
Under review as a conference paper at ICLR 2020

MINIMIZING FLOPS TO LEARN EFFICIENT SPARSE
REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep representation learning has become one of the most widely adopted ap-
proaches for visual search, recommendation, and identification. Retrieval of such
representations from a large database is however computationally challenging. Ap-
proximate methods based on learning compact representations, have been widely
explored for this problem, such as locality sensitive hashing, product quantiza-
tion, and PCA. In this work, in contrast to learning compact representations, we
propose to learn high dimensional and sparse representations that have similar
representational capacity as dense embeddings while being more efficient due
to sparse matrix multiplication operations which can be much faster than dense
multiplication. Following the key insight that the number of operations decreases
quadratically with the sparsity of embeddings provided the non-zero entries are
distributed uniformly across dimensions, we propose a novel approach to learn
such distributed sparse embeddings via the use of a carefully constructed regular-
ization function that directly minimizes a continuous relaxation of the number of
floating-point operations (FLOPs) incurred during retrieval. Our experiments show
that our approach is competitive to the other baselines and yields a similar or better
speed-vs-accuracy tradeoff on practical datasets.

1 INTRODUCTION

Learning semantic representations using deep neural networks (DNN) is now a fundamental facet
of applications ranging from visual search (Jing et al., 2015; Hadi Kiapour et al., 2015), semantic
text matching (Neculoiu et al., 2016), oneshot classification (Koch et al., 2015), clustering (Oh Song
et al., 2017), and recommendation (Shankar et al., 2017). The high-dimensional dense embeddings
generated from DNNs however pose a computational challenge for performing nearest neighbor search
in large-scale problems with millions of instances. In particular, when the embedding dimension is
high, evaluating the distance of any query to all the instances in a large database is expensive, so
that efficient search without sacrificing accuracy is difficult. Representations generated using DNNs
typically have a higher dimension compared to hand-crafted features such as SIFT (Lowe, 2004), and
moreover are dense. The key caveat with dense features is that unlike bag-of-words features they
cannot be efficiently searched through an inverted index, without approximations.

Since accurate search in high dimensions is prohibitively expensive in practice (Wang, 2011), one
has to typically sacrifice accuracy for efficiency by resorting to approximate methods. Addressing the
problem of efficient approximate Nearest-Neighbor Search (NNS) (Jegou et al., 2011) or Maximum
Inner-Product Search (MIPS) (Shrivastava and Li, 2014) is thus an active area of research, which we
review in brief in the related work section. Most approaches (Charikar, 2002; Jegou et al., 2011) aim
to learn compact lower-dimensional representations that preserve distance information.

While there has been ample work on learning compact representations, learning sparse higher
dimensional representations have been addressed only recently (Jeong and Song, 2018; Cao et al.,
2018). As a seminal instance, Jeong and Song (2018) propose an end-to-end approach to learn sparse
and high-dimensional hashes, showing significant speed-up in retrieval time on benchmark datasets
compared to dense embeddings. This approach has also been motivated from a biological viewpoint
(Li et al., 2018) by relating to a fruit fly’s olfactory circuit, thus suggesting the possibility of hashing
using higher dimensions instead of reducing the dimensionality.

1



Under review as a conference paper at ICLR 2020

In a similar vein, in this work, we propose to learn high dimensional embeddings that are sparse and
hence efficient to retrieve using sparse matrix multiplication operations. In contrast to compact lower-
dimensional ANN-esque representations that typically lead to decreased representational power, a key
facet of our higher dimensional sparse embeddings is that they can have the same representational
capacity as the initial dense embeddings. The core idea behind our approach is inspired by two key
observations: (i) retrieval of d (high) dimensional sparse embeddings with fraction p of non-zero
values on an average, can be sped up by a factor of 1/p. (ii) The speed up can be further improved to
a factor of 1/p2 by ensuring that the non-zero values are evenly distributed across all the dimensions.
This indicates that sparsity alone is not sufficient to ensure maximal speedup; the distribution of the
non-zero values plays a significant role as well. This motivates us to consider the effect of sparsity
on the number of floating point operations (FLOPs) required for retrieval with an inverted index.
We propose a penalty function on the embedding vectors that is a continuous relaxation of the exact
number of FLOPs, and encourages an even distribution of the non-zeros across the dimensions.

We apply our approach to the large scale metric learning problem of learning embeddings for
facial images. Our training loss consists of a metric learning (Weinberger and Saul, 2009) loss
aimed at learning embeddings that mimic a desired metric, and a FLOPs loss to minimize the
number of operations. We perform an empirical evaluation of our approach on the Megaface dataset
(Kemelmacher-Shlizerman et al., 2016), and show that our proposed method successfully learns
high-dimensional sparse embeddings that are orders-of-magnitude faster. We compare our approach
to multiple baselines demonstrating an improved or similar speed-vs-accuracy trade-off.

The rest of the paper is organized as follows. In Section 3 we analyze the expected number of FLOPs,
for which we derive an exact expression. In Section 4 we derive a continuous relaxation that can
be used as a regularizer, and optimized using gradient descent. We also provide some analytical
justifications for our relaxation. In Section 5 we then compare our method on a large metric learning
task showing an improved speed-accuracy trade-off compared to the baselines.

