
Under review as a conference paper at ICLR 2020

SGD WITH HARDNESS WEIGHTED SAMPLING FOR
DISTRIBUTIONALLY ROBUST DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributionally Robust Optimization (DRO) has been proposed as an alternative
to Empirical Risk Minimization (ERM) in order to account for potential biases in
the training data distribution. However, its use in deep learning has been severely
restricted due to the relative inefficiency of the optimizers available for DRO in
comparison to the wide-spread Stochastic Gradient Descent (SGD) based opti-
mizers for deep learning with ERM. In this work, we demonstrate that SGD with
hardness weighted sampling is a principled and efficient optimization method for
DRO in machine learning and is particularly suited in the context of deep learn-
ing. Similar to a hard example mining strategy in essence and in practice, the
proposed algorithm is straightforward to implement and computationally as effi-
cient as SGD-based optimizers used for deep learning. It only requires adding a
softmax layer and maintaining an history of the loss values for each training exam-
ple to compute adaptive sampling probabilities. In contrast to typical ad hoc hard
mining approaches, and exploiting recent theoretical results in deep learning opti-
mization, we prove the convergence of our DRO algorithm for over-parameterized
deep learning networks with ReLU activation and finite number of layers and pa-
rameters. Preliminary results demonstrate the feasibility and usefulness of our
approach.

1 INTRODUCTION

In standard deep learning pipelines, a neural network h with parameters θ is trained by minimizing
the mean of a per-example loss L over a training dataset {(xi, yi)}

n
i=1. This corresponds to the

empirical risk minimization optimization problem

arg min
θ

1

n

n∑
i=1

L (h(xi;θ), yi) (1)

Since the empirical risk is equal to the expectation of the per-example loss over the empirical training
data distribution, an approximate solution of (1) can be obtained efficiently by Stochastic Gradient
Descent (SGD) with a uniform sampling over the training data (Bottou et al., 2018).

This approach has led to spectacular results in term of average performance, but may generate out-
liers with high loss values compared to the average loss. Such cases can even be observed for
elements belonging to the training data set. This is because approximate solutions obtained by SGD
are prone to ignore a few hard examples in order to obtain a low mean per-example loss.

Far from being only of academic interest, outlier results have, for example, been consistently re-
ported in the context of deep learning for brain tumor segmentation, as illustrated in the recent
annual BRATS challenges (Bakas et al., 2018). For safety-critical systems, such as those used in
healthcare, where outliers must be avoided, this is not satisfactory.

Efficient biased sampling methods, including hard example mining (Shrivastava et al., 2016;
Loshchilov & Hutter, 2015; Chang et al., 2017) and weighted sampling (Bouchard et al., 2015;
Berger et al., 2018; Gibson et al., 2018), have been proposed to mitigate this issue. However, even
though these works typically start from an Empirical Risk Minimization formulation, it is not clear
how those heuristics actually relate to Empirical Risk Minimization in theory.

1

Under review as a conference paper at ICLR 2020

Distributionally Robust Optimization (DRO) is an alternative to Empirical Risk Minimization (1)
that takes into account uncertainty in the empirical data distribution. The deep neural network h
is now trained by accounting for potential deviations from the empirical training data distribution.
Formally, DRO corresponds to the min-max non-convex-concave optimization problem

arg min
θ

max
q

(
n∑
i=1

qi L (h(xi;θ), yi)−
1

β

n∑
i=1

1

n
φ (nqi)

)
(2)

where φ is a convex function that defines a φ-divergence (Csiszár et al., 2004), q = (qi)
n
i=1 corre-

sponds to arbitrary weighted sampling distributions over the training data, and β > 0 is a robustness
parameter. Instead of minimizing the mean per-example loss on the training set, DRO seeks the
hardest weighted empirical training data distribution around the (uniform) empirical training data
distribution. This suggests a link between DRO and hard example mining.

The parameter β allows DRO to interpolate between ERM (β ← 0) and the minimization of max-
imum per-example loss (β ← +∞). Motivations for using the minimization of maximum per-
example loss for safety-critical applications has been discussed in (Shalev-Shwartz & Wexler, 2016).

DRO as a generalization of empirical risk minimization for machine learning has been studied in
(Duchi et al., 2016; Rafique et al., 2018; Namkoong & Duchi, 2016; Chouzenoux et al., 2019), but
still lacks optmization method as efficient as SGD in the non-convex setting of deep learning.

If one could solve the max problem in (2) for a given θ, DRO could be addressed by alternating
between this max problem and a minimisation scheme akin to the standard Empirical Risk Min-
imization (1), but over an adaptively weighted empirical distribution. However, solving the max
problem naively would require performing a forward pass over the entire training dataset. This
can not be done at each iteration efficiently for large dataset. Previously proposed optimization
methods for large-scale non-convex-concave problem of the form of (2) are based on the min-max
structure of the problem, and consist in alternating between approximate maximization and mini-
mization steps (Rafique et al., 2018; Lin et al., 2019; Jin et al., 2019). However, they differ from
SGD methods for Empirical Risk Minimization by the introduction of additional hyperparameters
for the optimizer such as a second learning rate and a ratio between the number of minimization
and maximization steps. As a result, those alternate optimization methods are difficult to use as a
replacement of Empirical Risk Minimization in practice.

In addition, from a practical perspective, those min-max methods do not use the link between DRO
and adaptive weighted sampling, therefore departing from efficient heuristics used in hard example
mining. From a theoretical perspective, they further make the assumption that the model is either
smooth or weakly-convex, but none of those properties are true for the deep neural networks with
ReLU activation that are largely used in practice.

In this work, we propose SGD with hardness weighted sampling, a novel, principled optimiza-
tion method for training deep neural networks with Distributionally Robust Optimization inspired
by hard example mining. Compared to SGD, our method only requires introducing an additional
softmax layer and maintaining an history of the stale per-example loss to compute sampling proba-
bilities over the training data. Since the loss is already computed at each iteration for SGD, our SGD
with hardness weighted sampling is computationally as efficient as SGD methods for Empirical Risk
Minimization. In practice, we show that our method performs favorably to SGD in the case of class
imbalance despite using hyperparameters previously tuned for SGD.

We also formally link DRO in our method with hard example mining. As a result our method can
be seen as a principled hard example mining approach. In this context, the robustness parameter β
controls the trade-off between exploitation and exploration in the hard example mining process.

Last but not least, we generalize recent results in the convergence theory of SGD with ERM and
over-parameterized deep learning networks with ReLU activation (Allen-Zhu et al., 2019; 2018;
Cao & Gu, 2019; Zou & Gu, 2019) to our SGD with hardness weighted sampling for DRO. This
is, to the best of our knowledge, the first convergence result for deep learning network with ReLU
trained with DRO.

2

Under review as a conference paper at ICLR 2020

2 RELATED WORK IN DRO WITH A WASSERSTEIN DISTANCE

In this work, we focus on DRO with a φ-divergence (Csiszár et al., 2004). In this case, the data
distributions that are considered in the DRO problem (2) are restricted to sharing the support of the
empirical training distribution. In other words the weights assigned to the training data can change,
but the training data itself remains unchanged.

Another popular formulation for DRO is DRO with a Wasserstein distance (Sinha et al., 2017;
Duchi et al., 2016; Staib & Jegelka, 2017; Chouzenoux et al., 2019). In contrast to DRO with a
φ-divergence, using a Wasserstein distance in DRO seeks to apply small data augmentation to the
training data to make the deep learning model robust to small deformation of the data, but the sam-
pling weights of the training data distribution typically remains unchanged. In this sense, DRO with
a φ-divergence and DRO with a Wasserstein distance can be considered as orthogonal endeavours.

While we show that DRO with φ-divergence can be seen as a principled hard example mining
method, it has been shown that DRO with a Wasserstein distance can be seen as a principled ad-
versarial training method (Sinha et al., 2017; Staib & Jegelka, 2017).

Contrary to our SGD with hardness weighted sampling, the optimization methods of (Sinha et al.,
2017; Staib & Jegelka, 2017) exploit alternate minimization maximization strategies that are orders
of magnitude slower than SGD even for deep neural networks with smooth activation functions. In
addition, the method of (Sinha et al., 2017) is NP-hard in the case of deep neural networks with
ReLU activation functions.

3 MACHINE LEARNING WITH DISTRIBUTIONALLY ROBUST OPTIMISATION
AND φ-DIVERGENCE

In machine learning based on Empirical Risk Minimization (ERM), a predictor h is trained using
a training dataset {(xi,yi)}ni=1 to perform well on average on a task for which the performance is
measured on a per-example basis by a smooth criteria L. Note that parameter regularization terms
can easily be embedded in L since they are independent of the example. For ease of presentation, we
focus on the supervised machine learning setting ,where h : x 7→ y, and omit explicitly mentioning
any parameter regularisation term.

Let ∆n ⊂ Rn be the set of empirical weighted training data distribution defined according to a given
training dataset

∆n =

{
p = (pi)

n
i=1 ∈ [0, 1]n,

∑
i

pi = 1

}
(3)

and let p̂data be the corresponding uniform empirical training data distribution. In other words, ∆n

corresponds to all sampling weights that can be applied to the training dataset.

Let θ be the set of parameters of the predictor h(. ;θ) : x 7→ y we want to train. We assume L is a
smooth and potentially non-convex function, and let h : θ 7→ (h(xi;θ))

n
i=1 be the vector of inferred

outputs from the training data. By abuse of notation, we denote L(h(θ)) = (L(h(xi;θ),yi))
n
i=1.

Definition 3.1 (Mean Loss).

M(L(h(θ))) = Ep̂data
[L (h(x;θ),y)] =

1

n

n∑
i=1

L (h(xi;θ),yi) (4)

The ERM predictor, as used in most learning settings, is obtained by minimizing the mean loss (4).

Definition 3.2 (Empirical Risk Minimization (ERM) predictor).

θ̃ = arg min
θ

M(L(h(θ))) (5)

However, p̂data is typically biased compared to the true data distribution. Predictors trained with
ERM are prone to fail on new examples that are not well represented in the training data.

3

Under review as a conference paper at ICLR 2020

Distributionally Robust Optimization (DRO) is an alternative to ERM that mitigates this issue by
encouraging robustness to uncertainty in the empirical training data distribution. DRO, in its sim-
plest form, is based on the notion of φ-divergence that we use to induce robustness with respect to
all the empirical distributions ∆n of the training dataset.
Definition 3.3 (φ-Divergence). Let φ : R+ → R ∪ {+∞} be a closed, convex, lower semi-
continuous function such that ∀z ∈ R, φ(z) ≥ φ(1) = 0. The φ-Divergence Dφ is defined as,
for all p = (pi)

n
i=1, q = (qi)

n
i=1 ∈ ∆n

Dφ (q‖p) =

n∑
i=1

piφ

(
qi
pi

)
(6)

Example 3.1. For φ : z 7→ z log(z), Dφ is the Kullback-Leibler (KL) divergence:

Dφ(q‖p) = DKL(q‖p) =

n∑
i=1

qi log

(
qi
pi

)
(7)

And, for φ : z 7→ (z − 1)2, Dφ is the Pearson χ2 divergence:

Dφ(q‖p) = χ2(q‖p) =

n∑
i=1

(qi − pi)2

pi
(8)

Definition 3.4 (Distributionally Robust Loss).

R(L(h(θ))) = max
q∈∆n

Eq [L (h(x;θ),y)]− 1

β
Dφ(q‖p̂data)

= max
q∈∆n

∑
i

qi L (h(xi;θ),yi)−
1

nβ

∑
i

φ (nqi)
(9)

where β > 0 is a hyperparameter that controls the amount of robustness.

For a given φ-divergence, we define the DRO predictor, that is obtained by minimizing the distribu-
tionally robust loss (9) instead of the mean loss (4).
Definition 3.5 (Distributionally Robust Optimization (DRO) predictor).

