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ABSTRACT

Collaborative personalization, such as through learned user representations (em-
beddings), can improve the prediction accuracy of neural-network-based models
significantly. We propose Federated User Representation Learning (FURL), a
simple, scalable, privacy-preserving and resource-efficient way to utilize existing
neural personalization techniques in the Federated Learning (FL) setting. FURL
divides model parameters into federated and private parameters. Private param-
eters, such as private user embeddings, are trained locally, but unlike federated
parameters, they are not transferred to or averaged on the server. We show the-
oretically that this parameter split does not affect training for most model per-
sonalization approaches. Storing user embeddings locally not only preserves user
privacy, but also improves memory locality of personalization compared to on-
server training. We evaluate FURL on two datasets, demonstrating a significant
improvement in model quality with 8% and 51% performance increases, and ap-
proximately the same level of performance as centralized training with only 0%
and 4% reductions. Furthermore, we show that user embeddings learned in FL
and the centralized setting have a very similar structure, indicating that FURL can
learn collaboratively through the shared parameters while preserving user privacy.

1 INTRODUCTION

Collaborative personalization, like learning user embeddings jointly with the task, is a powerful
way to improve accuracy of neural-network-based models by adapting the model to each user’s
behavior (Grbovic & Cheng, 2018; Ni et al., 2018; Lee et al., 2017; Jaech & Ostendorf, 2018;
McGraw et al., 2016; Vosecky et al., 2014). However, model personalization usually assumes the
availability of user data on a centralized server. To protect user privacy, it is desirable to train
personalized models in a privacy-preserving way, for example, using Federated Learning (McMahan
et al., 2016; Konen et al., 2016b). Personalization in FL poses many challenges due to its distributed
nature, high communication costs, and privacy constraints (Li et al., 2019a; Bonawitz et al., 2019;
Caldas et al., 2018; Li et al., 2019b; 2018; Liu et al., 2018; Yang et al., 2019; Konen et al., 2016a).

To overcome these difficulties, we propose a simple, communication-efficient, scalable, privacy-
preserving scheme, called FURL, to extend existing neural-network personalization to FL. FURL
can personalize models in FL by learning task-specific user representations (i.e., embeddings) (Lerer
et al., 2019; Grbovic & Cheng, 2018; Ni et al., 2018; Lee et al., 2017; Jaech & Ostendorf, 2018) or
by personalizing model weights (Tang & Wang, 2018). Research on collaborative personalization
in FL (Smith et al., 2017; Sebastian Caldas, 2019; Chen et al., 2018; Yao et al., 2019) has generally
focused on the development of new techniques tailored to the FL setting. We show that most existing
neural-network personalization techniques, which satisfy the split-personalization constraint (1,2,3),
can be used directly in FL, with only a small change to Federated Averaging (McMahan et al., 2016),
the most common FL training algorithm.

Existing techniques do not efficiently train user embeddings in FL since the standard Federated Av-
eraging algorithm (McMahan et al., 2016) transfers and averages all parameters on a central server.
Conventional training assumes that all user embeddings are part of the same model. Transferring
all user embeddings to devices during FL training is prohibitively resource-expensive (in terms of
communication and storage on user devices) and does not preserve user privacy.

FURL defines the concepts of federated and private parameters: the latter remain on the user device
instead of being transferred to the server. Specifically, we use a private user embedding vector on
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each device and train it jointly with the global model. These embeddings are never transferred back
to the server.

We show theoretically and empirically that splitting model parameters as in FURL affects neither
model performance nor the inherent structure in learned user embeddings. While global model ag-
gregation time in FURL increases linearly in the number of users, this is a significant reduction
compared with other approaches (Smith et al., 2017; Sebastian Caldas, 2019) whose global aggre-
gation time increases quadratically in the number of users.

FURL has advantages over conventional on-server training since it exploits the fact that models are
already distributed across users. There is little resource overhead in distributing the embedding table
across users as well. Using a distributed embeddings table improves the memory locality of both
training embeddings and using them for inference, compared to on-server training with a centralized
and potentially very large user embedding table.

Our evaluation of document classification tasks on two real-world datasets shows that FURL has
similar performance to the server-only approach while preserving user privacy. Learning user em-
beddings improves the performance significantly in both server training and FL. Moreover, user
representations learned in FL have a similar structure to those learned in a central server, indicating
that embeddings are learned independently yet collaboratively in FL.