2 RELATED WORK

Learning Compact Representations, ANN. Exact retrieval of the top-k nearest neighbours is
expensive in practice for high-dimensional dense embeddings learned from deep neural networks,
with practitioners often resorting to approximate nearest neighbours (ANN) for efficient retrieval.
Popular approaches for ANN include Locality sensitive hashing (LSH) (Gionis et al., 1999; Andoni
et al., 2015; Raginsky and Lazebnik, 2009) relying on random projections, Navigable small world
graphs (NSW) (Malkov et al., 2014) and hierarchical NSW (HNSW) (Malkov and Yashunin, 2018)
based on constructing efficient search graphs by finding clusters in the data, Product Quantization
(PQ) (Ge et al., 2013; Jegou et al., 2011) approaches which decompose the original space into a
cartesian product of low-dimensional subspaces and quantize each of them separately, and Spectral
hashing (Weiss et al., 2009) which involves an NP hard problem of computing an optimal binary hash,
which is relaxed to continuous valued hashes, admitting a simple solution in terms of the spectrum of
the similarity matrix. Overall, for compact representations and to speed up query times, most of these
approaches use a variety of carefully chosen data structures, such as hashes (Neyshabur and Srebro,
2015; Wang et al., 2018), locality sensitive hashes (Andoni et al., 2015), inverted file structure (Jegou
et al., 2011; Baranchuk et al., 2018), trees (Ram and Gray, 2012), clustering (Auvolat et al., 2015),
quantization sketches (Jegou et al., 2011; Ning et al., 2016), as well as dimensionality reductions
based on principal component analysis and t-SNE (Maaten and Hinton, 2008).

End to End ANN. Learning the ANN structure end-to-end is another thread of work that has gained
popularity recently. Norouzi et al. (2012) propose to learn binary representations for the Hamming
metric by minimizing a margin based triplet loss. Erin Liong et al. (2015) use the signed output of a
deep neural network as hashes, while imposing independence and orthogonality conditions on the
hash bits. Other end-to-end learning approaches for learning hashes include (Cao et al., 2016; Li
et al., 2017). An advantage of end-to-end methods is that they learn hash codes that are optimally
compatible to the feature representations.

Learning Sparse Representations. Sparse deep hashing (SDH) (Jeong and Song, 2018) is an
end-to-end approach that involves starting with a pre-trained network and then performing alternate
minimization consisting of two minimization steps, one for training the binary hashes and the other

2



Under review as a conference paper at ICLR 2020

for training the continuous dense embeddings. The first involves computing an optimal hash best
compatible with the dense embedding using a min-cost-max-flow approach. The second step is a
gradient descent step to learn a dense embedding by minimizing a metric learning loss. The idea of
high dimensional sparse embeddings is also reinforced by the sparse-lifting approach (Li et al., 2018)
where sparse high dimensional embeddings are learned from dense features. The idea is motivated by
the biologically inspired fly algorithm (Dasgupta et al., 2017). Experimental results indicated that
sparse-lifting is an improvement both in terms of precision and speed, when compared to traditional
techniques like LSH that rely on dimensionality reduction.

`1 regularization, Lasso. The Lasso (Tibshirani, 1996) is the most popular approach to impose
sparsity and has been used in a variety of applications including sparsifying and compressing neural
networks (Liu et al., 2015; Wen et al., 2016). The group lasso (Meier et al., 2008) is an extension of
lasso that encourages all features in a specified group to be selected together. Another extension, the
exclusive lasso (Kong et al., 2014; Zhou et al., 2010), on the other hand, is designed to select a single
feature in a group. Our proposed regularizer, originally motivated by idea of minimizing FLOPs
closely resembles exclusive lasso. Our focus however is on sparsifying the produced embeddings
rather than sparsifying the parameters.

Metric Learning. While there exist many settings for learning embeddings (Hinton and Salakhutdi-
nov, 2006; Kingma and Welling, 2013; Kiela and Bottou, 2014) in this paper we restrict our attention
to the context of metric learning (Weinberger and Saul, 2009). Some examples of metric learning
losses include large margin softmax loss for CNNs (Liu et al., 2016), triplet loss (Schroff et al., 2015),
and proxy based metric loss (Movshovitz-Attias et al., 2017).

3 EXPECTED NUMBER OF FLOPS

In this section we study the effect of sparsity on the expected number of FLOPs required for retrieval
and derive an exact expression for the expected number of FLOPs. The main idea in this paper
is based on the key insight that if each of the dimensions of the embedding are non-zero with a
probability p (not necessarily independently), then it is possible to achieve a speedup up to an order
of 1/p2 using an inverted index on the set of embeddings. Consider two embedding vectors u,v.
Computing uTv requires computing only the pointwise product at the indices k where both uk
and vk are non-zero. This is the main motivation behind using inverted indices and leads to the
aforementioned speedup. Before we analyze it more formally, we introduce some notation.

Let D = {(xi, yi)}ni=1 be a set of n independent training samples drawn from Z = X × Y
according to a distribution P , where X ,Y denote the input and label spaces respectively. Let
F = {fθ : X → Rd | θ ∈ Θ} be a class of functions parameterized by θ ∈ Θ, mapping input
instances to d-dimensional embeddings. Typically, for image tasks, the function is chosen to be a
suitable CNN (Krizhevsky et al., 2012). Suppose X,Y ∼ P , then define the activation probability
pj = P(fθ(X)j 6= 0), and its empirical version p̄j = 1

n

∑n
i=1 I[fθ(xi)j 6= 0].