θ̃ = arg min
θ

R(L(h(θ))) (10)

It is worth noting that DRO interpolates between ERM as β −→ 0 and the minimization of the
maximum loss as β −→ ∞, and is equivalent to a mean-variance trade-off for β small (Gotoh et al.,
2018).

max
q∈∆n

(
Eq [L(h (x;θ) , y)]− 1

β
Dφ(q‖p̂data)

)
= Ep̂data [L(h (x;θ) , y)]

+
β

2φ′′(1)
Vp̂data [L(h (x;θ) ,y)] + o(β)

max
q∈∆n

(
Eq [L(h (x;θ) , y)]− 1

β
Dφ(q‖p̂data)

)
−−−−−→
β−→+∞

max
i
L(h (xi;θ) , yi)

(11)

where Vp̂data
is the empirical variance. In addition, we can see that when β is small, DRO results

in optimizing the bias-variance tradeoff. This result is due to (Gotoh et al., 2018, Theorem 3.2).
Furthermore, we observe that the distributionally robust loss (9) is an upper bound to the mean loss
(4) (independently to the choice of φ and β), i.e. for all φ-divergence and all β > 0

∀θ, M(L(h(θ))) ≤ R(L(h(θ))) (12)

We now make assumptions for the φ-divergence to simplify the derivations in the remainder of the
paper. Let Dφ be a φ-Divergence, and c ∈ R, one can note that for φc : z 7→ φ(z) + c (1− z), we
have Dφc = Dφ. As a result, if φ is differentiable in 1, we can assume without loss of generality
that φ′(1) = 0.

4

Under review as a conference paper at ICLR 2020

Assumption 3.1 (Regularity of φ). φ : R+ → R is two times continuously differentiable on [0, n],
ρ-strongly convex, for ρ > 0, i.e.:

∀z, z′ ∈ [0, n], φ(z′) ≥ φ(z) + φ′(z)(z′ − z) +
ρ

2
(z − z′)2

and φ satisfies: {∀z ∈ R, φ(z) ≥ φ(1) = 0

φ′(1) = 0

These assumptions are verified by most of the φ-divergence used in practice (e.g. the KL divergence
and Pearson χ2 divergence).

4 SGD WITH HARDNESS WEIGHTED SAMPLING

4.1 DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH SGD AND ADAPTIVE SAMPLING

Existing optimization methods for DRO with a non-convex predictor h alternate between approxi-
mate minimization and maximization steps (Rafique et al., 2018; Jin et al., 2019; Lin et al., 2019),
requiring the introduction of additional hyperparameters compared to SGD. These are difficult to
tune in practice and convergence has not been proven for deep networks with ReLU activations.

In this section, we highlight properties that allows to link Distributionally Robust Optimization with
SGD combined with adaptive sampling. Our analysis relies mainly on Fenchel duality (Moreau,
1965) and the notion of Fenchel conjugate (Fenchel, 1949) that we now define.
Definition 4.1 (Fenchel Conjugate Function). Let f : Rm → R ∪ {+∞} a proper function. The
Fenchel conjugate of f is defined as ∀v ∈ Rm, f∗(v) = maxx∈Rm〈v,x〉 − f(x)

Let
∀p ∈ Rn, G(p) =

1

β
Dφ(p‖ptrain) + δ∆n(p) (13)

where δ∆n
is the characteristic function of the closed convex set ∆n, i.e.

∀p ∈ Rn, δ∆n
(p) =

{
0 if p ∈ ∆n

+∞ otherwise (14)

One can remark that the distributionally robust loss R (9) can be rewritten using the Fenchel conju-
gate function of G. This allows to obtain regularity properties for R.
Lemma 4.1 (Regularity of R). If φ satisfies Assumption 3.1, then G and R satisfy the following:

G is
(
nρ

β

)
-strongly convex (15)

∀θ, R(L(h(θ))) = max
q∈Rn

(〈L(h(θ)), q〉 −G(q)) = G∗ (L(h(θ))) (16)

R is
(
β

nρ

)
-gradient Lipschitz continuous. (17)

Equation (16) follows from Definition 4.1. The proof of (15) and (17) is found in Appendix C.2.

According to (15), the optimization problem (16) is strictly convex and admit a unique solution in
∆n. Let us denote this solution

p̄(L(h(θ))) := arg max
q∈Rn

(〈L(h(θ)), q〉 −G(q)) (18)

The following lemma shows that the gradient, with respect to θ, of the distributionally robust loss (9)
at a given θ can be rewritten as the expectation, with respect to the weighted empirical distribution
p̄(L(h(θ))), of the per-example loss gradient. We further show that straightforward analytical for-
mulas exist for p̄ when relying on classical φ-divergences. This result motivates our Algorithm 4.1
for efficient training with the distributionally robust loss.

5

Under review as a conference paper at ICLR 2020

Lemma 4.2 (Stochastic Gradient of the Distributionally Robust Loss). For all θ, we have

p̄(L(h(θ))) = ∇vR(L(h(θ)))

∇θ(R ◦ L ◦ h)(θ) = Ep̄(L(h(θ))) [∇θ L (h(x;θ), y)]
(19)

where∇vR is the gradient of R with respect to its input.

The proof is found in Appendix C.3. It is apparent from (19) that, given p̄, an estimate of∇θR could
easily be provided by sampling a batch according to p̄ and estimating the per-example loss gradients
in the batch as per standard practice. We now provided closed-form formulas for p̄ given L(h(θ)).
Example 4.1. For the KL divergence (i.e. φ : z 7→ z log(z)− z + 1), we have (see C.1 for a proof)

p̄(L(h(θ))) = softmax (β L(h(θ))) (20)

And for the Pearson χ2 divergence (i.e. φ : z 7→ (z − 1)
2), we have:

∀i, p̄i(L(h(θ))) = ReLU

 1

n

1 +
β

2

L(h(θ))i −
1

n

n∑
j=1

L(h(θ))j

 (21)

In both cases, we can verify consistency with (11) as

∀i ∈ {1, . . . , n}, p̄i(L(h(θ))) −−−→
β−→0

1

n
(22)

Algorithm 1 SGD-HWS: SGD with Hardness Weighted Sampling for Kullback-Leibler DRO
1: Input: Training data {(xi, yi)}ni=1, number of epochs T > 1, robustness parameter β > 0,

learning rate η > 0, batch size b ∈ {1, . . . , n}.
2: Initialization:
3: Initialise θ randomly
4: Initialise the loss history L̃ = −1
5: Warm start:
6: // Split the training data into batches B and run 1 epoch with classic SGD
7: for {(xi, yi)}i∈I in B do
8: // Run forward pass and store losses for all the samples in the batch
9: for i ∈ I do

10: L̃i ← L(h(xi;θ), yi)

11: // Run backward pass and update the parameters of the model
12: θ ← θ − η 1

b

∑
i∈I ∇θ L(h(xi;θ), yi)

13: SGD with dynamic hardness weighted sampling:
14: for epoch = 2, . . . , T do
15: for iteration i = 1, . . . ,

(⌊n
b

⌋
+ 1
)

do
16: // Run softmax to update the sampling probabilities of the samples
17: p̂ = softmax(βL̃)
18: // Draw a batch with replacement using the probability distribution p̂
19: {(xi, yi)}i∈I such that I i.i.d.∼ p̃ and |I| = b
20: // Run forward pass and update losses for all the samples in the batch
21: for i ∈ I do
22: L̃i ← L(h(xi;θ), yi)

23: // Run backward pass and update the parameters of the model
24: θ ← θ − η 1

b

∑
i∈I ∇θ L(h(xi;θ), yi)

25: Output: θ

4.2 EFFICIENT ALGORITHM FOR DISTRIBUTIONALLY ROBUST DEEP LEARNING

The second equality in (19) implies that ∇θ L(hi(θ),yi) is an unbiased estimator of the distribu-
tionally robust loss R (L(h(θ))) when i is sampled with respect to p̄(L(h(θ))). This suggests that

6

Under review as a conference paper at ICLR 2020

the Distributionally robust loss can be minimized efficiently by Stochastic Gradient Descent by sam-
pling mini-batches with respect to p̄(L(h(θ))) at each iteration. However, even though closed-form
formulas were provided for p̄, evaluating exactly L(h(θ)), i.e. doing one forward pass on the whole
training set at each iteration, is computationally prohibitive for large dataset.

In practice, we propose to use a stale version of L(h(θ)) by maintaining online a history of the loss
values of the training examples during training

(
L(h(xi;θ

(ti)),yi)
)
. Where for all i, ti is the last

iteration at which the per-example loss of example i has been computed. Using the the Kullback-
Leibler divergence as φ-divergence, this leads to the Stochastic Gradient Descent with KL hardness
weighted sampling algorithm proposed in Algorithm 4.1.

In contrast to alternate min-max optimization methods, our SGD with a adaptive sampling strategy
is similar to the SGD-based optimizers used by the vast majority of deep learning practitioners (e.g.
SGD, SGD with momentum, ADAM). Compared to standard SGD-based training optimizers for the
mean loss, our algorithm requires only an additional softmax operation per iteration and to store an
additional vector of size n (number of training examples), thereby making it ideally suited for deeep
learning applications.

4.3 DRO AS PRINCIPLED HARD EXAMPLE MINING

In this section, we discuss the relationship between DRO and hard example mining. SGD with an
ad hoc adaptive sampling strategy is already used in practice while starting from a mean loss opti-
mization formulation in the hard example mining literature (Loshchilov & Hutter, 2015; Shrivastava
et al., 2016). Similarly to our algorithm, in hard example mining heuristics, the hard examples,
those training examples with high values of the loss are sampled more often. We formalize this in
the following definition for hard example mining sampling strategies.
Definition 4.2 (Hard Example Mining Sampling). Any adaptive sampling method such that the
probability pi of sampling example xi is an non-decreasing function of the (potentially stale) loss
value associated with xi.
Theorem 4.1. The proposed hardness weighted sampling is a hard example mining sampling for
any φ-Divergence that satisfies Assumption 3.1. In addition, the probability pi of sampling example
xi is an non-increasing function of the loss value associated with xj for all j 6= i.

See Appendix C.4 for the proof. The second part of Theorem 4.1 implies that as the loss of an
example diminishes, the sampling probabilities of all the other examples increase. As a result,
Distributionally Robust Optimization balances exploration and exploitation.

5 CONVERGENCE OF SGD WITH HARDNESS WEIGHTED SAMPLING FOR
OVER-PARAMETERIZED DEEP NEURAL NETWORKS WITH ReLU

Convergence results for over-parameterized deep learning has recently been proposed in (Allen-
Zhu et al., 2019). It gives convergence guarantees for deep neural networks h with any activation
function (including ReLU), and with any (finite) number of layers L and parameters m, under the
assumption that m is large enough. Although some results suggest that this theory cannot explain
all the properties of deep learning observed in practice (Chizat et al., 2019), at the time of writing,
this is the most realistic setting for which a convergence theory of deep learning exists.

In this section, we demonstrate the first convergence guarantees for deep neural networks with ReLU
trained with DRO. Our analysis is based on the results developed in (Allen-Zhu et al., 2019) which
is a simplified version of (Allen-Zhu et al., 2018). Improving on those theoretical results would
automatically improves our results as well. We focus at providing theoretical tools that could be
used to generalize any convergence result for ERM using SGD to DRO using Algorithm 4.1.

Let us first state our assumptions on the neural network h, and the per-example loss function L.
Assumption 5.1 (Deep Neural Network). In this section, we use the following notations and as-
sumptions similar to (Allen-Zhu et al., 2019):

• h is a fully connected neural network with L + 2 layers, ReLU activation function, and m
nodes in each hidden layers

7

Under review as a conference paper at ICLR 2020

• For all i ∈ {1, . . . , n}, we denote hi : θ 7→ hi(xi;θ) the output d dimensional scores of h
applied to example xi of dimension d.

• θ = (θl)
L+1
l=0 is the set of parameters of the neural network h, where θl is the set of weights

for layer l with θ0 ∈ Rd×m, θL+1 ∈ Rm×d, and θl ∈ Rm×m for any other l.

• (Data separation) It exists δ > 0 such that for all i, j ∈ {1, . . . , n}, if i 6= j, ‖xi − xj‖ ≥ δ.

• We assume m ≥ Ω(d × poly(n,L, δ−1)) for some sufficiently large polynomial poly, and
δ ≥ O

(
1
L

)
. We refer the reader to (Allen-Zhu et al., 2019) for details about poly.

