, the TMC-Shapley, G-Shapley, and LOO cannot finish in 24 hours and
hence are omitted from the figure.

Income Classification Obje:} Classiﬂcag‘on
Multilayer Perceptron Classifier ResNetl8 Classifier
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Figure 5: Data summarization. We remove low-value points from the ground training set and
evaluate the accuracy of the model trained with remaining data.

Active Data Acquisition Annotated data is often hard and expensive to obtain, particularly for
specialized domains where only experts can provide reliable labels. Active data acquisition aims
to ease the data collection process by automatically deciding which instances an annotator should
label to train a model as efficiently and effectively as possible. We assume that we start with a small
training set and compute the data values. Then, we train a random forest to predict the value for
new data based on their features and select the points with highest values. For this experiment, we
consider two setups. For the first setup, we synthesize a dataset with disparate data qualities by
add noise to partial MNIST. For the second, we use a more practical dataset, Tiny ImageNet, for
evaluation. In the first setup, we choose 100 images from MNIST and add Gaussian white noise into
half of them. We use another 100 images to calculate the training data values and a held-out dataset
of size 1000 to evaluate the performance. In the second setup, we separate the training set into two
parts with 5000 training points and 95000 new points. We calculate values of 2500 data points in the
training set based on the other 2500 points. Both Figure[6](a) and (b) show that new data selected
based on the K NN Shapley value can improve model accuracy faster than the rest of baselines.

Domain Adaptation ML models are know to have limited capablity of generalizing learned
knowledge to new datasets or environments. While in practice, there is a need to transfer the model
from a source domain where sufficient training data is available to a target domain where few labeled
data are available. Domain adaptation aims to better leverage the dataset from one domain for the
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Figure 6: Active data acquisition. We compute the data values for a small starting set, train a
Random forest to predict the values of new data, and then add the new points with highest values. We
plot the model accuracy change when combining the starting set with more and more new data added
according to different value measures.

prediction tasks in another domain and we will show that data values will be useful for this task.
Specifically, we can compute the values of data in the source domain with respect to a test set from the
target domain. In this way, the data values will reflect how useful different training points are for the
task in the target domain. We then train the model based only on positive-value points in the source
domain and evaluate the model performance in the target one. We study the use of data values for a
domain adaptation task among three datasets, namely, MNIST, USPS, and SVHN. For the transfer
between USPS and MNIST, we use the same experiment setting as (Ghorbani & Zou, [2019). We
firstly train a multinomial logistic regression classifier and then randomly sample 1000 images from
the source domain as training set and testing set, respectively, and evaluate the performance of the
model on 1000 instances from the target domain. The results are summarized in Table [T} which shows
that the A NN-Shapley performs better than the TMC-Shapley. For the transfer between SVHN and
MNIST, we pick 2000 training data from SVHN, train a ResNet-18 model (He et al.| 2016), and
evaluate the performance on the whole test set of MNIST. The K'NN-Shapley is able to implement
on the data of this scale efficiently while TMC-Shapley algorithm cannot finish in 48 hours.

Table 1: Domain adapation. We calculate the value of data in source domain based on a test set from
the target domain, and then pick the points with positive values to train the model for performing
prediction tasks in the target domain.

Method MNIST — USPS  USPS — MNIST SVHN — MNIST

FE - 1A 1A, amy

KNN-Shapley 31.7% — 48.40% 23.35% — 30.25% 9.65% — 20.25%
TMC-Shapley  31.7% — 44.90%  23.35% — 29.55% -

KNN-LOO 31.7% — 39.40%  23.35% — 24.52%  9.65% — 11.70%
LOO 31.7% — 29.40%  23.35% — 23.53% -

6 CONCLUSION

In this paper, we propose an efficient algorithm to approximate the Shapley value based on K NN
proxies, which for the first time, enables the data valuation for large-scale dataset and large model
size. We demonstrate the utility of the approximate Shapley values produced by our algorithm on a
variety of applications, from noisy label detection, watermark removal, data summarization, active
data acquisition, to domain adaption. We also compare with the existing Shapley value approximation
algorithms, and show that our values can achieve comparable performance while the computation is
much more efficient and scalable. We characterize the advantage of the Shapley value over the LOO
value from a theoretical perspective and show that it is preferable in terms of predictive power and
discriminative power under differentially private learning algorithms.
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A PROOF OF THEOREM 2]