We now show that sparse embeddings can lead to a quadratic speedup. Consider a d-dimensional
sparse query vector uq = fθ(xq) ∈ Rd and a database of n sparse vectors {vi = fθ(x

(i))}ni=1 ⊂ Rd
forming a matrix D ∈ Rn×d. We assume that xq,x(i) (i = 1, . . . , n) are sampled independently
from P . Computing the vector matrix productDuq requires looking at only the columns ofD corre-
sponding to the non-zero entries of uq given by Nq = {j | j ∈ [1 : d], (uq)j 6= 0}.1 Furthermore,
in each of those columns we only need to look at the non-zero entries. This can be implemented
efficiently in practice by storing the non-zero indices for each column in independent lists, as depicted
in Figure 1a.

The number of FLOPs incurred is given by,

F (D,uq) =
∑
j∈Nq

∑
i:vij 6=0

1 =

n∑
i=1

d∑
j=1

I[(uq)j 6= 0 ∧ vij 6= 0]

1We use [1 : d] to denote the set {1, . . . , d}.

3



Under review as a conference paper at ICLR 2020

��

�

���

0 0 0 0

0

0

0

0

(a) The colored cells denote non-zero
entries, and the arrows indicate the list
structure for each of the columns, with
solid arrows denoting links that were
traversed for the given query. The green
and grey cells denote the non-zero en-
tries that were accessed and not ac-
cessed, respectively. The non-zero val-
ues in Duq (blue) can be computed us-
ing only the common non-zero values
(green).

1: (Build Index)
2: Input: Sparse matrixD.
3: for j = 1 · · · d do
4: Init C[j]← {(i,Dij) |Dij 6= 0 ∧ 1 ≤ i ≤ n}
5: (stores the non-zero values and their indices as a list)
6: end for
7:
8: (Query)
9: Input: Sparse query uq .

10: Init score vector s[i] = 0, 1 ≤ i ≤ n.
11: for j = 1 · · · d s.t. uq[j] 6= 0 do
12: for (i, v) ∈ C[j] do
13: s[i] += vuq[j]
14: end for
15: end for
16: return s

(b) Efficient algorithm for sparse vector sparse matrix product.

Figure 1

Taking the expectation on both sides w.r.t. xq,x(i) and using the independence of the data, we get

E[F (D,uq)] =

n∑
i=1

d∑
j=1

P
(
(uq)j 6= 0

)
P
(
vij 6= 0

)
= n

d∑
j=1

P(fθ(X)j 6= 0)2 (1)

where X ∼ P is an independent random sample. Since the expected number of FLOPs scales linearly
with the number of vectors in the database, a more suitable quantity is the mean-FLOPs-per-row
defined as

F(fθ,P) = E[F (D,uq)]/n =

d∑
j=1

P(fθ(X)j 6= 0)2 =

d∑
j=1

p2
j . (2)

Note that for a fixed amount of sparsity
∑d
j=1 pj = d p, this is minimized when each of the

dimensions are non-zero with equal probability pj = p, ∀j ∈ [1 : d], upon which F(fθ,P) =
d p2 (so that as a regularizer, F(fθ,P) will in turn encourage such a uniform distribution across
dimensions). Given such a uniform distribution, compared to dense multiplication which has a
complexity of O(d) per row, we thus get an improvement by a factor of 1/p2 (p < 1). Thus when
only p fraction of all the entries is non-zero, and evenly distributed across all the columns, we achieve
a speedup of 1/p2. Note that independence of the non-zero indices is not necessary due to the linearity
of expectation.

4 OUR APPROACH

The `1 regularization is the most common approach to induce sparsity. However, as we will also
verify experimentally, it does not ensure an uniform distribution of the non-zeros in all the dimensions
that is required for the optimal speed-up. Therefore, we resort to incorporating the actual FLOPs
incurred, directly into the loss function which will lead to an optimal trade-off between the search
time and accuracy. The FLOPs F(fθ,P) being a discontinuous function of model parameters, is
hard to optimize, and hence we will instead optimize using a continuous relaxation of it.

Denote by `(fθ,D), any metric loss on D for the embedding function fθ. The goal in this paper is
to minimize the loss while controlling the expected FLOPs F(fθ,P) defined in Eqn. 2. Since the
distribution P is unknown, we use the samples to get an estimate of F(fθ,P). Recall the empirical
fraction of non-zero activations p̄j = 1

n

∑n
i=1 I[fθ(xi)j 6= 0], which converges in probability to

pj . Therefore, a consistent estimator for F(fθ,P) based on the samples D is given by F(fθ,D) =

4



Under review as a conference paper at ICLR 2020

∑d
j=1 p̄

2
j . Note that F denotes either the empirical or population quantities depending on whether

the functional argument is P or D. We now consider the following regularized loss.
min
θ∈Θ

`(fθ,D) + λF(fθ,D)︸ ︷︷ ︸
L(θ)

(3)

for some parameter λ that controls the FLOPs-accuracy tradeoff. The regularized loss poses a
further hurdle, as p̄j and consequently F(fθ,D) are not continuous due the presence of the indicator
functions. We thus compute the following continuous relaxation. Define the mean absolute activation
aj = E[|fθ(X)j |] and its empirical version āj = 1

n

∑n
i=1 |fθ(xi)j |, which is the `1 norm of the

activations (scaled by 1/n) in contrast to the `0 quasi norm in the FLOPs calculation. Define the
relaxations, F̃(fθ,P) =