In this paper, we make the following contributions:

• We propose FURL, a simple, scalable, resource-efficient, and privacy preserving method that
enables existing collaborative personalization techniques to work in the FL setting with only min-
imal changes by splitting the model into federated and private parameters.

• We provide formal constraints under which the parameter splitting does not affect model per-
formance. Most model personalization approaches satisfy these constraints when trained using
Federated Averaging (McMahan et al., 2016), the most popular FL algorithm.

• We show empirically that FURL significantly improves the performance of models in the FL
setting. The improvements are 8% and 51% on two real-world datasets. We also show that
performance in the FL setting closely matches the centralized training with small reductions of
only 0% and 4% on the datasets.

• Finally, we analyze user embeddings learned in FL and compare with the user representations
learned in centralized training, showing that both user representations have similar structures.

2 RELATED WORK

Most existing work on collaborative personalization in the FL setting has focused on FL-specific im-
plementations of personalization. Multi-task formulations of Federated Learning (MTL-FL) (Smith
et al., 2017; Sebastian Caldas, 2019) present a general way to leverage the relationship among users
to learn personalized weights in FL. However, this approach is not scalable since the number of
parameters increases quadratically with the number of users. We leverage existing, successful tech-
niques for on-server personalization of neural networks that are more scalable but less general, i.e.,
they satisfy the split-personalization constraint (1,2,3).

Transfer learning has also been proposed for personalization in FL (Hartmann, 2018), but it requires
alternative freezing of local and global models, thus complicating the FL training process. Moreover,
some versions (Zhao et al., 2018) need access to global proxy data. Chen et al. (2018) uses a two-
level meta-training procedure with a separate query set to personalize models in FL.

FURL is a scalable approach to collaborative personalization that does not require complex multi-
phase training, works empirically on non-convex objectives, and leverages existing techniques used
to personalize neural networks in the centralized setting. We show empirically that user representa-
tions learned by FURL are similar to the centralized setting. Collaborative filtering (Ammad-ud-din
et al., 2019) can be seen as a specific instance of the generalized approach in FURL. Finally, while
fine-tuning individual user models after FL training (Popov & Kudinov, 2018) can be effective,
we focuses on more powerful collaborative personalization that leverages common behavior among
users.

2



Under review as a conference paper at ICLR 2020

3 LEARNING PRIVATE USER REPRESENTATIONS

The main constraint in preserving privacy while learning user embeddings is that embeddings should
not be transferred back to the server nor distributed to other users. While typical model parameters
are trained on data from all users, user embeddings are very privacy-sensitive (Resheff et al., 2018)
because a user’s embedding is trained only on that user’s data.

FURL proposes splitting model parameters into federated and private parts. In this section, we show
that this parameter-splitting has no effect on the FL training algorithm, as long as the FL training
algorithm satisfies the split-personalization constraint. Models using common personalization tech-
niques like collaborative filtering, personalization via embeddings or user-specific weights satisfy
the split-personalization constraint when trained using Federated Averaging.

3.1 SPLIT PERSONALIZATION CONSTRAINT

FL algorithms typically have two steps:

1. Local Training: Each user initializes their local model parameters to be the same as the latest
global parameters stored on the server. Local model parameters are then updated by individual
users by training on their own data. This produces different models for each user.1

2. Global Aggregation: Locally-trained models are ”aggregated” together to produce an improved
global model on the server. Many different aggregation schemes have been proposed, from a sim-
ple weighted average of parameters (McMahan et al., 2016), to a quadratic optimization (Smith
et al., 2017).

To protect user privacy and reduce network communication, user embeddings are treated as private
parameters and not sent to the server in the aggregation step. Formal conditions under which this
splitting does not affect the model quality are described as follows.

Suppose we train a model on data from n users, and the k-th training example for user i has features
xi
k, and label yik. The predicted label is ŷik = f(xi

k;wf , w
1
p, . . . , w

n
p ), where the model has federated

parameters wf ∈ Rf and private parameters wi
p ∈ Rp ∀i ∈ {1, . . . , n}.

In order to guarantee no model quality loss from splitting of parameters, FURL requires the split-
personalization constraint to be satisfied, i.e., any iteration of training produces the same results
irrespective of whether private parameters are kept locally, or shared with the server in the aggre-
gation step. The two following constraints are sufficient (but not necessary) to satisfy the split-
personalization constraint: local training must satisfy the independent-local-training constraint (1),
and global aggregation must satisfy the independent-aggregation constraint (2,3).