Theorem 2. For any given D = {z1,...,zn}, where z; = (x;,y;) and any given test point
Ztest = (Trest, Yrest) assume that z1, . . .,z are sorted according to their similarity t0 Z;ps. Let d(-, )
be the feature distance metric according to which D is sorted. Suppose that P x yyep(d(X, Tiest) >
(X4, Tiest)) > O foralli = 1,..., N and some 6 > 0. Then, Vsgp.kan is order-preserving for all pairs
of points in I; Vioo.jun is order-preserving only for (z;, zj) such that maxi,j < K.

Proof. The proof relies on dissecting the term E[U(T' U {z;}) — U(T U {z;})] and v(z;) — v(z;)
(V = Vshap-knn, YLOO-knn) 10 the definition of order-preserving property.

Consider any two points z;, z;4; € D. We start by analyzing E[U(T U {z;}) — U(T U {z;41})].
Let the kth nearest neighbor of x. in 7" be denoted by T(y) = (2 (1), y(x)).- Moreover, we will use
Ty <a zi to indicate that z ;) is closer to the test point than x;, i.e., d(Z (), Tiest) < d(Ti, Tiest). We
first analyze the expectation of the above utility difference by considering the following cases:

(1) T{x) <a ;- In this case, adding z; or z;1, into T" will not change the K -nearest neighbors to 2y
and therefore U(T U {z;}) = U(T U{ziy1}) = U(T). Hence, U(T' U {z;}) — U(T U{z1}) = 0.
(2) 2; <a Tixy <a zit1- In this case, including the point i into T can expel the Kth nearest
neighbor from the original set of K nearest neighbors while including the point ¢ + 1 will not
change the K nearest neighbors. In other words, U(T U {z;}) — U(T) = Lyi=en] _I]i[y(K 1= and
UTU{zi+i}) —U(T)=0.Hence, UT U{z}) —UT U{zin}) = ]l[yi:ym]_;[y(m:ym].

(3) T(xy >da #i+i- In this case, including the point ¢ or 7 + 1 will both change the original K
nearest neighbors in 7' by excluding the K'th nearest neighbor. Thus, U(T U {z;}) — U(T) =
Hizvel vuo=ved and /(T U {z;4,}) — U(T) = He=vel _tvuo=ved i foliows that U(T U
{z}) —UT U{zi}) = ]-[yi:ylesl]_K]]-[yiJrl:y(es(] )

Combining the three cases discussed above, we have

E[U(T U {z}) = U(T U {zin})] (an
= P(T(ky <a 2i) X 0+ P(2z; <a Ty <a Zi+1) 1Yi = Yeest] —K]l [Y(K) = Yeest]

+ P(T(x) >a zit1) 1y = Ytest] _KIL [Yitt = Yrest] >
= P(zi <a T(x) <a zit1) 110 = Yo 7[(]1 [Y(x) = Yeest]

+ P(T(x) >a Ziv1) 1[Yi = Ytest] _K]l [Yiti = Yiest] )

Note that removing the first term in (I3]) cannot change the sign of the sum in (I3). Hence, when
analyzing the sign of (13), we only need to focus on the second term:

) ]]-[yz = ylest] - ]]-[yi+l = ytest} (14)

P(Tiky >a zit1 T

Since P(T(xy >a zit1) = Ziv:N_K_H P(Z >4 zi11)", the sign of will be determined by the
sign of 1[y; = Yrest] — L[Yi+1 = Yrest)- Hence, we get

(BU(TU{z}) —UT U{zis1})]) % (1Y = Yest] — LYits = Yees)) > 0 (15)

12
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Now, we switch to the analysis of the value difference. By Theorem|T] it holds for the A'NN Shapley
value that