∑d
j=1 a

2
j and its consistent estimator F̃(fθ,D) =

∑d
j=1 ā

2
j . We propose to

minimize the following relaxation, which can be optimized using any off-the-shelf stochastic gradient
descent optimizer.

min
θ∈Θ

`(fθ,D) + λF̃(fθ,D)︸ ︷︷ ︸
L̃(θ)

. (4)

Sparse Retrieval. During inference, the sparse vector of a query image is first obtained from the
learned model and the nearest neighbour is searched in a database of sparse vectors forming a sparse
matrix. An efficient algorithm to compute the dot product of the sparse query vector with the sparse
matrix is presented in Figure 1b. This consists of first building a list of the non-zero values and their
positions in each column. As motivated in Section 3, given a sparse query vector, it is sufficient
to only iterate through the non-zero values and the corresponding columns. Using the scores from
the above step, a shortlist of candidates having the top scores is first constructed. The shortlisted
candidates are further re-ranked using the dense embeddings. The number of candidates is chosen
such that the dense re-ranking time does not dominate the sparse ranking time.

Comparison to SDH (Jeong and Song, 2018). It is instructive to contrast our approach with that of
SDH (Jeong and Song, 2018). In contrast to the binary hashes in SDH, our approach learns sparse
real valued representations. SDH uses a min-cost-max-flow approach in one of the training steps,
while we train ours only using SGD. During inference in SDH, a shortlist of candidates is first created
by considering the examples in the database that have hashes with non-empty intersections with
the query hash. The candidates are further re-ranked using the dense embeddings. The shortlist in
our approach on the other hand is constituted of the examples with the top scores from the sparse
embeddings.

Comparison to unrelaxed FLOPs regularizer. We provide an experimental comparison of our
continuous relaxation based FLOPs regularizer to its unrelaxed variant, showing that the performance
of the two are markedly similar. Setting up this experiment requires some analytical simplifications
based on recent DNN analyses. We first recall recent results that indicate that the output of a
batch norm layer nearly follows a Gaussian distribution (Santurkar et al., 2018), so that in our
context, we could make the simplifying approximation that fθ(x)j is distributed as ρ(X) where X ∼
N (µj(θ), σ

2
j (θ)), ρ is the ReLU activation, and where we suppress the dependency of µj and σj onP .

We experimentally verify that this assumption holds by minimizing the KS distance (Massey Jr, 1951)
between the CDF of ρ(X) withX ∼ N (µ, σ2) and the empirical CDF of the activations, with respect
to µ, σ. Figure 2a shows the empirical CDF and the fitted CDF of ρ(X) for two different architectures.
While µj , σj cannot be tuned independently for j ∈ [d] due to their dependence on θ, consider a
further simplification where the parameters are independent of each other. Suppose for j ∈ {1, 2},
fθ(X)j = ReLU(X) whereX ∼ N (µj , σ

2
j ), and θ = (µ1, µ2, σ1, σ2). We analyze how minimizing

F̃(fθ,P) compares to minimizing F(fθ,P). Note that we consider the population quantities here
instead of the empirical quantities, as they are more amenable to theoretical analyses. We also consider
the `1 regularizer as a baseline. We initialize with θ = (µ1, µ2, σ1, σ2) = (−1/4,−1.3, 1, 1), and
minimize the three quantities w.r.t. θ via gradient descent with infinitesimally small learning rates.
For this contrastive analysis, we do not consider the effect of the metric loss. Note that while the
empirical quantity F(fθ,D) cannot be optimized via gradient descent, it is possible to do so for
its population counterpart F(fθ,P) since it is available in closed form when making Gaussian
assumptions. The details of computing the gradients can be found in Appendix A. Figure 2b shows
the trajectory of the activation probabilities (p1, p2) during optimization. It can be seen that, in
contrast to the `1-regularizer, F and F̃ tend to sparsify the less sparse activation (p1) at a faster rate,
which corroborates the fact that they encourage an even distribution of non-zeros.

5



Under review as a conference paper at ICLR 2020

(a) The CDF of ρ(X) fitted to minimize the KS distance to the empirical
CDF of the activations for two different architectures.

(b) The trajectory of the activation
probabilities when minimizing the
respective regularizations.

Figure 2: Figure (a) shows that the CDF of the activations (red) closely resembles the CDF of ρ(X)

(blue) where X is a Gaussian random variable. Figure (b) shows that F and F̃ behave similarly by
sparsifying the less sparser activation at a faster rate when compared to the `1 regularizer.

F̃ promotes orthogonality. We next show that when the embeddings are normalized to have a unit
norm, as typically done in metric learning, then minimizing F̃(fθ,D) is equivalent to promoting
orthogonality on the absolute values of the embedding vectors. Let ‖fθ(x)‖2 = 1, ∀x ∈ X , we then
have the following:

F̃(fθ,D) =

d∑
j=1

(
1

n

n∑
i=1

|fθ(xi)j |

)2

=
1

n2

∑
p,q∈[1:n]

〈
|fθ(xp)|, |fθ(xq)|

〉
(5)