3.2 INDEPENDENT LOCAL TRAINING CONSTRAINT

The independent-local-training constraint requires that the loss function used in local training on
user i is independent of private parameters for other users wj

p, ∀j 6= i. A corollary of this constraint
is that for training example k on user i, the gradient of the local loss function with respect to other
users’ private parameters is zero:

∂L(ŷik, y
i
k)

∂wj
p

=
∂L(f(xi

k;wf , w
1
p, . . . , w

n
p ), y

i
k)

∂wj
p

= 0 ,∀j 6= i (1)

Equation 1 is satisfied by most implementations of personalization techniques like collaborative
filtering, personalization via user embeddings or user-specific model weights, and MTL-FL (Smith
et al., 2017; Sebastian Caldas, 2019). Note that (1) is not satisfied if the loss function includes a norm
of the global user representation matrix for regularization. In the FL setting, global regularization
of the user representation matrix is impractical from a bandwidth and privacy perspective. Even in
centralized training, regularization of the global representation matrix slows down training a lot, and
hence is rarely used in practice (Ni et al., 2018). Dropout regularization does not violate (1). Neither
does regularization of the norm of each user representation separately.

1Although not required, for expositional clarity we assume local training uses gradient descent, or a stochas-
tic variant of gradient descent.
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3.3 INDEPENDENT AGGREGATION CONSTRAINT

The independent-aggregation constraint requires, informally, that the global update step for feder-
ated parameters is independent of private parameters. In particular, the global update for federated
parameters depends only on locally trained values of federated parameters, and optionally, on some
summary statistics of training data.

Furthermore, the global update step for private parameters for user i is required to be independent of
private parameters of other users, and independent of the federated parameters. The global update
for private parameters for user i depends only on locally trained values of private parameters for user
i, and optionally, on some summary statistics.

The independent-aggregation constraint implies that the aggregation step has no interaction terms
between private parameters of different users. Since interaction terms increase quadratically in the
number of users, scalable FL approaches, like Federated Averaging and its derivatives (McMahan
et al., 2016; Leroy et al., 2018) satisfy the independent-aggregation assumption. However, MTL-FL
formulations (Smith et al., 2017; Sebastian Caldas, 2019) do not.

More formally, at the beginning of training iteration t, let wt
f ∈ Rf denote federated parameters and

wi,t
p ∈ Rp denote private parameters for user i. These are produced by the global aggregation step

at the end of the training iteration t− 1.

Local Training At the start of local training iteration t, model of user i initializes its local feder-
ated parameters as ut

f,i := wt
f , and its local private parameters as ui,t

p,i := wi,t
p , where u represents

a local parameter that will change during local training. ui,t
p,i denotes private parameters of user

i stored locally on user i’s device. Local training typically involves running a few iterations of
gradient descent on the model of user i, which updates its local parameters ut

f,i and ui,t
p,i.

Global Aggregation At the end of local training, these locally updated parameters u are sent to
the server for global aggregation. Equation 2 for federated parameters and Equation 3 for private
parameters must hold to satisfy the independent-aggregation constraint. In particular, the global
update rule for federated parameters wf ∈ Rf must be of the form:

wt+1
f := af (w

t
f , u

t
f,1, . . . , u

t
f,n, s1, . . . , sn) (2)

where ut
f,i is the local update of wf from user i in iteration t, si ∈ Rs is summary information about

training data of user i (e.g., number of training examples), and af is a function from Rf+nf+ns 7→
Rf .

Also, the global update rule for private parameters of user i, wi
p ∈ Rp, must be of the form:

wi,t+1
p := ap(w

i,t
p , ui,t

p,i, s1, . . . , sn) (3)

where ui,t
p,i is the local update of wi

p from user i in iteration t, si ∈ Rs is summary information about
training data of user i, and ap is a function from R2p+ns 7→ Rp.

In our empirical evaluation of FURL, we use Federated Averaging as the function af , while the
function ap is the identity function wi,t+1

p := ui,t
p,i (more details in Section 3.4). However, FURL’s

approach of splitting parameters is valid for any FL algorithm that satisfies (2) and (3).

3.4 FURL WITH FEDERATED AVERAGING

FURL works for all FL algorithms that satisfy the split-personalization constraint. Our empirical
evaluation of FURL uses Federated Averaging (McMahan et al., 2016), the most popular FL algo-
rithm.