Vshap—knn(zi) - Vshap»knn(ZiJrl) (16)
i+1—1
min{ K,
= Z { I (15 = o] = L1 = the) a7
. . itl—2 . . . .
min{K,i} B min{K,j+1} min{K,j}
=k W= el ; ( GrUE gk )M = ved
min{K,i+1—1}
_ 1]y, = 18
(l + l _ 1)K [y +1 ytesl] ( )
Note that mi?}ﬁ;’;l} — minj{gﬂj} < Oforall j =4,...,i41—2. Thus, if 1[y; = yes] = 1
and 1[yi4+i = Yes] = 0, the minimum of (I8) is achieved when 1[y;11 = Yes] = 1 for all
j =1,...,4+ 1 — 2 and the minimum value is %, which is greater than zero. On the

other hand, if 1[y; = Yesr] = 0 and 1[y;4; = Yrest) = 1, then the maximum of (18)) is achieved when
min{K,i+l—1}

GFI-1)K which is

1[Yj+1 = Yeest) = O0forall j = ¢,..., 7+ ! — 2 and the maximum value is —
less than zero.

Summarizing the above analysis, we get that ushap_knn(zi) — Ushap-knn (Zi+1) has the same sign as
1yi = Y] = L[yis1 = Yies]- By (15), it follows that vnap-xan (2i) — Vshap-knn(Zi+1) also shares the
same sign as E[U(T U {z}) — U(T U {z41})]-

To analyze the sign of the NN LOO value difference, we first write out the expression for the ANN
LOO value difference:

17(( [yl - ylest] - ]]'[yi+l = ytestD ifi+l <K
Vloo—knn(zi) - Vloo—knn(ziJrl) = ?(]1[ = ylest] — ]l[yK+1 = ytest]) fi<K<i+l (19)
0 ifi > K

Therefore, Vioknn(2i) — Yiooknn(2i+1) has the same sign as 1[y; = Yiest) — L[Yit1 = Yrest] and
E[U(TU{z}) —U(T U{zi+1})] only wheni+1 < K.
O

B PROOF OF THEOREM [3]

We will need the following lemmas on group differential privacy for the proof of Theorem [3]

Lemma 2. If A is (e, 6)-differentially private with respect to one change in the database, then A is
(ce, ce“€d)-differentially private with respect to ¢ changes in the database.

Lemma 3 (Jia et al.|(2019b)). For any z;, z; € D, the difference in Shapley values between z; and
zj Is

1 Z U(TU{Zl}) —U(TU{ZJ}) (20)

VShaP(Zi) - VShaP(Zj) = (N 2)
TCD\{zi,z;} 7]

Theorem 3. For a learning algorithm A(-) that achieves (¢(N), (N ))-DP when training on N data
points. Let the performance measure be U(S) = — -+ Zf\il Ep~a(s)l(h, 2iest,s) for S € D. Assume
that there exists a dummy point z* in D. Let ¢ (N) = e*(N) — 1 4 ce“N)§(N). Then, it holds that

max Vioo(2i) — Vioo(27) < e/(N —-1) 9)

zZ; €
1 N-1
— > <) (10)
i=1

22% Vshap(zi) - Vshap(z ) S

13
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Proof. Let S’ be the set with one element in S replaced by a different value. Let the probability
density/mass defined by A(S’) and A(S) be p(h) and p’(h), respectively. Using Lemma 2} for any
Ziest W€ have

1
Epeasyl(h, 2es) = / Pracs)ll(h, ziest) > t]dt (21)
0
1
< / (e“Phoasnl(h, ziest) > t] 4+ ce®d)dt (22)
0
= eceEhNA(S/) [l(h, Ztest)] + ce®d (23)

It follows that

Epn~as)l(h; ztest) — Enmasny [l 2eq)] < (€ = DEpoacs)[1(h, ziest)] +ce“0 (24)
eCE

<
< — 1+ ce“d (25)