F̃(fθ,D) is minimized when the vectors {|fθ(xi)|}ni=1 are orthogonal. Metric learning losses aim at
minimizing the interclass dot product, whereas the FLOPs regularizer aims at minimizing pairwise
dot products irrespective of the class, leading to a tradeoff between sparsity and accuracy. This
approach of pushing the embeddings apart, bears some resemblance to the idea of spreading vectors
(Sablayrolles et al., 2019) where an entropy based regularizer is used to uniformly distribute the
embeddings on the unit sphere, albeit without considering any sparsity. Maximizing the pairwise dot
product helps in reducing FLOPs as is illustrated by the following toy example. Consider a set of d
vectors {vi}di=1 ⊂ Rd (here n = d) satisfying ‖vi‖2 = 1, ∀i ∈ [1 : d]. Then

∑
p,q∈[1:d]

〈
|vp|, |vq|

〉
is minimized when vp = ep, where ep is an one-hot vector with the p th entry equal to 1 and the rest
0. The FLOPs regularizer thus tends to spread out the non-zero activations in all the dimensions,
thus producing balanced embeddings. This simple example also demonstrates that when the number
of classes in the training set is smaller or equal to the number of dimensions d, a trivial embedding
that minimizes the metric loss and also achieves a small number of FLOPs is fθ(x) = ey where y is
true label for x. This is equivalent to predicting the class of the input instance. The caveat with such
embeddings is that they might not be semantically meaningful beyond the specific supervised task,
and will naturally hurt performance on unseen classes, and tasks where the representation itself is of
interest. In order to avoid such a collapse in our experiments, we ensure that the embedding dimension
is smaller than the number of training classes. Furthermore, as recommended by Sablayrolles et al.
(2017), we perform all our evaluations on unseen classes.

5 EXPERIMENTS

We evaluate our proposed approach on a large scale metric learning dataset: the Megaface
(Kemelmacher-Shlizerman et al., 2016) used for face recognition. This is a much more fine grained
retrieval tasks (with 85k classes for training) compared to the datasets used by Jeong and Song (2018).
This dataset also satisfies our requirement of the number of classes being orders of magnitude higher
than the dimensions of the sparse embedding. As discussed in Section 4, a few number of classes
during training can lead the model to simply learn an encoding of the training classes and thus not
generalize to unseen classes. Face recognition datasets avoid this situation by virtue of the huge
number of training classes and a balanced distribution of examples across all the classes.

6



Under review as a conference paper at ICLR 2020

Following standard protocol for evaluation on the Megaface dataset (Kemelmacher-Shlizerman et al.,
2016), we train on a refined version of the MSCeleb-1M (Guo et al., 2016) dataset released by
Deng et al. (2018) consisting of 1 million images spanning 85k classes. We evaluate with 1 million
distractors from the Megaface dataset and 3.5k query images from the Facescrub dataset (Ng and
Winkler, 2014), which were not seen during training.

Network Architecture. We experiment with two architectures: MobileFaceNet (Chen et al., 2018),
and ResNet-101 (He et al., 2016). We use ReLU activations in the embedding layer for Mobile-
FaceNet, and SThresh activations for ResNet. The activations are `2-normalized to produce an
embedding on the unit sphere, and used to compute the Arcface loss (Deng et al., 2018). We learn
1024 dimensional sparse embeddings for the `1 and F̃ regularizers; and 128, 512 dimensional dense
embeddings as baselines. All models were implemented in Tensorflow (Abadi et al., 2016) with the
sparse retrieval algorithm implemented in C++.2 The re-ranking step used 512-d dense embeddings.

Activation Function. In practice, having a non-linear activation at the embedding layer is crucial for
sparsification. Layers with activations such as ReLU are easier to sparsify due to the bias parameter in
the layer before the activation (linear or batch norm) which acts as a direct control knob to the sparsity.
More specifically, ReLU(x − λ) can be made more (less) sparse by increasing (decreasing) the
components of λ, where λ is the bias parameter of the previous linear layer. In this paper we consider
two types of activations: ReLU(x) = max(x,0), and the soft thresholding operator SThresh(x) =
sgn(x) max(|x|−1/2, 0) (Boyd and Vandenberghe, 2004). ReLU activations always produce positive
values, whereas soft thresholding can produce negative values as well. The analysis in Figure 2 follows
similarly for SThresh using the fact that |SThresh(X)| = ReLU(X − 1/2) + ReLU(−X − 1/2).

Practical Considerations. In practice, setting a large regularization weight λ from the beginning is
harmful for training. Sparsifying too quickly using a large λ leads to many dead activations (saturated
to zero) in the embedding layer and the model getting stuck in a local minima. Therefore, we use an
annealing procedure and gradually increase λ throughout the training using a regularization weight
schedule λ(t) : N 7→ R that maps the training step to a real valued regularization weight. In our
experiments we choose a λ(t) that increases quadratically as λ(t) = λ(t/T )2, until step t = T ,
where T is the threshold step beyond which λ(t) = λ.

Baselines. We compare our proposed F̃-regularizer, with multiple baselines: exhaustive search
with dense embeddings, sparse embeddings using `1 regularization, Sparse Deep Hashing (SDH)
(Jeong and Song, 2018), and PCA, LSH, PQ applied to the 512 dimensional dense embeddings from
both the architectures. We train the SDH model using the aforementioned architectures for 512
dimensional embeddings, with number of active hash bits k = 3. We use numpy (using efficient
MKL optimizations in the backend) for matrix multiplication required for exhaustive search in the
dense and PCA baselines. We use the CPU version of the Faiss (Johnson et al., 2017) library for LSH
and PQ (we use the IVF-PQ index from Faiss).