• The parameters θ = (θl)
L+1
l=0 are initialized at random such that:

– [θ0]i,j ∼ N
(
0, 2

m

)
for every (i, j) ∈ {1, . . . ,m} × {1, . . . , d}

– [θl]i,j ∼ N
(
0, 2

m

)
for every (i, j) ∈ {1, . . . ,m}2 and l ∈ {1, . . . , L}

– [θL+1]i,j ∼ N
(
0, 1

d

)
for every (i, j) ∈ {1, . . . , d} × {1, . . . ,m}

Assumption 5.2 (Regularity of L). For all i, Li is a C(∇L)-gradient Lipschitz continous, C(L)-
Lipschitz continous, and bounded (potentially non-convex) function.

We first generalize the converce of SGD in (Allen-Zhu et al., 2019, Theorem 2) to the minimization
of the distributionally robust loss using SGD and an exact hardness weighted sampling (19), i.e.
with an exact non-stale loss history.
Theorem 5.1 (Convergence of Robust SGD with exact Loss History). Let batch size 1 ≤ b ≤
n, and ε > 0. Suppose there exists constants C1, C2, C3 > 0 such that the number of hidden
units satisfies m ≥ C1(dε−1 × poly(n,L, δ−1)), δ ≥

(
C2

L

)
, and the learning rate be ηexact =

C3

(
min

(
1, αn2ρ

βC(L)2+2nρC(∇L)

)
× bδd

poly(n,L)m log2(m)

)
. There exists constants C4, C5 > 0 such

that with probability at least 1 − exp
(
−C4(log2(m))

)
over the randomness of the initialization

and the mini-batches, Robust SGD with exact loss vector finds ‖∇θ(R ◦ f ◦ h)(θ)‖ ≤ ε after T =

C5

(
Ln3

ηexactδε2

)
iterations.

where α = minθ mini p̄i(L(θ)) is lower bound on the sampling probabilities. For the Kullback-
Leibler φ-divergence, and for any φ-divergence satisfying assumption 3.1 with a robustness param-
eter β small enough, we have α > 0. We refer the reader to (Allen-Zhu et al., 2019, Theorem 2) for
the values of the constants C1, C2, C3, C4, C5 and the definitions of the polynoms. Compared to
(Allen-Zhu et al., 2019, Theorem 2) only the learning rate differs. The min(1, .) operation in the
formula for ηexact allows to guarantee that ηexact ≤ η′ where η′ is the learning rate of in (Allen-Zhu
et al., 2019, Theorem 2). The proof can be found in Appendix C.6.3.

It is worth noting that for the KL φ-divergence, ρ = 1
n . In addition, in the limit β → 0, which

corresponds to ERM, we have α → 1
n . As a result, we recover exactly Theorem 2 of (Allen-

Zhu et al., 2019) as extended in their Appendix A for any L that satisfies assumption 5.2 with
C(∇L) = 1.

When the amount of distributionally robustness increases the sampling differs more and more from
the uniform sampling and becomes more sensitive to changes of the loss distribution. One way to
mitigate this issue is to reduce the learning rate. The conditions of Theorem 5.1 are consistent with
this observation since when β increases, α and ηexact decreases.

In practice in algorithm 4.1, we have access only to a stale loss history. We know restate the conver-
gence of Robust SGD with a stale loss history and a warm-up as in Algorithm 4.1.
Theorem 5.2 (Convergence of Robust SGD with Stale Loss History and warm-up). Let batch size
1 ≤ b ≤ n, and ε > 0. Under the conditions of Theorem 5.1, the same notations, and with the

learning rate ηstale = C6 min

(
1,

αρd3/2δb log(1
1−α)

βC(L)A(∇L)Lm3/2n3/2 log2(m)

)
× ηexact for a constant C6 > 0.

With probability at least 1 − exp
(
−C4(log2(m))

)
over the randomness of the initialization and

the mini-batches, Robust SGD with exact loss vector finds ‖∇θ(R ◦ f ◦ h)(θ)‖ ≤ ε after T =

C5

(
Ln3

ηstaleδε2

)
iterations.

8

Under review as a conference paper at ICLR 2020

Figure 1: Comparison of learning curves for ERM with SGD (blue) and DRO with our SGD with
hardness weighted sampling (orange: β = 0.1, green: β = 0.3) on CIFAR10. The models are
trained on an imbalanced CIFAR10 dataset (only 10% of the cats kept in the training dataset) and
evaluated on the original CIFAR10 testing dataset.

Where C(L) > 0 is a constant such that L is C(L)-Lipschitz continuous, and A(∇L) > 0 is a
constant that bound the gradient of L with respect to its input. C(L) and A(∇L) are guaranteed to
exist under assumptions 5.1. The proof can be found in Appendix C.7.

Compared to Theorem 5.1 only the learning rate differs. Similarly to Theorem 5.1, when β tends to
zero we recover Theorem 2 of (Allen-Zhu et al., 2019).

It is worth noting that when β increases,
αρd3/2δb log(1

1−α)
βC(L)A(∇L)Lm3/2n3/2 log2(m)

decreases. This implies that
ηstale decreases faster than ηexact when β increases. This was to be expected since the error that is
made by using the stale loss history instead of the exact loss increases when β increases.

6 EXPERIMENTS

We now illustrate the properties of our SGD with hardness weighted sampling described in Algo-
rithm 4.1 for training deep neural networks with ReLU activation functions with DRO (10).

6.1 EXPERIMENTS ON MNIST

We create a bias between training and testing data distribution of MNIST (LeCun, 1998) by keep-
ing only 1% of the digits 3 in the training dataset, while the testing dataset remains unchanged.
Implementation details can be found in Appendix A.1.

The learning curves in figure 2 of Appendix A.1, computed using the original testing MNIST dataset,
shows that our method outperforms ERM for a large range of values.

Furthermore, the variations of learning curves with β are consistent with our theoretical insight in
Theorem 5.2. As β decreases to 0, the learning curves of DRO with our method converges to the
learning curve of ERM with SGD. For large value of β the learning curve becomes instable. This
is because we use the same learning rate for all our experiments, but according to Theorem 5.2, the
learning rate should be reduced as β increases.

6.2 EXPERIMENTS ON CIFAR10

We now show that our method for training deep neural network with DRO is not only more robust
to bias in the training dataset, but can also be used with a higher learning rate than ERM.

9

Under review as a conference paper at ICLR 2020

We create a bias between training and testing data distribution in CIFAR10 (Krizhevsky et al., 2010)
by keeping only 10% of the cats in the CIFAR10 training dataset, while the CIFAR10 testing dataset
remains unchanged.

We used the state-of-the-art WRN-28-10 deep neural network architecture proposed in (Zagoruyko
& Komodakis, 2016). We kept the hyperparameters and data augmentation, except that we used a
higher learning rate equal to 1 (see Appendix A.2 for more details).

The learning curves of figure 1, computed on the CIFAR10 testing dataset, shows that our methods
outperforms the baseline. This suggests that replacing SGD-based optimizer by our Algorithm 4.1
in an existing deep learning pipeline is straightforward, and that our method is robust to the choice
of the learning rate.

7 CONCLUSION AND DISCUSSION

We have shown that efficient training of deep neural networks with Distributionally Robust Opti-
mization (DRO) with a φ-divergence (10) is possible. Our Stochastic Gradient Descent (SGD) with
hardness weighted sampling is a principled hard example mining method. It is as straightforward
to implement, and as computationally efficient as SGD for Empirical Risk Minimization. It can be
used for deep neural networks with any activation function (including ReLU), and with any per-
example loss function. In addition, we prove the convergence of our method for over-parameterized
deep neural networks. This is, to the best of our knowledge, the first convergence result for training
a deep neural network based on DRO.

Our experiments on MNIST illustrate several behaviours that were predicted by our Theorem 5.2.
Our experiments on CIFAR10 illustrates that our SGD with hardness weighted sampling can be used
successfully as a replacement of SGD in a state-of-the-art deep learning pipeline that was tuned for
SGD. In addition, our results on CIFAR10 suggest that our method is more robust than SGD to bias
in the training data distribution and to the choice of the learning rate. The fact that our algorithm can
be used with a higher learning rate than SGD goes beyond the prediction of our theoretical results.
Investigating this advantage is left for future work.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. arXiv preprint arXiv:1810.12065, 2018.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, pp. 242–252, 2019.

Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi,
Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, et al. Identifying
the best machine learning algorithms for brain tumor segmentation, progression assessment, and
overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629, 2018.

Lorenz Berger, Hyde Eoin, M Jorge Cardoso, and Sébastien Ourselin. An adaptive sampling scheme
to efficiently train fully convolutional networks for semantic segmentation. In Annual Conference
on Medical Image Understanding and Analysis, pp. 277–286. Springer, 2018.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Guillaume Bouchard, Théo Trouillon, Julien Perez, and Adrien Gaidon. Online learning to sample.
arXiv preprint arXiv:1506.09016, 2015.

Yuan Cao and Quanquan Gu. A generalization theory of gradient descent for learning over-
parameterized deep relu networks. arXiv preprint arXiv:1902.01384, 2019.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more accu-
rate neural networks by emphasizing high variance samples. In Advances in Neural Information
Processing Systems, pp. 1002–1012, 2017.

10

Under review as a conference paper at ICLR 2020

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
arXiv preprint arXiv:1812.07956, 2019.

Emilie Chouzenoux, Henri Gérard, and Jean-Christophe Pesquet. General risk measures for robust
machine learning. arXiv preprint arXiv:1904.11707, 2019.

Imre Csiszár, Paul C Shields, et al. Information theory and statistics: A tutorial. Foundations and
Trends R© in Communications and Information Theory, 1(4):417–528, 2004.

John Duchi, Peter Glynn, and Hongseok Namkoong. Statistics of robust optimization: A generalized
empirical likelihood approach. arXiv preprint arXiv:1610.03425, 2016.

Werner Fenchel. On conjugate convex functions. Canadian Journal of Mathematics, 1(1):73–77,
1949.

Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I Shakir, Guotai Wang, Zach Eaton-
Rosen, Robert Gray, Tom Doel, Yipeng Hu, et al. Niftynet: a deep-learning platform for medical
imaging. Computer methods and programs in biomedicine, 158:113–122, 2018.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout
networks. arXiv preprint arXiv:1302.4389, 2013.

Jun-ya Gotoh, Michael Jong Kim, and Andrew EB Lim. Robust empirical optimization is almost
the same as mean–variance optimization. Operations research letters, 46(4):448–452, 2018.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization algorithms
I: Fundamentals, volume 305. Springer science & business media, 2013.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Minmax optimization: Stable limit points of
gradient descent ascent are locally optimal. arXiv preprint arXiv:1902.00618, 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www. cs. toronto. edu/kriz/cifar. html, 8, 2010.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Tianyi Lin, Chi Jin, and Michael I Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. arXiv preprint arXiv:1906.00331, 2019.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks.
arXiv preprint arXiv:1511.06343, 2015.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France, 93:273–299, 1965.

Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
optimization with f-divergences. In Advances in Neural Information Processing Systems, pp.
2208–2216, 2016.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Non-convex min-max optimization:
Provable algorithms and applications in machine learning. arXiv preprint arXiv:1810.02060,
2018.

Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why. In ICML,
pp. 793–801, 2016.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 761–769, 2016.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness with
principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning as a generalization of
adversarial training. In NIPS workshop on Machine Learning and Computer Security, 2017.

11

Under review as a conference paper at ICLR 2020

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. arXiv preprint arXiv:1906.04688, 2019.

12

Under review as a conference paper at ICLR 2020

A MORE ON OUR EXPERIMENTS

A.1 EXPERIMENTS ON MNIST

Figure 2: Comparison of learning curves for ERM with SGD (blue) and DRO with our SGD with
hardness weighted sampling for different values of β on MNIST (β = 0.1, β = 0.3, β = 1, β = 3,
β = 10, β = 30). The models are trained on an imbalanced MNIST dataset (only 1% of the digits 3
kept in the training datatset) and evaluated on the original MNIST testing dataset.

A.1.1 IMPLEMENTATION DETAILS

For our experiments on MNIST, we used a Wide Residual Network (WRN) (Zagoruyko & Ko-
modakis, 2016). The familly of WRN models has proved to be very efficient and flexible, achieving
state-of-the-art accuracy on several dataset. More specifically, we used WRN-16-1 (see Zagoruyko
& Komodakis, 2016, section 2.3).

For the optimization we used a learning rate of 0.01. No momentum or weight decay were used. No
data augmentation was used.