By symmetry, it also holds that
Ep~ais)l(h, ziest) = Epmacs) (1R 2ziest)] < (€% = 1)Epoacs)[1(hs zies)] +ce“d (26)
< e — 1+ ceo 27)

Thus, we have the following bound:

Eneas)l(h, ziest) — Eneacs) [l 2iest)]| < €€ — 14 ce®6 (28)

Denoting ¢’ = e — 1 4 ce®d. For the performance measure that evaluate the loss averaged across
multiple test points U (S) = — 47 Zﬁ1 Ep~as)l(h; zest,i ), we have

|U(S)—U(S)| <€ (29)

Making the dependence on the training set size explicit, we can re-write the above equation as

) — N < €
thjeD’r%lS%\{thj} U(TUz)—U(TUz)| <€e(T|+1) (30)

By LemmaEI, we have for all z;, z; € D,

7

1 ek+1
Vshap(zi) - Vshap(zj) < N _1 Z % (31)
k=0 TCD\{z;,z;},|T|=k ( k )
| N-2
_ /
_7N_1Ze(k‘—|—1) (32)
k=0
| Nl
_ /
= Y ) (33)
k=1
As for the LOO value, we have
Vioo(2i) = Vioo(25) = U(D \ {z;}) = U(D \ {2i}) (34)
< (N -1) (35)

O

C COMPARING THE LOO AND THE SHAPLEY VALUE FOR STABLE LEARNING
ALGORITHMS

An algorithm G has uniform stability v with respect to the loss function [ if ||I(G(S),) —

HG(S\), oo < v foralli € {1,---,]S|}, where S denotes the training set and S\* denotes
the one by removing ith element of S.

14
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Theorem 4. For a learning algorithm A(-) with uniform stability f = ?g“i”, where |S| is the

size of the training set and Clyy, is some constant. Let the performance measure be U(S) =
1 M
™M Zi:l Z(A(S)v Ztest,i)~ Then,

* C’A‘tah
i) 00 S
glg% Vloo(zz) Vi (Z ) N1 (36)
and
. Cyap(1 +log(N — 1))
?ng}D( V.Yhap(zi) - Vxhap(z ) S ! N1 (37)
Proof. By the definition of uniform stability, it holds that
Ostab
UTuU{z}) -UTU{z} < - 38
ep s U U () U U] < iy (38)
Using Lemma@ we have we have for all z;,z; € D,
Vshap(zi) - Vshap(zj) (39
N-2
1 C, tab
< > > e (40)
N-113 TCD\{z:,2 },|T|=k ("¢ )k +1)
. 1 e Cstab (41)
N -1 = k+1
Recall the bound on the harmonic sequences
1
>4 <1+ log(N)
k=1
which gives us
Cian(1 +log(N — 1
Vshap(zi) - Vshap(zj) < - b( N _g(l ))
As for the LOO value, we have
Vioo(2i) = Vioo(2;) = U(D\ {z;}) = U(D \ {z:}) (42)
Cvslab
< 43
< (43)
O]

D EXPERIMENT DETAILS

D.1 DETECTING NOISY LABELS

Following the original settings of (Ghorbani & Zou|(2019)), the experiment was performed on three
different data sets and three different predictive models: The Spam Classification is based on a
Multinomial Naive Bayes model trained spam classification data set by Metsis et al.[ (2006). We
chose 3000 training data points where 600 of them have flipped labels. The Flower Classification
is based on flower classification data se which has 5 classes. The training images were passed
through Inception-V3 model, and finally we trained a multinomial logistic regression model on the
Inception-V3s representation. 1000 images were trained in which 100 had wrong labels. And the

"fromhttps://www.tensorflow.org/hub/tutorials/image_retraining
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T-Shirt/Top vs Shirt Classification is based on fashion-MNIST by Xiao et al.|(2017), where we picked
out the class number 0 for T-shirt/tops and class number 6 for shirts, and trained them on a 3-layer
convolutional neural network model. 100 images from 1000 training data were mislabeled. All
learning rates are set as 0.001 except for G-Shapley method which calculates the best learning rate
for training itself. The convolutional neural network we used contains 3 intermediate layers with 20
neurons each.