Further details on the training hyperparameters and the hardware used can be found in Appendix B.

5.1 RESULTS

We report the recall and the time-per-query for various hyperparameters of our proposed approach and
the baselines, yielding trade-off curves. The reported times include the time required for re-ranking.
The trade-off curves for MobileNet and ResNet are shown in Figures 3a and 3c respectively. We
observe that while vanilla `1 regularization is an improvement by itself for some hyperparameter
settings, the F̃ regularizer is a further improvement, and yields the most optimal trade-off curve.
SDH has a very poor speed-accuracy trade-off, which is mainly due to the explosion in the number of
shortlisted candidates with increasing number of active bits leading to an increase in the retrieval time.
On the other hand, while having a small number of active bits is faster, it leads to a smaller recall.
For the other baselines we notice the usual order of performance, with PQ having the best speed-up
compared to LSH and PCA. While dimensionality reduction using PCA leads to some speed-up for
relatively high dimensions, it quickly wanes off as the dimension is reduced even further.

We also report the sub-optimality ratio Rsub = F(fθ,D)/dp̄2 computed over the dataset D, where
p̄ = 1

d

∑d
j=1 p̄j is the mean activation probability estimated on the test data. Notice that R ≥ 1, and

2The implementation code and trained models will be made publicly available after acceptance.

7



Under review as a conference paper at ICLR 2020

(a) Time per query vs recall for MobileNet. (b) Rsub vs sparsity for MobileNet.

(c) Time per query vs recall for ResNet. (d) Rsub vs sparsity for ResNet.

Figure 3: Figures (a) and (c) show the speed vs recall trade-off for the MobileNet and ResNet
architectures respectively. The trade-off curves produced by varying the hyper-parameters of the
respective approaches. The points with higher recall and lower time (top-left side of the plots) are
better. The SDH baseline being out of range of both the plots is indicated using an arrow. Figures (b)
and (d) show the sub-optimality ratio vs sparsity plots for MobileNet and ResNet respectively. Rsub
closer to 1 indicates that the non-zeros are uniformly distributed across the dimensions.

the optimal R = 1 is achieved when p̄j = p̄, ∀j ∈ [1 : d], that is when the non-zeros are evenly
distributed across the dimensions. The sparsity-vs-suboptimality plots for MobileNet and ResNet
are shown in Figures 3a and 3c respectively. We notice that the F̃-regularizer yields values of R
closer to 1 when compared to the `1-regularizer. For the MobileNet architecture we notice that the `1
regularizer is able to achieve values of R close to that of F̃ in the less sparser region. However, the
gap increases substantially with increasing sparsity. For the ResNet architecture on the other hand the
`1 regularizer yields extremely sub-optimal embeddings in all regimes. The F̃ regularizer is therefore
able to produce more balanced distribution of non-zeros.

The sub-optimality is also reflected in the recall values. The gap in the recall values of the `1 and F̃
models is much higher when the sub-optimality gap is higher, as in the case of ResNet, while it is
small when the sub-optimality gap is smaller as in the case of MobileNet. This shows the significance
of having a balanced distribution of non-zeros.

6 CONCLUSION

In this paper we proposed a novel approach to learn high dimensional embeddings with the goal of
improving efficiency of retrieval tasks. Our approach integrates the FLOPs incurred during retrieval
into the loss function as a regularizer and optimizes it directly through a continuous relaxation. We
provide further insight into our approach by showing that the proposed approach favors an even
distribution of the non-zero activations across all the dimensions. We experimentally showed that our
approach indeed leads to a more even distribution when compared to the `1 regularizer. We compared
our approach to a number of other baselines and showed that it has a better speed-vs-accuracy
trade-off. Overall we were able to show that sparse embeddings can be around 50× faster compared
to dense embeddings without a significant loss of accuracy.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, 2016.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical
and optimal lsh for angular distance. NeurIPS, 2015.

Alex Auvolat, Sarath Chandar, Pascal Vincent, Hugo Larochelle, and Yoshua Bengio. Clustering is
efficient for approximate maximum inner product search. arXiv preprint arXiv:1507.05910, 2015.

Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for billion-scale
approximate nearest neighbors. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 202–216, 2018.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu, and Qingfu Wen. Deep quantization network
for efficient image retrieval. AAAI, 2016.

Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. Deep cauchy hashing for hamming space
retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1229–1237, 2018.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 380–388. ACM, 2002.

Sheng Chen, Yang Liu, Xiang Gao, and Zhen Han. Mobilefacenets: Efficient cnns for accurate
real-time face verification on mobile devices. arXiv preprint arXiv:1804.07573, 2018.

Sanjoy Dasgupta, Charles F Stevens, and Saket Navlakha. A neural algorithm for a fundamental
computing problem. Science, 2017.

Jiankang Deng, Jia Guo, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face
recognition. arXiv preprint arXiv:1801.07698, 2018.

Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. Deep hashing for compact
binary codes learning. CVPR, 2015.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate
nearest neighbor search. CVPR, 2013.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via hashing.
VLDB, 1999.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. MS-Celeb-1M: A dataset
and benchmark for large scale face recognition. In European Conference on Computer Vision.
Springer, 2016.