A.1.2 COMMENT ON EARLY-STOPPING WITH ERM AND DRO

Figure 2 suggests that if we train ERM long enough it will converge to the same accuracy as DRO.
It is worth noting that we don’t use the knowledge of the training dataset bias in our method. For
a less obvious bias, we would have access only to the global measure of accuracy (in our case the
left panel figure 2). In this situation, with early-stopping we would stop the training of ERM when
it plateaus, i.e. we would obtain a model that achieved in accuracy of 0 on an under-representated
part of the training dataset.

This suggests two things. First, the mean accuracy is not a good criteria to decide when to stop the
training of ERM for safety-critical systems. Second, our SGD with hardness weighted sampling
converge faster than SGD to a safe solution, and is more robust to early-stopping.

A.2 EXPERIMENTS ON CIFAR10

A.3 IMPLEMENTATION DETAILS

For our experiments on the CIFAR10 dataset (Krizhevsky et al., 2010), we used the WideResNet
WRN-28-10 as described in (Zagoruyko & Komodakis, 2016).

We used the same pipeline as in (Zagoruyko & Komodakis, 2016), that we summarized here:

• we used SGD with momentum β1 = 0.9

13

Under review as a conference paper at ICLR 2020

• we trained for 200 epochs and multiply the learning rate by 0.2 at the beginning of epochs
60, 120 and 160

• we used a weight decay of 0.0005

• we used a batch size of 128

• dropout was not used

• we normalized the images with ZCA whitening as in (Goodfellow et al., 2013)

• we used horizontal flip with probability 0.5 and random crops applied to the image after
padded by 4 pixels

The only difference is that we used a larger initial learning rate lr = 1, rather than lr = 0.1
in (Zagoruyko & Komodakis, 2016).

We based our implementation on the code provided by the authors of (Zagoruyko
& Komodakis, 2016) which can be found at https://github.com/szagoruyko/
wide-residual-networks.

B NOTATIONS

For the ease of following the proofs we first summarize our notations.

B.1 PROBABILITY THEORY NOTATIONS

• ∆n = {p = (pi)
n
i=1 ∈ [0, 1]n,

∑
i pi = 1}

• Let q = (qi) ∈ ∆n, and f a function, we denote Eq[f(x)] :=
∑n
i=1 qif(xi).

• Let q ∈ ∆n, and f a function, we denote Vq[f(x)] :=
∑n
i=1 qi ‖f(xi)− Eq[f(x)]‖2.

• p̂data is the uniform training data distribution, i.e. p̂data =
(

1
n

)n
i=1
∈ ∆n

B.2 MACHINE LEARNING NOTATIONS

• n is the number of training examples

• d is the dimension of the output

• d is the dimension of the input

• training data: {(xi, yi)}ni=1, where for all i ∈ {1, . . . , n}, xi ∈ Rd and yi ∈ Rd

• h : x 7→ y is the predictor

• θ is the set of parameters of the predictor

• For all i, hi : θ 7→ h(xi;θ) is the output of the network for example i as a function of θ

• L is the objective function

• Li : hi 7→ L(hi, yi) is the objective function for example i.

• By abuse of notation we also denote by L the function L : (hi)
n
i=1 7→ (Li(hi))ni=1

• b ∈ {1, . . . , n} is the batch size

• η > 0 is the learning rate

• EMR is short for Empirical Risk Minimization

B.3 DISTRIBUTIONALLY ROBUST OPTIMISATION NOTATIONS

• DRO is short for Distributionally Robust Optimisation

14

https://github.com/szagoruyko/wide-residual-networks
https://github.com/szagoruyko/wide-residual-networks

Under review as a conference paper at ICLR 2020

B.4 MISCELLANEOUS

• By abuse of notation, and similarly to (Allen-Zhu et al., 2019), we use the Bachmann-
Landau notations to hide constants that do not depend on our main hyper-parameters. Let
f and g be two scalars, we note:{

f ≤ O(g) ⇐⇒ ∃c > 0 s.t. f ≤ cg
f ≥ Ω(g) ⇐⇒ ∃c > 0 s.t. f ≥ cg
f = Θ(g) ⇐⇒ ∃c1 > 0 and ∃c2 > c1 s.t. c1g ≤ f ≤ c2g

C PROOFS

C.1 PROOF OF EXAMPLE 4.1: FORMULA OF THE SAMPLING PROBABILITIES FOR THE KL
DIVERGENCE

We give here a simple proof of the formula of the sampling probabilities for the KL divergence as
φ-divergence (i.e. φ : z 7→ z log(z)− z + 1)

∀θ, p̄(L(h(θ))) = softmax (β L(h(θ)))

For any θ, the distributionally robust loss (9) for the KL divergence at θ is given by

R ◦ L ◦ h(θ) = max
q∈∆n

(
n∑
i=1

qi L
i
◦ hi(θ)− 1

β

n∑
i=1

qi log (nqi)

)

= max
q∈∆n

n∑
i=1

(
qi L

i
◦ hi(θ)− 1

β
qi log (nqi)

)
To simplify the notations, let us denote v = (vi)

n
i=1 = L◦ h(θ) = (Li ◦ hi(θ))

n
i=1, and p̄ =

(p̄i)
n
i=1 = p̄(L(h(θ))).

Thus p̄(L(h(θ))) is, by definition, solution of the optimization problem

arg max
q∈∆n

n∑
i=1

(
qivi −

1

β
qi log (nqi)

)
(23)

First, let us remark that the function q 7→
∑n
i=1 qi log (nqi) is strictly convex on the non empty

closed convex set ∆n as a sum of strictly convex functions. This implies that the optimization (23)
has a unique solution and as a result p̄(L(h(θ))) is well defined.

We know reformulate the optimization problem (23) as a convex smooth constrained optimization
problem by writing the condition q ∈ ∆n as constraints.

arg max
q∈Rn+

n∑
i=1

(
qivi −

1

β
qi log (nqi)

)

s.t.
n∑
i=1

qi = 1

(24)

There exists a Lagrange multiplier λ ∈ R, such that the solution p̄ of (24) is characterized by

∀i ∈ {1, . . . , n}, vi −
1

β
(log (np̄i) + 1) + λ = 0

n∑
i=1

p̄i = 1
(25)

Which we can rewrite as

∀i ∈ {1, . . . , n}, p̄i =
1

n
exp (β (vi + λ)− 1)

1

n

n∑
i=1

exp (β (vi + λ)− 1) = 1
(26)

15

Under review as a conference paper at ICLR 2020

The last equality gives
exp (βλ− 1) =

n∑n
i=1 exp (βvi)

And by replacing in the formula of the p̄i

∀i ∈ {1, . . . , n}, p̄i =
1

n
exp (βvi) exp (βλ− 1)

=
exp (βvi)∑n
j=1 exp (βvj)

Which corresponds exactly to
p̄ = softmax (βv)

C.2 PROOF OF LEMMA 4.1: REGULARITY PROPERTIES OF R

For the ease of reading, let us first recall that given a φ-Divergence that satisfies assumptions 3.1,
we have defined in (9)

R : Rn → R

v 7→ max
q∈∆n

∑
i

qivi −
1

β
Dφ(q‖ptrain)

(27)

And in (13)
G : Rn → R

p 7→ 1

β
Dφ(p‖ptrain) + δ∆n(p)

(28)

where δ∆n is the characteristic function of the closed convex set ∆n, i.e.

∀p ∈ Rn, δ∆n
(p) =

{
0 if p ∈ ∆n

+∞ otherwise (29)

We now prove Lemma 4.1 on the regularity of R.

Lemma C.1 (Regularity of R – Restated from Lemma 4.1). Let φ that satisfies Assumption 3.1, G
and R satisfy

G is
(
nρ

β

)
-strongly convex (30)

R(L(h(θ))) = max
q∈Rn

(〈L(h(θ)), q〉 −G(q)) = G∗ (L(h(θ))) (31)

R is
(
β

nρ

)
-gradient Lipschitz continuous. (32)

φ is ρ-strongly convex on [0, n] so

∀x, y ∈ [0, n]2,∀λ ∈ [0, 1], φ (λx+ (1− λ)y) ≤ λφ(x) + (1−λ)φ(y)− ρλ(1− λ)

2
|y−x|2 (33)

Let p = (pi)
n
i=1, q = (qi)

n
i=1 ∈ ∆n, and λ ∈ [0, 1], using (33) and the convexity of δ∆n

, we obtain:

G (λp+ (1− λ)q) =
1

βn

n∑
i=1

φ (nλpi + n(1− λ)qi) + δ∆n (λp+ (1− λ)q)

≤ λG(p) + (1− λ)G(q)− 1

βn

n∑
i=1

ρλ(1− λ)

2
|nqi − npi|2

≤ λG(p) + (1− λ)G(q)− nρ

β

λ(1− λ)

2
‖q − p‖2

(34)

This proves that G is nρ
β -strongly convex.

16

Under review as a conference paper at ICLR 2020

Since G is convex, R = G∗ is also convex, and R∗ = (G∗)
∗

= G (Hiriart-Urruty & Lemaréchal,
2013).

We obtain (31) using Definition 4.1.

We now show that R is Frechet differentiable on Rn. Let v ∈ Rn.

G is strongly-convex, so in particular G is strictly convex. This implies that the following optimiza-
tion problem has a unique solution that we denote p̂(v).

arg max
q∈Rn

(〈v, q〉 −G(q)) (35)

In addition
p̂ ∈ ∆n solution of (35) ⇐⇒ 0 ∈ v − ∂G(p̂)

⇐⇒ v ∈ ∂G(p̂)

⇐⇒ p̂ ∈ ∂G∗(v)

⇐⇒ p̂ ∈ ∂R(v)

where we have used (Hiriart-Urruty & Lemaréchal, 2013, Proposition 6.1.2 p.39) for the third equiv-
alence, and (31) for the last equivalence.

As a result, ∂R(v) = {p̂(v)}. this implies that R admit a gradient at v, and

∇vR(v) = p̂(v) (36)

Since this holds for any v ∈ Rn, we deduce that R is Frechet differentiable on Rn.

We are now ready to show that R is β
nρ -gradient Lipchitz continuous by using the following lemma

(Hiriart-Urruty & Lemaréchal, 2013, Theorem 6.1.2 p.280).

Lemma C.2. A necessary and sufficient condition for a convex function f : Rn → R to be c-
strongly convex on a convex set C is that for all x1, x2 ∈ C

〈s2 − s1, x2 − x1〉 ≥ c ‖x2 − x1‖2 for all si ∈ ∂f(xi), i = 1, 2.

Using this lemma for f = G, c = nρ
β , and C = ∆n, we obtain:

For all p1, p2 ∈ ∆n, for all v1 ∈ ∂G(p1), v2 ∈ ∂G(p2),

〈v2 − v1, p2 − p1〉 ≥
nρ

β
‖p2 − p1‖2

In addition, for i ∈ {1, 2}, vi ∈ ∂G(pi)⇐⇒ pi ∈ ∂R(v1) = {∇vR(vi)}.
And using Cauchy Schwarz inequality

‖v2 − v1‖ ‖p2 − p1‖ ≥ 〈v2 − v1, p2 − p1〉

We conclude that
nρ

β
‖∇vR(v2)−∇vR(v1)‖ ≤ ‖v2 − v1‖

Which implies that R is β
nρ -gradient Lipchitz continuous.

C.3 PROOF OF LEMMA 4.2: FORMULA OF THE DISTRIBUTIONALLY ROBUST LOSS GRADIENT

We prove Lemma 4.2 that we restate here for the ease of reading.

Lemma C.3 (Stochastic Gradient of the Distributionally Robust Loss – Restated from Lemma 4.2).
For all θ, we have

p̄(L(h(θ))) = ∇vR(L(h(θ))) (37)

∇θ(R ◦ L ◦ h)(θ) = Ep̄(L(h(θ))) [∇θ L (h(x;θ), y)] (38)

17

Under review as a conference paper at ICLR 2020

where∇vR is the gradient of R with respect to its input.

For a given θ, equality (37) is a special case of (36) for v = L(h(θ)).