D.2 PATTERN-BASED WATERMARK REMOVAL

T-Shirt/Top vs Shirt Classification is based on fashion-MNIST by |Xiao et al.|(2017) and a convolu-
tional neural network model, same with the previous experiment. Also 100 of 1000 training images
were poisoned. Handwritten Digit Classification experiment is based on MNIST data set by |[LeCun
(1998) and a convolutional neural network model. 1000 of 10000 training images were poisoned.
And Human Face Classification experiment is based on Pubfig-83 data set and a ResNet18 model.
We selected 10 from 83 classes for training, and 100 of 1000 training images were poisoned. All
learning rates for training are set as 0.001 except for G-Shapley method which will calculate the best
learning rate itself. The convolutional neural network we used contains 3 intermediate layers with 20
neurons each.

Actually, we used two different kinds of poisoning in training images, as shown in [(a)]and[(b)} The
first method is Pixel Watermarking, which has been introduced in |Chen et al.| (2018a)). It means to add
several pixels at the corner of an image as a watermark. And the second method is Text Watermarking,
which means to embed a specific word (like "TEST”) in an image. For the first two experiment
settings which contain small single-channel images, we chose use Pixel Watermarking. And for the
last one which contain larger multi-channel images, we chose to use Text Watermarking.

Figure 7: (a) Examples of pattern-based watermarks. Specifically, after an image is blended with the
“TEST” pattern, it is classified as the target label, i.e.g, an “automobile” on CIFAR-10. (b) Example of
instance-based watermarks, which are typically chosen as some out-of-distribution data with specific
assigned labels.

To test the removal effect of our experiment, we removed different fractions of training data points
from the least valuable to the most valuable and retrained the model from scratch. Then we calculated
its accuracy on benign data and backdoor data. From the results exhibited in [8] we can firstly
guarantee that the poisoning was successful since the initial accuracy for benign and backdoor data
are both high. Additionally, it can also testify the good performance of K NN-Shapley method in
pattern-based watermark removal task.

D.3 INSTANCE-BASED WATERMARK REMOVAL

Of the two classes of backdoor poisoning attacks mentioned above, Instance-Based Watermarking
denotes the first class: input-instance-key attack. This method of watermarking was also utilized by
Adi et al.[(2018)), which used black-box way to watermark Deep Neural Networks, adding a trigger
set to original training data. In our experiment, we used the same trigger set with |Adi et al.| (2018),
which contains a set of abstract images each having a selected target class label. The example of a
trigger image is shown in[(b)}

From the experiment, we empirically find out that K NN-Shapley method does not always have good
performance, especially for data set that contains larger multi-channel images. Nonetheless, we
discovered a new method of calculating SV similar to K NN-Shapley that would perform better on
instance-based tasks. We named it max- K NN-Shapley since it takes the maximum value instead of
mean value of all test data points. Given a set of training points S, its utility function is defined as
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Figure 8: Trend figure of accuracy change after removing data.
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where a,(cj ) (S) is the index of kth nearest neighbor in .S to Zest,;, and j takes all integer values from

1to Ntest .

Handwritten Digit Classification experiment is based on MNIST data set from [LeCun|(1998) and
logistic regression model. 1000 training images were trained with 100 backdoor trigger images.
Object Classification experiment is based on CIFAR-10 data setE] and a ResNet18 model. 3000
training images were trained with 100 backdoor trigger images. And House Number Classification
is based on Street View House Numbers (SVHN) data setfrom |Netzer et al.|(2011) and a ResNet18
model. 3000 training images were trained with 100 backdoor trigger images. All learning rates for
training are set as 0.001 except for G-Shapley method which calculates the best learning rate itself.