M Hadi Kiapour, Xufeng Han, Svetlana Lazebnik, Alexander C Berg, and Tamara L Berg. Where to
buy it: Matching street clothing photos in online shops. In Proceedings of the IEEE international
conference on computer vision, pages 3343–3351, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
TPAMI, 2011.

9



Under review as a conference paper at ICLR 2020

Yeonwoo Jeong and Hyun Oh Song. Efficient end-to-end learning for quantizable representations.
ICML, 2018.

Yushi Jing, David Liu, Dmitry Kislyuk, Andrew Zhai, Jiajing Xu, Jeff Donahue, and Sarah Tavel.
Visual search at pinterest. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1889–1898. ACM, 2015.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard. The megaface
benchmark: 1 million faces for recognition at scale. CVPR, 2016.

Douwe Kiela and Léon Bottou. Learning image embeddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 36–45, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Workshop, volume 2, 2015.

Deguang Kong, Ryohei Fujimaki, Ji Liu, Feiping Nie, and Chris Ding. Exclusive feature learning on
arbitrary structures via ell1,2-norm. In Advances in Neural Information Processing Systems, pages
1655–1663, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. NeurIPS, 2012.

Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised discrete hashing. NeurIPS, 2017.

Wenye Li, Jingwei Mao, Yin Zhang, and Shuguang Cui. Fast similarity search via optimal sparse
lifting. NeurIPS, 2018.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 806–814, 2015.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolu-
tional neural networks. In ICML, volume 2, page 7, 2016.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 2004.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approximate
nearest neighbor algorithm based on navigable small world graphs. Information Systems, 2014.

Yury A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. TPAMI, 2018.

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
statistical Association, 46(253):68–78, 1951.

Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group lasso for logistic regression. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh. No
fuss distance metric learning using proxies. arXiv preprint arXiv:1703.07464, 2017.

10



Under review as a conference paper at ICLR 2020

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning text similarity with siamese recurrent
networks. In Proceedings of the 1st Workshop on Representation Learning for NLP, pages 148–157,
2016.

Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product search.
In International Conference on Machine Learning, pages 1926–1934, 2015.

Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In Image
Processing (ICIP), 2014 IEEE International Conference on. IEEE, 2014.

Qingqun Ning, Jianke Zhu, Zhiyuan Zhong, Steven CH Hoi, and Chun Chen. Scalable image retrieval
by sparse product quantization. IEEE Transactions on Multimedia, 19(3):586–597, 2016.

Mohammad Norouzi, David J Fleet, and Ruslan R Salakhutdinov. Hamming distance metric learning.
NeurIPS, 2012.

Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin Murphy. Deep metric learning via facility
location. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5382–5390, 2017.

Maxim Raginsky and Svetlana Lazebnik. Locality-sensitive binary codes from shift-invariant kernels.
NeurIPS, 2009.

Parikshit Ram and Alexander G Gray. Maximum inner-product search using cone trees. In Proceed-
ings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 931–939. ACM, 2012.

Alexandre Sablayrolles, Matthijs Douze, Nicolas Usunier, and Hervé Jégou. How should we evaluate
supervised hashing? In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1732–1736. IEEE, 2017.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Spreading vectors for
similarity search. ICLR, 2019.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch nor-
malization help optimization? In Advances in Neural Information Processing Systems, pages
2483–2493, 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 815–823, 2015.

Devashish Shankar, Sujay Narumanchi, HA Ananya, Pramod Kompalli, and Krishnendu Chaudhury.
Deep learning based large scale visual recommendation and search for e-commerce. arXiv preprint
arXiv:1703.02344, 2017.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product
search (mips). In Advances in Neural Information Processing Systems, pages 2321–2329, 2014.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on learning to hash. IEEE
transactions on pattern analysis and machine intelligence, 40(4):769–790, 2018.

Xueyi Wang. A fast exact k-nearest neighbors algorithm for high dimensional search using k-means
clustering and triangle inequality. In Neural Networks (IJCNN), The 2011 International Joint
Conference on, pages 1293–1299. IEEE, 2011.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10(Feb):207–244, 2009.

Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. NeurIPS, 2009.

11



Under review as a conference paper at ICLR 2020

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information processing systems, pages 2074–2082,
2016.

Yang Zhou, Rong Jin, and Steven Chu-Hong Hoi. Exclusive lasso for multi-task feature selection. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 988–995, 2010.

12



Under review as a conference paper at ICLR 2020

Appendix

A GRADIENT COMPUTATIONS

Consider a random variable X ∼ N (µ, σ2) with µ ≤ 0. Define X+ = max(X, 0). The we can
prove the following Lemmas.
Lemma 1.

E[X+] =
σ√
2π

exp

(
− µ2

2σ2

)
+ µ

(
1− Φ

(
−µ
σ

))
, (6)

and,
P(X 6= 0) = 1− Φ

(
−µ
σ

)
(7)

Proof. The proof is based on standard Gaussian identities.

E[X+] =

∫ ∞
0

x√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx =

∫ ∞
−µ

x+ µ√
2πσ2

exp

(
− x2

2σ2

)
dx

=

∫ ∞
−µ

x√
2πσ2

exp

(
− x2

2σ2

)
dx+

∫ ∞
−µ

µ√
2πσ2

exp

(
− x2

2σ2

)
dx

=
σ√
2π

exp

(
− µ2

2σ2

)
+ µ

(
1− Φ

(
−µ
σ

))

P(X 6= 0) =

∫ ∞
0

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx =

∫ ∞
−µ/σ

1√
2π

exp

(
−x

2

2

)
dx

= 1− Φ
(
−µ
σ

)

Lemma 2.
∂

∂µ
P(X 6= 0) = − ∂

∂µ
Φ
(
−µ
σ

)
=

1

σ
√

2π
exp

(
− µ2

2σ2

)
(8)

∂

∂σ
P(X 6= 0) = − ∂

∂σ
Φ
(
−µ
σ

)
= − µ

σ2
√

2π
exp

(
− µ2

2σ2

)
(9)

Proof. Follows directly from the statement by standard differentiation.