Then using the chain rule and (37),

∇θ(R ◦ L ◦ h)(θ) =

n∑
i=1

∂R

∂vi
(L◦ h(θ)))∇θ(L

i
◦ hi)(θ)

=

n∑
i=1

p̄i(L(h(θ)))∇θ(L
i
◦ hi)(θ)

= Ep̄(L(h(θ))) [∇θ L (h(x;θ), y)]

C.4 PROOF OF THEOREM 4.1: DISTRIBUTIONALLY ROBUST OPTIMIZATION AS PRINCIPLED
HARD EXAMPLE MINING

Let Dφ an φ-divergence satisfying Assumption 3.1, and v = (vi)
n
i=1 ∈ Rn. v will play the role of a

generic loss vector.

φ is strongly convex, and ∆n is closed and convex, so the following optimization problem has one
and only one solution:

max
p=(pi)

n
i=1∈∆n

〈v, p〉 − 1

βn

n∑
i=1

φ(npi) (39)

Making the constraints associated with p ∈ ∆n explicit, this can be rewritten as

max
p=(pi)

n
i=1∈Rn

〈v, p〉 − 1

βn

n∑
i=1

φ(npi)

s.t. ∀i ∈ {1, . . . , n}, pi ≥ 0

s.t.
n∑
i=1

pi = 1

(40)

There exists KKT multipliers λ ∈ R and ∀i, µi ≥ 0 such that the solution p̄ = (p̄i)
n
i=1 satisfies:

∀i ∈ {1, . . . , n}, vi −
1

β
φ′(np̄i) + λ− µi = 0

∀i ∈ {1, . . . , n}, µipi = 0

∀i ∈ {1, . . . , n}, pi ≥ 0
n∑
i=1

p̄i = 1

(41)

Since φ is continuously differentiable and strongly convex, we have (φ′)
−1

= (φ∗)
′, where φ∗ is

the Fenchel conjugate of φ (see Hiriart-Urruty & Lemaréchal, 2013, Proposition 6.1.2). As a result,
(41) can be rewritten has:

∀i ∈ {1, . . . , n}, p̄i =
1

n
(φ∗)

′
(β(vi + λ− µi))

∀i ∈ {1, . . . , n}, µipi = 0

∀i ∈ {1, . . . , n}, pi ≥ 0

1

n

n∑
i=1

(φ∗)
′
(β(vi + λ− µi)) = 1

(42)

We now show that the KKT multipliers are uniquely defined.

18

Under review as a conference paper at ICLR 2020

The µi’s are uniquely defined by v and λ:
Since ∀i ∈ {1, . . . , n}, µipi = 0, pi ≥ 0 and µi ≥ 0, for all ∀i ∈ {1, . . . , n}, either pi = 0 or
µi = 0.

In the case pi = 0, using (42) it comes (φ∗)
′
(β(vi + λ− µi)) = 0.

According to assumption 3.1, φ is strongly convex and continuously differentiable, so φ′ and (φ∗)′ =
(φ′)−1 are continuous and strictly increasing functions. As a result, it exists a unique µi (dependent
to v and λ) such that:

(φ∗)
′
(β(vi + λ− µi)) = 0

And (42) can be rewritten as:
∀i ∈ {1, . . . , n}, p̄i = ReLU

(
1

n
(φ∗)

′
(β(vi + λ))

)
=

1

n
ReLU

(
(φ∗)

′
(β(vi + λ))

)
1

n

n∑
i=1

ReLU
(
(φ∗)

′
(β(vi + λ))

)
= 1

(43)

λ is uniquely defined by v and a continuous function of v:
Let λ ∈ R that satisfies (43).

We have 1
n

∑n
i=1 ReLU

(
(φ∗)

′
(β(vi + λ))

)
= 1. So there exists at least one index i0 such that

ReLU
(
(φ∗)

′
(β(vi0 + λ))

)
= (φ∗)

′
(β(vi0 + λ)) ≥ 1

Since (φ∗)−1 is continuous and striclty increasing, λ′ 7→ ReLU
(
(φ∗)

′
(β(vi0 + λ′))

)
is continuous

and strictly increasing on a neighborhood of λ.

In addition ReLU is continuous and increasing, so for all i ∈ {1, . . . , n}, λ′ 7→
ReLU

(
(φ∗)

′
(β(vi + λ′))

)
is a continuous and increasing function.

As a result, λ′ 7→ 1
n

∑n
i=1 ReLU

(
(φ∗)

′
(β(vi + λ′))

)
is a continous function that is increasing on

R, and strictly increasing on a neighborhood of λ.

This implies that λ is uniquely defined by v, and that v 7→ λ(v) is continuous.

Hard Example Mining Sampling:

For any pseudo loss vector v = (vi)
n
i=1 ∈ Rn, there exists a unique λ and a unique p̄ that satisfies

(43), so we can define the mapping:

p̄ : Rn → ∆n

v 7→ p̄(v;λ(v))
(44)

where for all v, λ(v) is the unique λ ∈ R satisfying (43).

We will now demonstrate that each p̄i0(v) for i0 ∈ {1, . . . , n} is an increasing function of vi and a
decreasing function of the vi for i 6= i0. Without loss of generality we assume i0 = 1.

Let v = (vi)
n
i=1 ∈ Rn, and ε > 0.

Let us define v′ = (v′i)
n
i=1 ∈ Rn, such that v′1 = v1 + ε and ∀i ∈ {2, . . . , n}, v′i = vi.

Similarly as in the proof of the uniqueness of λ above, we can show that there exists η > 0 such that
the function

F : λ′ 7→ 1

n

n∑
i=1

ReLU
(
(φ∗)

′
(β(vi + λ′))

)
is continuous and strictly increasing on [λ(v)− η, λ(v) + η], and F (λ(v)) = 1.

v 7→ λ(v) is continuous, so for ε small enough λ(v′) ∈ [λ(v)− η, λ(v) + η].

Let us now prove by contradiction that λ(v′) ≤ λ(v). Therefore, let us assume that λ(v′) > λ(v).
Then, as ReLU ◦ (φ∗)

′ is an increasing function and F is strictly increasing on [λ(v)− η, λ(v) + η],

19

Under review as a conference paper at ICLR 2020

and ε > 0 we obtain

1 =
1

n

n∑
i=1

ReLU
(
(φ∗)

′
(β(v′i + λ(v′)))

)
≥ 1

n

n∑
i=1

ReLU
(
(φ∗)

′
(β(vi + λ(v′)))

)
≥ F (λ(v′))

> F (λ(v))

> 1

which is a contradiction. As a result
λ(v′) ≤ λ(v) (45)

Using (45), (43), and the fact that ReLU ◦ (φ∗)
′ is an increasing function, we obtain for all i ∈

{2, . . . , n}
p̄i(v

′) =
1

n
ReLU

(
(φ∗)

′
(β(v′i + λ(v′)))

)
=

1

n
ReLU

(
(φ∗)

′
(β(vi + λ(v′)))

)
≤ 1

n
ReLU

(
(φ∗)

′
(β(vi + λ(v)))

)
≤ p̄i(v)

(46)

In addition
n∑
i=1

p̄i(v
′) = 1 =

n∑
i=1

p̄i(v)

So necessarily
p̄1(v′) ≥ p̄1(v) (47)

This holds for any i0 and any v, which concludes the proof.

C.5 PROOF THAT R ◦ L IS ONE-SIDED GRADIENT LIPCHITZ

This property that R ◦ L is one-sided gradient Lipschitz is a key element for the proof of the semi-
smoothness theorem for the distributionally robust loss Theorem C.1.

Under assumption 3.1, we have shown that R∗ is β
nρ -gradient Lipchitz continuous. And under as-

sumption 5.2, for all i, Li is C(L)-Lipschitz continuous and C(∇L)-gradient Lipschitz continuous.

Let z = (zi)
n
i=1, z

′ = (z′i)
n
i=1 ∈ Rdn.

We want to show that R ◦ L is one-sided gradient Lipschitz, i.e. we want to prove the existence of a
constant C > 0, independent to z and z′, such that:

〈∇z(R ◦ L)(z)−∇z(R ◦ L)(z′), z − z′〉 ≤ C ‖z − z′‖2

We have
〈∇z(R ◦ L)(z)−∇z(R ◦ L)(z′), z − z′〉

=

n∑
i=1

〈∇zi(R ◦ L)(z)−∇zi(R ◦ L)(z′), zi − z′i〉

=

n∑
i=1

〈p̄i(L(z))∇zi L
i
(zi)− p̄i(L(z′))∇zi L

i
(z′i), zi − z′i〉

=

n∑
i=1

p̄i(L(z))〈∇zi L
i
(zi)−∇zi L

i
(z′i), zi − z′i〉

+

n∑
i=1

(p̄i(L(z))− p̄i(L(z′))) 〈∇zi L
i
(z′i), zi − z′i〉

(48)

20

Under review as a conference paper at ICLR 2020

Where for all i ∈ {1, . . . , n} we have used the chain rule

∇zi(R ◦ L)(z) =

n∑
j=1

∂R∗

∂vj
(L(z))∇zi L

j
(zj) = p̄i(L(z))∇zi L

i
(zi)

Let

A =

∣∣∣∣∣
n∑
i=1

p̄i(L(z))〈∇zi L
i
(zi)−∇zi L

i
(z′i), zi − z′i〉

∣∣∣∣∣
For all i, Li is C(∇L)-gradient Lipchitz continuous, so using Cauchy-Schwarz inequality

A ≤
n∑
i=1

C(∇L) ‖zi − z′i‖
2

= C(∇L) ‖z − z′‖2 (49)

Let

B =

∣∣∣∣∣
n∑
i=1

(p̄i(L(z))− p̄i(L(z′))) 〈∇zi L
i
(z′i), zi − z′i〉

∣∣∣∣∣
Using the triangular inequality:

B ≤

∣∣∣∣∣
n∑
i=1

(p̄i(L(z))− p̄i(L(z′))) (L
i
(zi)− L

i
(z′i)

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

(p̄i(L(z))− p̄i(L(z′))) (L
i
(z′i) + 〈∇zi L

i
(z′i), zi − z′i〉 − L

i
(zi)

∣∣∣∣∣
≤ 〈∇(R∗)(L(z))−∇(R∗)(L(z′)),L(z)− L(z′)〉

+ 2

n∑
i=1

∣∣∣L
i
(z′i) + 〈∇zi L

i
(z′i), zi − z′i〉 − L

i
(zi)
∣∣∣

≤ β

nρ
‖L(z)− L(z′)‖2 + 2

C(∇L)

2
‖z − z′‖2

≤
(
βC(L)2

nρ
+ C(∇L)

)
‖z − z′‖2

(50)

Combining (48), (49) and (50) we finally obtain:

〈∇z(R ◦ L)(z)−∇z(R ◦ L)(z′), z − z′〉 ≤
(
βC(L)2

nρ
+ 2C(∇L)

)
‖z − z′‖2 (51)

From there, we can obtain the following inequality that will be used for the proof of the semi-
smoothness property in Theorem C.1:

R(L(z′))−R(L(z))− 〈∇z(R ◦ L)(z), z′ − z〉

=

∫ 1

t=0

〈∇z(R ◦ L) (z + t(z′ − z))−∇z(R ◦ L)(z), z′ − z〉dt

≤ 1

2

(
βC(L)2

nρ
+ 2C(∇L)

)
‖z − z′‖2

(52)

C.6 PROOF OF THE CONVERGENCE OF ROBUST SGD

In this part, we prove the results of Therem 5.1 and 5.2.

They are generalizations of the convergence result for SGD presented in Theorem 2 of (Allen-Zhu
et al., 2019).

For the ease of reading the proof, we remind here the chain rules for the distributionally robust loss
(9) that we are going to use intensively in the following proofs.

21

Under review as a conference paper at ICLR 2020

Chain rule for the derivative of R ◦ L with respect to the network outputs h:

∇h(R ◦ L)(h(θ)) = (∇hi(R ◦ L)(h(θ)))
n
i=1

∀i ∈ {1, . . . n}, ∇hi(R ◦ L)(h(θ)) =

n∑
j=1

∂R

∂vj
(L(h(θ)))∇hi L

j
(hj(θ))

= p̄i(L(h(θ)))∇hi L
i
(hi(θ))

(53)

Chain rule for the derivative of R ◦ L ◦h with respect to the network parameters θ:

∇θ(R ◦ L ◦h)(θ) =

n∑
i=1

∇θhi(θ)∇hi(R ◦ L)(h(θ))

=

n∑
i=1

p̄i(L(h(θ)))∇θhi(θ)∇hi L
i
(hi(θ))

=

n∑
i=1

p̄i(L(h(θ))∇θ(L
i
◦hi)(θ))

(54)

where for all i ∈ {1, . . . n}, ∇θhi(θ) is the transpose of the Jacobian matrix of hi as a function of
θ.