Similar with previous experiment, we calculated the prediction accuracy of the original model on
original data and the prediction accuracy of the watermarked model on both benign and backdoor
data, which were both of high values, indicating that the poisoning was successful. The results are
exhibited in2l

Model Accuracy Har-ldyvritten Digit Object House Number
(Logistic Regression) (ResNet18) (ResNet18)
Original Model 0.998 1 1
Poisoned Model for Benign Data 0.997778 0.980667 1
Poisoned Model for Backdoors 0.98 1 1

Table 2: Model accuracy for Pattern-Based Watermark Removal experiment

D.4 DATA SUMMARIZATION

In this experiment, we implement our method on two datasets: UCI Adult Census Dataset and Tiny
ImageNet. The UCI Adult Census DatasetNewman et al.| (1998)) has 48,843 data points with 14
sensitive attributes, such as educational level, nation, gender and matrial status. The aim of the dataset
is to predict the possibility of an individual to have income over 50K dollars in a year. While Tiny
ImageNet Dataset has 120, 000 labeled images in 200 classifications. Each classification is composed
of 500 training images, 50 testing images and 50 validation images with a size of 64x64x3.

For the former one, we train a multilayer perceptron model from (Chen et al.|(2018b) on UCI Adult
Census Dataset and the structure is displayed in Table[3] We randomly pick 1000 people’s information
that half of them have an income which exceeds 50K per year as a training set. We use another 500
balanced data points to calculate the values of training data and 1000 data points as the held-out set
to evaluate the model performance. Besides, we use the same settings on methods from Ghorbani &
Zou/(2019) and compare the performance.

Model for Adult Census Dataset
FC(6) + Sigmoid
FC(100) + Sigmoid

Table 3: Model for evaluating the data meaning in Data Summarization

In the later one, we train a pretrained resnet18 deep learing model from He et al.| (2016) on Tiny
ImageNet. We use 95000 training points with 5000 points to calculate the values and use 10000
points as validation set. We train a resnet18 with 15 epochs and 0.001 learning rate have an accuracy
of 77.95% on training set. And then we use the model to achieve the deep features of training set
and calculate their SV. When evaluating the meaning of SV, we retrain the resnet18 model. When
retraining the model, we set 30 epochs and 0.01 learning rate.

Yfromhttps://www.cs.toronto.edu/~kriz/cifar.html
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D.5 ACTIVE DATA ACQUISITION

In the experiment of active data acquisition, We implemnt our method on Mnist and take it as a small
dataset for evaluation. And we add Guassian white noise to initate a reality sceniario. We choose 100
handwritten digits of [LeCun/ (1998) and add Gaussian white noise on 50 of them. We use another
100 digits to calculate the training data values and 1000 points as a held-out dataset to evaluate the
performance. After normalizing these values, we use a random forest model to predict the values of
new data and add high value data part by part to the training set to evaluate the meaning of these data.
We use a random forest model to implement the evaluation. Besides, we use the same settings on
TMC-Shapley and Leave-One-Out to compare the accuracy of the model.

On the other hands, as to Tiny ImageNet dataset, we separate the training set into two parts with
5000 training points and 95000 new points. We calculate values of 2500 data points by the other
2500 points from training set. We use the saimilar settings in[D.4]to train a pretrained resnet18. After
normalizing these values, we train a random forest model by these data values and predict the values
of new data. Then we evaluate the new training set with adding new data points on resnet18 model.

D.6 DOMAIN ADAPTATION

In the section, we use three dataset to implement K NN Shapley method including MNIST, USPS and
SVHN. We use the same setting from |Ghorbani & Zou|(2019). As to the adaptation between MNIST
and USPS, we train a multinomial logistic regression classifier and then randomly respectively sample
1000 digits as training set and testing set. After removing the data which values are below zero, we
input the remained data to train the same model resulting in a better accuracy comparing to TMC-
Shapley. For adaptation between SVHN and MNIST, we also train a ResNet18 model with 15 epochs
and 0.001 learning rate from |He et al.| (2016) on SVHN since the multinomial logistic regression
classifier is too simple and our method is able to implement on a scalable dataset while TMC-Shapley
algorithm cannot. We pick 2000 training data from SVHN and evaluate the performance on the whole
test set of MNIST.
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