Lemma 3.
∂

∂µ
E[X+] = 1− Φ

(
−µ
σ

)
(10)

∂

∂σ
E[X+] =

1√
2π

exp

(
− µ2

2σ2

)
(11)

Proof.

∂

∂µ
E[X+] = − µ

σ
√

2π
exp

(
− µ2

2σ2

)
+

∂

∂µ

[
µ
(

1− Φ
(
−µ
σ

))]
= 1− Φ

(
−µ
σ

)
where the last step follows from Lemma 2.

∂

∂σ
E[X+] =

1√
2π

exp

(
− µ2

2σ2

)
+

µ2

σ2
√

2π
exp

(
− µ2

2σ2

)
+

∂

∂σ

[
µ
(

1− Φ
(
−µ
σ

))]
=

1√
2π

exp

(
− µ2

2σ2

)
where the last step follows from Lemma 2.

13



Under review as a conference paper at ICLR 2020

Lemma 4.

∂

∂µ
E[X+]2 = 2E[X+]

(
1− Φ

(
−µ
σ

))
(12)

∂

∂σ
E[X+]2 = 2E[X+]

1√
2π

exp

(
− µ2

2σ2

)
(13)

Proof. Follows directly from Lemma 3.

Lemma 5.

∂

∂µ
P(X 6= 0)2 = 2P(X 6= 0)

1

σ
√

2π
exp

(
− µ2

2σ2

)
(14)

∂

∂σ
P(X 6= 0)2 = −2P(X 6= 0)

µ

σ2
√

2π
exp

(
− µ2

2σ2

)
(15)

Proof. Follows directly from Lemma 2.

B EXPERIMENTAL DETAILS

All images were resized to size 112× 112 and aligned using a pre-trained aligner3. For the Arcloss
function, we used the recommended parameters of margin m = 0.5 and temperature s = 64. We
trained our models on 4 NVIDIA Tesla V-100 GPUs using SGD with a learning rate of 0.001,
momentum of 0.9. Both the architectures were trained for a total of 230k steps, with the learning
rate being decayed by a factor of 10 after 170k steps. We use a batch size of 256 and 64 per GPU for
MobileFaceNet for ResNet respectively.

Pre-training in SDH is performed in the same way as described above. The hash learning step is
trained on a single GPU with a learning rate of 0.001. The ResNet model is trained for 200k steps
with a batch size of 64, and the MobileFaceNet model is trained for 150k steps with a batch size of
256. We set the number of active bits k = 3 and a pairwise cost of p = 0.1.

Hyper-parameters for MobileNet models.

1. The regularization parameter λ for the F̃ regularizer was varied as 200, 300, 400, 600.

2. The regularization parameter λ for the `1 regularizer was varied as 1.5, 2.0, 2.7, 3.5.

3. The PCA dimension is varied as 64, 96, 128, 256.

4. The number of LSH bits were varied as 512, 768, 1024, 2048, 3072.

5. For IVF-PQ from the faiss library, the following parameters were fixed: nlist=4096,
M=64, nbit=8, and nprobe was varied as 100, 150, 250, 500, 1000.

Hyper-parameters for ResNet baselines.

1. The regularization parameter λ for the F̃ regularizer was varied as 50, 100, 200, 630.

2. The regularization parameter λ for the `1 regularizer was varied as 2.0, 3.0, 5.0, 6.0.

3. The PCA dimension is varied as 48, 64, 96, 128.

4. The number of LSH bits were varied as 256, 512, 768, 1024, 2048.

5. For IVF-PQ, the following parameters were the same as in MobileNet: nlist=4096,
M=64, nbit=8. nprobe was varied as 50, 100, 150, 250, 500, 1000.

3https://github.com/deepinsight/insightface

14

https://github.com/deepinsight/insightface


Under review as a conference paper at ICLR 2020

Re-ranking. We use the following heuristic to create the shortlist of candidates after the sparse
ranking step. We first shortlist all candidates with a score greater than some confidence threshold.
For our experiments we set the confidence threshold to be equal to 0.25. If the size of this shortlist
is larger than k, it is further shrunk by consider the top k scorers. For all our experiments we set
k = 1000. This heuristic avoids sorting the whole array, which can be a bottleneck in this case. The
parameters are chosen such that the time required for the re-ranking step does not dominate the total
retrieval time.

Hardware.

1. All models were trained on 4 NVIDIA Tesla V-100 GPUs with 16G of memory.
2. System Memory: 256G.
3. CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz.
4. Number of threads: 32.
5. Cache: L1d cache 32K, L1i cache 32K, L2 cache 256K, L3 cache 46080K.

All timing experiments were performed on a single thread in isolation.

15


	Introduction
	Related Work
	Expected number of FLOPs
	Our Approach
	Experiments
	Results

	Conclusion
	Gradient computations
	Experimental details