C.6.1 SEMI-SMOOTHNESS PROPERTY FOR THE DISTRIBUTIONALLY ROBUST LOSS

We prove the following lemma which is a generalization of Theorem 4 in (Allen-Zhu et al., 2019)
for the distributionally robust loss (9).
Theorem C.1 (Semi-smoothness of the Distributionally Robust Loss).
Let ω ∈

[
Ω
(

d3/2

m3/2L3/2 log3/2(m)

)
, O
(

1
L4.5 log3(m)

)]
, and the θ(0) being initialized randomly as de-

scribed in assumption 5.1. With probability as least 1− exp (−Ω(mω3/2L)) over the initialization,
we have for all θ,θ′ ∈ (Rm×m)

L with
∥∥θ − θ(0)

∥∥
2
≤ ω, and ‖θ − θ′‖2 ≤ ω

R(L(h(θ′)) ≤ R(L(h(θ)) + 〈∇θ(R ◦ L ◦h)(θ),θ′ − θ〉

+ ‖∇h(R ◦ L)(h(θ))‖2,1O

(
L2ω1/3

√
m log(m)√
d

)
‖θ′ − θ‖2,∞

+O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)
‖θ′ − θ‖22,∞

(55)

where for all layer l ∈ {1, . . . , L}, θl is the vector of parameters for layer l, and

‖θ′ − θ‖2,∞ = max
l
‖θ′l − θl‖2

‖θ′ − θ‖22,∞ =

(
max
l
‖θ′l − θl‖

2
2

)2

= max
l
‖θ′l − θl‖

2
2

‖∇h(R ◦ L)(h(θ))‖2,1 =

n∑
i=1

‖∇hi(R ◦ L)(h(θ))‖2

=

n∑
i=1

∥∥∥p̄i(L(h(θ)))∇hi L
i
(hi(θ))

∥∥∥
2

(chain rule (53))

To compare this semi-smoothness result to the one in (Allen-Zhu et al., 2019, Theorem 4), let us
first remark that

‖∇h(R ◦ L)(h(θ))‖2,1 ≤
√
n ‖∇h(R ◦ L)(h(θ))‖2,2

As a result, our result is analogous to (Allen-Zhu et al., 2019, Theorem 4), up to an additional
multiplicative factor

(
βC(L)2

nρ + 2C(∇L)
)

in the last term of the right-hand side. It is worth noting

22

Under review as a conference paper at ICLR 2020

that there is also implicitly an additional multiplicative factor C(∇L) in Theorem 3 of (Allen-Zhu
et al., 2019) since (Allen-Zhu et al., 2019) make the assumption that C(∇L) = 1 (see Allen-Zhu
et al., 2019, Appendix A).

Let θ,θ′ ∈ (Rm×m)
L verifying the conditions of Theorem C.1.

Let A = R(L(h(θ′))−R(L(h(θ))− 〈∇θ(R ◦ L ◦h)(θ),θ′ − θ〉 , the quantity we want to bound.

Using (52) for z = h(θ) and z′ = h(θ′), we obtain

A ≤ 1

2

(
βC(L)2

nρ
+ 2C(∇L)

)
‖h(θ′)− h(θ)‖22

+ 〈∇h(R ◦ L)(h(θ)), h(θ′)− h(θ)〉
− 〈∇θ(R ◦ L ◦h)(θ),θ′ − θ〉

(56)

Then using the chain rule (54)

A ≤ 1

2

(
βC(L)2

nρ
+ 2C(∇L)

)
‖h(θ′)− h(θ)‖22

+

n∑
i=1

〈∇hi(R ◦ L)(h(θ)), hi(θ
′)− hi(θ)− (∇θhi(θ))

T
(θ′ − θ)〉

(57)

For all i ∈ {1, . . . , n}, let us denote ˘lossi := ∇hi(R ◦ L)(h(θ)) to match the notations used in
(Allen-Zhu et al., 2019) for the derivative of the loss with respect to the output of the network for
example i of the training set.

With this notation, we obtain exactly equation (11.3) in (Allen-Zhu et al., 2019) up to the multiplica-
tive factor

(
βC(L)2

nρ + 2C(∇L)
)

for the distributionally robust loss.

From there the proof of Theorem 4 in (Allen-Zhu et al., 2019) being independent to the formula for
˘lossi, we can conclude the proof of our Theorem C.1 (as in Allen-Zhu et al., 2019, Appendix A).

C.6.2 GRADIENT BOUNDS FOR THE DISTRIBUTIONALLY ROBUST LOSS

We prove the following lemma which is a generalization of Theorem 3 in (Allen-Zhu et al., 2019)
for the distributionally robust loss (9).

Theorem C.2 (Gradient Bounds for the Distributionally Robust Loss).
Let ω ∈ O

(
δ3/2

n9/2L6 log3(m)

)
, and θ(0) being initialized randomly as described in assump-

tion 5.1. With probability as least 1 − exp (−Ω(mω3/2L)) over the initialization, we have for
all θ ∈ (Rm×m)

L with
∥∥θ − θ(0)

∥∥
2
≤ ω

∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , L}, ∀L̂ ∈ Rn∥∥∥p̄i(L̂)∇θl(L
i
◦hi)(θ)

∥∥∥2

2
≤ O

(
m

d

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

)
∀l ∈ {1, . . . , L}, ∀L̂ ∈ Rn∥∥∥∥∥

n∑
i=1

p̄i(L̂)∇θl(L
i
◦hi)(θ)

∥∥∥∥∥
2

2

≤ O

(
mn

d

n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

)
∥∥∥∥∥
n∑
i=1

p̄i(L̂)∇θL(L
i
◦hi)(θ)

∥∥∥∥∥
2

2

≥ Ω

(
mδ

dn2

n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

)
(58)

It is worth noting that the loss vector L̂ used for computing the robust probabilities p̄(L̂) =(
p̄i(L̂)

)n
i=1

does not have to be equal to L(h(θ)).

23

Under review as a conference paper at ICLR 2020

We will use this for the proof of the Robust SGD with stale loss history.

The adaptation of the proof of Theorem 3 in (Allen-Zhu et al., 2019) is straightforward.

Let θ ∈ (Rm×m)
L satisfying the conditions of Theorem C.2, and L̂ ∈ Rn.

Let us denote v :=
(
p̄i(L̂)∇hi Li(hi(θ))

)n
i=1

, applying the proof of Theorem 3 in (Allen-Zhu et al.,
2019) to our v gives:

∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , L},∥∥∥p̄i(L̂)∇θl(L
i
◦hi)(θ)

∥∥∥2

2
≤ O

(
m

d

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

)
∀l ∈ {1, . . . , L}, ∀L̂ ∈ Rn∥∥∥∥∥

n∑
i=1

p̄i(L̂)∇θl(L
i
◦hi)(θ)

∥∥∥∥∥
2

2

≤ O

(
mn

d

n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

)
∥∥∥∥∥
n∑
i=1

p̄i(L̂)∇θL(L
i
◦hi)(θ)

∥∥∥∥∥
2

2

≥ Ω

(
mδ

dn
max
i

(∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

))

In addition

max
i

(∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

)
≥ 1

n

n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

This allows to conclude the proof of our Theorem C.2.

C.6.3 CONVERGENCE OF ROBUST SGD WITH EXACT LOSS HISTORY

We can now prove Theorem 5.1.

Theorem C.3 (Convergence of Robust SGD with exact Loss History – Restated from Theorem 5.1).
Suppose batch size 1 ≤ b ≤ n, number of hidden units m ≥ Ω(dε−1 × poly(n,L, δ−1)), and δ ≥
O
(

1
L

)
. Let ε > 0, and the learning rate be ηexact = Θ

(
αn2ρ

βC(L)2+2nρC(∇L) ×
bδd

poly(n,L)m log2(m)

)
,

with probability at least 1 − exp
(
−Ω(log2(m))

)
over the randomness of the initialization and the

mini-batches, Robust SGD with exact loss vector finds ‖∇θ(R ◦ f ◦ h)(θ)‖ ≤ ε after T = O
(
Ln3

ηδε2

)
iterations.

Similarly to the proof of the convergence of SGD for the mean loss (4) (Theorem 2 in (Allen-Zhu
et al., 2019)), the convergence of SGD for the distributionally robust loss (9) will mainly rely on
the semi-smoothness property (Theorem C.1) and the gradient bound (Theorem C.2) that we have
proved previously for the distributionally robust loss.

Let θ ∈ (Rm×m)
L satisfying the conditions of Theorem 5.1, and L̂ be the exact loss history at θ,

i.e.
L̂ =

(
L
i
(hi(θ))

)n
i=1

(59)

For the batch size b ∈ {1, . . . , n}, let S = {ij}bj=1 a batch of indices drawn from p̄(L̂) without
replacement, i.e.

∀j ∈ {1, . . . b}, ij
i.i.d.∼ p̄(L̂) (60)

Let θ′ ∈ (Rm×m)
L be the values of the parameters after a stochastic gradient descent step at θ for

the batch S, i.e.

θ′ = θ − η 1

b

∑
i∈S
∇θ(L

i
◦hi)(θ) (61)

where η > 0 is the learning rate.

24

Under review as a conference paper at ICLR 2020

Assuming that θ and θ′ satisfies the conditions of Theorem C.1, we obtain

R(L(h(θ′)) ≤R(L(h(θ))− η〈∇θ(R ◦ L ◦h)(θ),
1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)〉

+ η
√
n ‖∇h(R ◦ L)(h(θ))‖2,2O

(
L2ω1/3

√
m log(m)√
d

)∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)

∥∥∥∥∥
2,∞

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)

∥∥∥∥∥
2

2,∞
(62)

where we refer to (54) for the form of∇θ(R◦L ◦h)(θ) and to (53) for the form of∇h(R◦L)(h(θ)).

In addition, we make the assumption that for the set of values of θ considered the hardness weighted
sampling probabilities admit an upper-bound

α = min
θ

min
i
p̄i(L(θ)) > 0 (63)

Which is always satisfied under assumption 5.2 for Kullback-Leibler φ-divergence, and for any φ-
divergence satisfying assumption 3.1 with a robustness parameter β small enough.

Let ES be the expectation with respect to S. Applying ES to (62), we obtain
ES [R(L(h(θ′))]

≤R(L(h(θ))− η ‖∇θ(R ◦ L ◦h)(θ)‖22,2

+ η ‖∇h(R ◦ L)(h(θ))‖2,2O

(
nL2ω1/3

√
m log(m)√
d

)√√√√ n∑
i=1

max
l

∥∥∥p̄i(L̂)∇θl(L
i
◦hi)(θ)

∥∥∥2

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)
1

α

n∑
i=1

max
l

∥∥∥p̄i(L̂)∇θl(L
i
◦hi)(θ)

∥∥∥2

(64)
where we have used the following results:

• For any integer k ≥ 1, and all (ai)
n
i=1 ∈

(
Rk
)n

, we have (see the proof in C.6.4)

ES

[
1

b

∑
i∈S

ai

]
= Ep̄(L̂) [ai] (65)

• Using (65) for (ai)
n
i=1 = (∇θ(Li ◦hi)(θ))

n
i=1, and the chain rule (54)

ES

[
1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)

]
=

n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ) = ∇θ(R ◦ L ◦h)(θ) (66)

• Using the triangular inequality∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)

∥∥∥∥∥
2,∞

≤ 1

b

∑
i∈S

∥∥∥∇θ(L
i
◦hi)(θ)

∥∥∥
2,∞

(67)

And using (65) for (ai)
n
i=1 =

(
‖∇θ(Li ◦hi)(θ)‖2,∞

)n
i=1

,

ES

∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)

∥∥∥∥∥
2,∞

 ≤ n∑
i=1

p̄i(L̂)
∥∥∥∇θ(L

i
◦hi)(θ)

∥∥∥
2,∞

≤
n∑
i=1

max
l

∥∥∥∇θl(p̄i(L̂)L
i
◦hi)(θ)

∥∥∥
2

≤
√
n

√√√√ n∑
i=1

max
l

∥∥∥∇θl(p̄i(L̂)L
i
◦hi)(θ)

∥∥∥2

2

(68)

25

Under review as a conference paper at ICLR 2020

where we have used Cauchy-Schwarz inequality for the last inequality.
• Using (67) and the convexity of the function x 7→ x2∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)

∥∥∥∥∥
2

2,∞

≤ 1

b

∑
i∈S

∥∥∥∇θ(L
i
◦hi)(θ)

∥∥∥2

2,∞
(69)

And using (65) for (ai)
n
i=1 =

(
‖∇θ(Li ◦hi)(θ)‖22,∞

)n
i=1

,

ES

∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ)

∥∥∥∥∥
2

2,∞

 ≤ n∑
i=1

p̄i(L̂)
∥∥∥∇θ(L

i
◦hi)(θ)

∥∥∥2

2,∞

≤
n∑
i=1

1

p̄i(L̂)
max
l

∥∥∥∇θl(p̄i(L̂)L
i
◦hi)(θ)

∥∥∥2

2

≤ 1

α

n∑
i=1

max
l

∥∥∥∇θl(p̄i(L̂)L
i
◦hi)(θ)

∥∥∥2

2

(70)

Important Remark: It is worth noting the apparition of α (63) in (70). If we were using a uniform
sampling as for ERM (i.e. for DRO in the limit β → 0), we would have α = 1

n . So although our
inequality (70) may seem brutal, it is consistent with equation (13.2) in (Allen-Zhu et al., 2019) and
the corresponding inequality in the case of ERM.

The rest of the proof of convergence will consist in proving that η ‖∇θ(R ◦ L ◦h)(θ)‖22,2 dominates
the two last terms in (62). As a result, we can already state that either the robustness parameter β,
or the learning rate η will have to be small enough to control α. This is consistent with what we
observed in our experiments.

Indeed, combining (62) with the chain rule (54), and the gradient bound Theorem C.2 where we use
our L̂ defined in (59)

ES [R(L(h(θ′))] ≤ R(L(h(θ))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

+ ηO

(
nL2ω1/3

√
m log(m)√
d

)
O

(√
m

d

) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)
O
(m
dα

) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

≤ R(L(h(θ))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

+O

(
ηnL2mω1/3

√
log(m)

d
+K

η2(n/α)L2m2

d2

)
n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ))

∥∥∥2

2

(71)
where we have used

K :=
βC(L)2

nρ
+ 2C(∇L) (72)

There are only two differences with equation (13.2) in (Allen-Zhu et al., 2019):

• in the last fraction we have n/α instead of n2 (see remark C.6.3 for more details), and an
additional multiplicative term K. So in total, this term differs by a multiplicative factor αnK
from the analogous term in the proof of (Allen-Zhu et al., 2019).

• we have
∑n
i=1

∥∥∥p̄i(L̂)∇hi Li(hi(θ))
∥∥∥2

2
instead of F (W(t)). In fact they are analogous

since in equation (13.2) in (Allen-Zhu et al., 2019), F (W(t)) is the squared norm of the

26

Under review as a conference paper at ICLR 2020

mean loss for the L2 loss. We don’t make such a strong assumption on the choice of L (see
assumption 5.2). It is worth noting that the same analogy is used in (Allen-Zhu et al., 2019,
Appendix A) where they extend their result to the mean loss with other objective function
than the L2 loss.

Our choice of learning rate in Theorem 5.2 can be rewritten as

ηexact = Θ

(
αn2ρ

βC(L)2 + 2nρC(∇L)
× bδd

poly(n,L)m log2(m)

)
= Θ

(
αn

K
× bδd

poly(n,L)m log2(m)

)
≤ αn

K
× η′

(73)

And we also have
ηexact ≤ η′ (74)

where η′ is the learning rate chosen in the proof of Theorem 2 in (Allen-Zhu et al., 2019). We refer
the reader to (Allen-Zhu et al., 2019) for the details of the constant in ”Θ” and the exact form of the
polynom poly(n,L).

As a result, for η = ηexact, the term Ω
(
ηmδ
dn2

)
dominates the other term of the right-hand side of

inequality (71) as in the proof of Theorem 2 in (Allen-Zhu et al., 2019).

This implies that the conditions of Theorem C.2 are satisfied for all θ(t), and that we have for all
iteration t > 0

ESt
[
R(L(h(θ(t+1)))

]
≤ R(L(h(θ(t)))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ

(t)))
∥∥∥2

2
(75)

And using a result in Appendix A of (Allen-Zhu et al., 2019), since under assumption 5.2 the distri-
butionally robust loss is non-convex and bounded, we obtain for all ε′ > 0∥∥∥∇h(R ◦ L)(h(θ(T)))

∥∥∥
2,2
≤ ε′ if T = O

(
dn2

ηδmε′2

)
(76)

where according to (53)∥∥∥∇h(R ◦ L)(h(θ(T)))
∥∥∥

2,2
=

n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ

(t)))
∥∥∥2

2
(77)

However, we are interested in a bound on
∥∥∇θ(R ◦ L ◦h)(θ(T))

∥∥
2,2

, rather than∥∥∇h(R ◦ L)(h(θ(T)))
∥∥

2,2
.

Using the gradient bound of Theorem C.2 and the chain rules (54) and (53)∥∥∥∇θ(R ◦ L ◦h)(θ(T))
∥∥∥

2,2
≤ c1

√
Lmn

d

∥∥∥∇h(R ◦ L)(h(θ(T)))
∥∥∥

2,2
(78)

where c1 > 0 is the constant hidden in O
(√

Lmn
d

)
.

So with ε′ = 1
c1

√
d

Lmnε, we finally obtain∥∥∥∇θ(R ◦ L ◦h)(θ(T))
∥∥∥

2,2
≤ c1

√
Lmn

d

∥∥∥∇h(R ◦ L)(h(θ(T)))
∥∥∥

2,2

≤ c1

√
Lmn

d
ε′

≤ ε

(79)

If

T = O

(
dn2

ηδmε′2

)
= O

(
dn2

ηδm

Lmn

dε2

)
= O

(
Ln3

ηδε2

)
(80)

which concludes the proof.

27

Under review as a conference paper at ICLR 2020

C.6.4 PROOF OF TECHNICAL LEMMA 1

For any integer k ≥ 1, and all (ai)
n
i=1 ∈

(
Rk
)n

, we have

ES

[
1

b

∑
i∈S

ai

]
=

∑
1≤i1,...,ib≤n

(n∏
k=1

p̄ik(L̂)

)
1

b

b∑
j=1

aij


=

1

b

∑
1≤i1,...,ib≤n

 b∑
j=1

p̄ij (L̂) aij

 n∏
k=1
k 6=j

p̄ik(L̂)




=
1

b

b∑
j=1

 ∑
1≤i1,...,ib≤n

p̄ij (L̂) aij

 n∏
k=1
k 6=j

p̄ik(L̂)




=
1

b

b∑
j=1


 n∑
ij=1

p̄ij (L̂) aij

 n∏
k=1
k 6=j

(
n∑

ik=1

p̄ik(L̂)

)
=

1

b

b∑
j=1

(
n∑
i=1

p̄i(L̂) ai

)

=

n∑
i=1

p̄i(L̂) ai

= Ep̄(L̂) [ai]

(81)

C.7 CONVERGENCE OF ROBUST SGD WITH STALE LOSS HISTORY

The proof of the convergence of Algorithm 4.1 under the conditions of Theorem 5.2 follows the
same structure as the proof of the convergence of Robust SGD with exact loss history C.6.3. We
will reuse the intermediate results of C.6.3 when possible and focus on the differences between the
two proofs due to the inexactness of the loss history.

Let an iteration number t, so that the warm-up of Algorithm 4.1 is already over at t.

Let θ(t) ∈ (Rm×m)
L the parameters of the deep neural network at iteration t.

We define the stale loss history at iteration t as

L̂ =
(
L
i
(hi(θ

(ti(t))))
)n
i=1

(82)

where for all i, ti(t) < t corresponds to the latest iteration before t at which the loss for example i
has been updated. Or equivalently, it corresponds to the last iteration before t when example i was
drawn to be part of a mini-batch.

Thanks to the warm-up stage of Algorithm 4.1, it is guaranteed that the loss value of every example
has been computed at least once before we start using the adaptive sampling. As a result, for all
iteration after the warm-up, the stale loss history L̂ is well defined.

We also define the exact loss history that is unknown in Algorithm 4.1, as

L̆ =
(
L
i
(hi(θ

(t)))
)n
i=1

(83)

Remark on the warm-up stage of Algorithm 4.1: The iterations performed during the warm-up
stage amounts to classic SGD to minimize the mean loss (4). As a result, the convergence results of
(Allen-Zhu et al., 2019, Theorem 2) apply during the warm-up. This guarantees that the condition on
θ of Theorem 5.2 remains satisfied during the warm-up if it was satisfied by the initial parameters.

28

Under review as a conference paper at ICLR 2020

Similarly to (61) we define

θ(t+1) = θ(t) − η 1

b

∑
i∈S
∇θ(L

i
◦hi)(θ(t)) (84)

and using Theorem C.1, similarly to (62), we obtain

R(L(h(θ(t+1))) ≤R(L(h(θ(t)))− η〈∇θ(R ◦ L ◦h)(θ(t)),
1

b

∑
i∈S
∇θ(L

i
◦hi)(θ(t))〉

+ η
∥∥∥∇h(R ◦ L)(h(θ(t)))

∥∥∥
1,2
O

(
L2ω1/3

√
m log(m)√
d

)∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ(t))

∥∥∥∥∥
2,∞

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)∥∥∥∥∥1

b

∑
i∈S
∇θ(L

i
◦hi)(θ(t))

∥∥∥∥∥
2

2,∞
(85)

We can still define α as in (63)

α = min
θ

min
i
p̄i(L(θ)) > 0 (86)

where we are guaranteed that α > 0 under assumptions 5.1.

Since Theorem C.2 is independent to the choice of L̂, taking the expectation with respect to S,
similarly to (71), we obtain

ES
[
R(L(h(θ(t+1)))

]
≤ R(L(h(θ(t)))− η〈∇θ(R ◦ L ◦h)(θ(t)),

n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ(t)))〉

+ η
∥∥∥∇h(R ◦ L)(h(θ(t)))

∥∥∥
1,2
O

(
L2ω1/3

√
nm log(m)√
d

)√√√√ n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ(t)))

∥∥∥2

2

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)
O
(m
dα

) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ

(t)))
∥∥∥2

2

(87)

where the differences with respect to (71) comes from the fact that L̂ is not the exact loss history
here, i.e. L̂ 6= L̆, which leads to

∇θ(R ◦ L ◦h)(θ(t)) =

n∑
i=1

p̂i(L̆)∇θ(L
i
◦hi)(θ(t)))

6=
n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ(t)))

(88)

And ∥∥∥∇h(R ◦ L)(h(θ(t)))
∥∥∥

1,2
=

n∑
i=1

∥∥∥p̂i(L̆)∇hi L
i
(hi(θ

(t))))
∥∥∥

2

6=
n∑
i=1

∥∥∥p̂i(L̂)∇hi L
i
(hi(θ

(t))))
∥∥∥

2

(89)

Let

K ′ = C(L)A(∇L)O

 βLm3/2 log2(m)

αn1/2ρd3/2b log
(

1
1−α

)
 (90)

Where C(L) > 0 is a constant such that L is C(L)-Lipschitz continuous, and A(∇L) > 0 is a
constant that bound the gradient of L with respect to its input.

29

Under review as a conference paper at ICLR 2020

C(L) and A(∇L) are guaranteed to exist under assumptions 5.1.

We can prove that, with probability at least 1− exp
(
−Ω

(
log2(m)

))
,

• according to lemma C.7.1

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2
=

√√√√ n∑
i=1

(
p̂i(L̂)− p̂i(L̆)

)2

≤ ηαK ′ (91)

• according to lemma C.7.2∣∣∣∣∣〈∇θ(R ◦ L ◦h)(θ(t))−
n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ(t))),

n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ(t)))〉

∣∣∣∣∣
≤ ηm

d
K ′

n∑
i=1

∥∥∥p̄i(L̂)∇θ(L
i
◦hi)(θ(t)))

∥∥∥2

2

(92)

• according to lemma C.7.3

∥∥∥∇h(R ◦ L)(h(θ(t)))
∥∥∥

1,2
≤
(√
n+ ηK ′

)√√√√ n∑
i=1

∥∥∥p̄i(L̂)∇θ(L
i
◦hi)(θ(t)))

∥∥∥2

2
(93)

Combining those three inequalities with (87) we obtain

ES
[
R(L(h(θ(t+1)))

]
−R(L(h(θ(t))) ≤

η

[
−Ω

(
mδ

dn2

)
+O

(
nL2mω1/3

√
log(m)

d

)]
n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ

(t)))
∥∥∥2

2

η2O

(
K

(n/α)L2m2

d2
+
(

1 +
m

d

)
K ′
) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ

(t)))
∥∥∥2

2

(94)

One can see that compared to (71), there is only the additional term
(
1 + m

d

)
K ′.

Using our choice of η,

η = ηstale ≤ O
(

δ

n2K ′
ηexact

)
(95)

where ηexact is the learning rate of Theorem 5.1, we have

Ω

(
ηmδ

dn2

)
≥ O

(
η2
(

1 +
m

d

)
K ′
)

(96)

As a result, η2
(
1 + m

d

)
K ′ is dominated by the term Ω

(
ηmδ
dn2

)
In addition, since ηstale ≤ ηexact, Ω

(
ηmδ
dn2

)
still dominates also the ther terms as in the proof of

Theorem 5.1.

As a consequence, we obtain as in (75) that for any iteration t > 0 (after the end of the warm-up)

ESt
[
R(L(h(θ(t+1)))

]
≤ R(L(h(θ(t)))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi L
i
(hi(θ

(t)))
∥∥∥2

2
(97)

This concludes the proof using the same arguments as in the end of the proof of Theorem 5.1 starting
from (75).

30

Under review as a conference paper at ICLR 2020

C.7.1 PROOF OF TECHNICAL LEMMA 2

Using Lemma 4.2 and Lemma 4.1 we obtain∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2
=
∥∥∥∇vR(L̂)−∇vR(L̆)

∥∥∥
2

≤ β

nρ

∥∥∥L̂ − L̆∥∥∥
2

(98)

Using assumptions 5.2 and (Allen-Zhu et al., 2019, Claim 11.2)∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2
≤ β

nρ

√√√√ n∑
i=1

(
L
i
◦ hi(θ(t))− L

i
◦ hi(θ(ti(t)))

)2

≤ β

nρ
C(L)C(h)

√√√√ n∑
i=1

∥∥θ(t) − θ(ti(t))
∥∥2

2,2

≤ C(L)O

(
βLm1/2

nρd1/2

)√√√√ n∑
i=1

∥∥θ(t) − θ(ti(t))
∥∥2

2,2

(99)

Where C(L) is the constant of Lipschitz continuity of the per-example loss L (see assumptions 5.2)
and C(h) is the constant of Lipschitz continuity of the deep neural network h with respect to its
parameters θ.

By developing the recurrence formula of θ(t) (84), we obtain

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2
≤ C(L)O

(
βLm1/2

nρd1/2

)√√√√√ n∑
i=1

∥∥∥∥∥∥θ(ti(t)) −

 t−1∑
τ=ti(t)

η

b

∑
j∈Sτ

∇θ(L
j
◦ hj)(θ(τ))

− θ(ti(t))

∥∥∥∥∥∥
2

2,2

≤ ηC(L)O

(
βLm1/2

nρd1/2

)√√√√√ n∑
i=1

∥∥∥∥∥∥
t−1∑

τ=ti(t)

1

b

∑
j∈Sτ

∇θ(L
j
◦ hj)(θ(τ))

∥∥∥∥∥∥
2

2,2

Let A(∇L) a bound on the gradient of the per-example loss function. Using Theorem C.2 and the
chain rule

∀j, ∀τ
∥∥∥∥∇θ(L

j
◦ hj)(θ(τ))

∥∥∥∥
2,2

≤ A(∇L)O
(m
d

)
(100)

And using the triangular inequality∥∥∥∥∥∥
t−1∑

τ=ti(t)

1

b

∑
j∈Sτ

∇θ(L
j
◦ hj)(θ(τ))

∥∥∥∥∥∥
2,2

≤
t−1∑

τ=ti(t)

1

b

∑
j∈Sτ

∥∥∥∥∇θ(L
j
◦ hj)(θ(τ))

∥∥∥∥
2,2

≤
t−1∑

τ=ti(t)

A(∇L)O
(m
d

)
≤ A(∇L)O

(m
d

)
(t− ti(t))

(101)

As a result, we obtain∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2
≤ ηC(L)A(∇L)O

(
βLm3/2

nρd3/2

)√√√√ n∑
i=1

(t− ti(t))2 (102)

For all i and for any τ the probability that the sample i is not in batch Sτ is lesser than (1− α)
b.

31

Under review as a conference paper at ICLR 2020

Therefore, for any k ≥ 1 and for any t,

P (t− ti(t) ≥ k) ≤ (1− α)
kb (103)

For k ≥ 1
bΩ

(
log2(m)

log(1
1−α)

)
, we have (1− α)

kb ≤ exp
(
−Ω

(
log2(m)

))
, and thus with probability at

least 1− exp
(
−Ω

(
log2(m)

))
,

∀t, t− ti(t) ≤ O

 log2(m)

b log
(

1
1−α

)
 (104)

As a result, we finally obtain that with probability at least 1− exp
(
−Ω

(
log2(m)

))
,

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2
≤ ηC(L)A(∇L)O

(
βLm3/2

nρd3/2

)√
nO

 log2(m)

b log
(

1
1−α

)


≤ ηαO

 βLm3/2 log2(m)

αn1/2ρd3/2b log
(

1
1−α

)


≤ ηαK ′

(105)

C.7.2 PROOF OF TECHNICAL LEMMA 3

Let us first denote

A =

∣∣∣∣∣〈∇θ(R ◦ L ◦h)(θ(t))−
n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ(t))),

n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ(t)))〉

∣∣∣∣∣
=

∣∣∣∣∣〈
n∑
i=1

(
p̄i(L̆)− p̄i(L̂)

)
∇θ(L

i
◦hi)(θ(t))),

n∑
i=1

p̄i(L̂)∇θ(L
i
◦hi)(θ(t)))〉

∣∣∣∣∣
(106)

Using Cauchy-Schwarz inequality

A =

∣∣∣∣∣∣
n∑
i=1

(
p̄i(L̆)− p̄i(L̂)

)
〈∇θ(L

i
◦hi)(θ(t))),

n∑
j=1

p̄j(L̂)∇θ(L
j
◦hj)(θ(t)))〉

∣∣∣∣∣∣
≤
∥∥∥p̂(L̂)− p̂(L̆)

∥∥∥
2

√√√√√ n∑
i=1

〈∇θ(L
i
◦hi)(θ(t))),

n∑
j=1

p̄j(L̂)∇θ(L
j
◦hj)(θ(t)))〉

2
(107)

Let

B = 〈∇θ(L
i
◦hi)(θ(t))),

n∑
j=1

p̄j(L̂)∇θ(L
j
◦hj)(θ(t)))〉 (108)

Using again Cauchy-Schwarz inequality

B ≤
∥∥∥∇θ(L

i
◦hi)(θ(t)))

∥∥∥
2,2

∥∥∥∥∥∥
n∑
j=1

p̄j(L̂)∇θ(L
j
◦hj)(θ(t)))

∥∥∥∥∥∥
2,2

(109)

32

Under review as a conference paper at ICLR 2020

As a result, A becomes

A ≤
∥∥∥p̂(L̂)− p̂(L̆)

∥∥∥
2

∥∥∥∥∥∥
n∑
j=1

p̄j(L̂)∇θ(L
j
◦hj)(θ(t)))

∥∥∥∥∥∥
2,2

√√√√ n∑
i=1

∥∥∥∇θ(L
i
◦hi)(θ(t)))

∥∥∥2

2,2

≤
∥∥∥p̂(L̂)− p̂(L̆)

∥∥∥
2

∥∥∥∥∥∥
n∑
j=1

p̄j(L̂)∇θ(L
j
◦hj)(θ(t)))

∥∥∥∥∥∥
2,2

√√√√ n∑
i=1

1

α2

∥∥∥p̄j(L̂)∇θ(L
i
◦hi)(θ(t)))

∥∥∥2

2,2

≤ 1

α

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2

∥∥∥∥∥∥
n∑
j=1

p̄j(L̂)∇θ(L
j
◦hj)(θ(t)))

∥∥∥∥∥∥
2

2,2

(110)

Using the triangular inequality, Theorem C.2, and Lemma C.7.1, we finally obtain

A ≤ m

αd

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2

n∑
j=1

∥∥∥∥p̄j(L̂)∇hj L
j
(hj(θ

(t)))

∥∥∥∥2

2,2

≤ ηm
d
K ′

n∑
j=1

∥∥∥∥p̄j(L̂)∇hj L
j
(hj(θ

(t)))

∥∥∥∥2

2,2

(111)

C.7.3 PROOF OF TECHNICAL LEMMA 4

We have∥∥∥∇h(R ◦ L)(h(θ(t)))
∥∥∥

1,2
=

n∑
j=1

p̄j(L̆)

∥∥∥∥∇hj Lj (hj(θ
(t)))

∥∥∥∥
2,2

=

n∑
j=1

p̄j(L̂)

∥∥∥∥∇hj Lj (hj(θ
(t)))

∥∥∥∥
2,2

+

n∑
j=1

(
p̄j(L̆)− p̄j(L̂)

p̄j(L̂)

)
p̄j(L̂)

∥∥∥∥∇hj Lj (hj(θ
(t)))

∥∥∥∥
2,2

(112)

Using Cauchy-Schwarz inequality

∥∥∥∇h(R ◦ L)(h(θ(t)))
∥∥∥

1,2
=

√n+

√√√√ n∑
j=1

(
p̄j(L̆)− p̄j(L̂)

p̄j(L̂)

)2
√√√√ n∑

j=1

∥∥∥∥p̄j(L̂)∇hj L
j
(hj(θ(t)))

∥∥∥∥2

2,2

(113)

Using Lemma C.7.1
n∑
j=1

(
p̄j(L̆)− p̄j(L̂)

p̄j(L̂)

)2

≤ 1

α

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥

2

≤ ηK ′
(114)

Therefor, we finally obtain

∥∥∥∇h(R ◦ L)(h(θ(t)))
∥∥∥

1,2
=
(√
n+ ηK ′

)√√√√ n∑
j=1

∥∥∥∥p̄j(L̂)∇hj L
j
(hj(θ(t)))

∥∥∥∥2

2,2

(115)

33

	Introduction
	Related Work in DRO with a Wasserstein Distance
	Machine Learning with Distributionally Robust Optimisation and phi-Divergence
	SGD with Hardness Weighted Sampling
	Distributionally Robust Optimization with SGD and Adaptive Sampling
	Efficient Algorithm for Distributionally Robust Deep Learning
	DRO as Principled Hard Example Mining

	Convergence of SGD with Hardness Weighted Sampling for Over-parameterized Deep Neural Networks with ReLU
	Experiments
	Experiments on MNIST
	Experiments on CIFAR10

	Conclusion and Discussion
	More on our Experiments
	Experiments on MNIST
	Implementation Details
	Comment on Early-Stopping with ERM and DRO

	Experiments on CIFAR10
	Implementation Details

	Notations
	Probability Theory Notations
	Machine Learning notations
	Distributionally Robust Optimisation Notations
	Miscellaneous

	Proofs
	Proof of Example 4.1: formula of the sampling probabilities for the KL divergence
	Proof of lemma 4.1: regularity properties of R
	Proof of Lemma 4.2: Formula of the distributionally robust loss gradient
	Proof of Theorem 4.1: Distributionally Robust Optimization as Principled Hard Example Mining
	Proof that R o L is one-sided gradient Lipchitz
	Proof of the convergence of Robust SGD
	Semi-smoothness property for the Distributionally Robust Loss
	Gradient Bounds for the Distributionally Robust Loss
	Convergence of Robust SGD with Exact Loss History
	Proof of technical lemma 1

	Convergence of Robust SGD with Stale Loss History
	Proof of technical lemma 2
	Proof of technical lemma 3
	Proof of technical lemma 4