The global update rule of vanilla Federated Averaging satisfies the independent-aggregation con-
straint since the global update of parameter w after iteration t is:

wt+1 =

∑n
i=1 u

t
ici∑n

i=1 ci
(4)
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Figure 1: Personalized Document Model in FL.

where ci is the number of training examples for user i, and ut
i is the value of parameter w after local

training on user i in iteration t. Recall that ut
i is initialized to wt at the beginning of local training.

Our implementation uses a small tweak to the global update rule for private parameters to simplify
implementation, as described below.

In practical implementations of Federated Averaging (Bonawitz et al., 2019), instead of sending
trained model parameters to the server, user devices send model deltas, i.e., the difference between
the original model downloaded from the server and the locally-trained model: dti := ut

i − wt, or
ut
i = dti + wt. Thus, the global update for Federated Averaging in Equation 4 can be written as:

wt+1 =

∑n
i=1(d

t
i + wt)ci∑n

i=1 ci
=

∑n
i=1 d

t
ici +

∑n
i=1 w

tci∑n
i=1 ci

= wt +

∑n
i=1 d

t
ici∑n

i=1 ci
(5)

Since most personalization techniques follow Equation 1, the private parameters of user i, wi
p don’t

change during local training on other users. Let dj,tp,i be the model delta of private parameters of user
i after local training on user j in iteration t, then dj,tp,i = 0,∀j 6= i. Equation 5 for updating private
parameters of user i can hence be written as:

wi,t+1
p = wi,t

p +

∑n
j=1 d

j,t
p,icj∑n

i=1 ci
= wi,t

p +
di,tp,ici∑n
i=1 ci

= wi,t
p + zid

i,t
p,i (6)

where zi =
ci∑n
i=1 ci

.

The second term in the equation above is multiplied by a noisy scaling factor zi, an artifact of per-
user example weighting in Federated Averaging. While it is not an essential part of FURL, our
implementation ignores this scaling factor zi for private parameters. Sparse-gradient approaches for
learning representations in centralized training (Abadi et al., 2015; Paszke et al., 2017) also ignore
a similar scaling factor for efficiency reasons. Thus, for the private parameters of user i, we simply
retain the value after local training on user i (i.e., zi = 1) since it simplifies implementation and
does not affect the model performance:

wi,t+1
p = wi,t

p + di,tp,i = ui,t
p (7)

where ui,t
p is the local update of wi

p from user i in iteration t. In other words, the global update rule
for private parameters of user i is to simply keep the locally trained value from user i.

3.5 FURL TRAINING PROCESS

While this paper focuses on learning user embeddings, our approach is applicable to any personaliza-
tion technique that satisfies the split-personalization constraint. The training process is as follows:

1. Local Training: Initially, each user downloads the latest federated parameters from the server.
Private parameters of user i, wi

p are initialized to the output of local training from the last time
user i participated in training, or to a default value if this was the first time user i was trained.
Federated and private parameters are then jointly trained on the task in question.

2. Global Aggregation: Federated parameters trained in the step above are transferred back to, and
get averaged on the central server as in vanilla Federated Averaging. Private parameters (e.g.,
user embeddings) trained above are stored locally on the user device without being transferred
back to the server. These will be used for the next round of training. They may also be used for
local inference.

Figure 1 shows an example of federated and private parameters, explained further in Section 4.1
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Dataset # Samples (Train/Eval/Test) # Users (Train/Eval/Test)

Sticker 940K (750K/94K/96K) 3.4K (3.3K/3.0K/3.4K)

Subreddit 942K (752K/94K/96K) 3.8K (3.8K/3.8K/3.8K)

Table 1: Dataset statistics.

4 EVALUATION

We evaluate the performance of FURL on two document classification tasks that reflect real-world
data distribution across users.

4.1 EXPERIMENTAL SETUP

Datasets We use two datasets, called Sticker and Subreddit. Their characteristics are as follows.

1. In-house production dataset (Sticker): This proprietary dataset from a popular messaging app
has randomly selected, anonymized messages for which the app suggested a Sticker as a reply.
The features are messages; the task is to predict user action (click or not click) on the Sticker
suggestion, i.e., binary classification. The messages were automatically collected, de-identified,
and annotated; they were not read or labeled by human annotators.

2. Reddit comment dataset (Subreddit): These are user comments on the top 256 subreddits on
reddit.com. Following Bagdasaryan et al. (2018), we filter out users who have fewer than 150 or
more than 500 comments, so that each user has sufficient data. The features are comments; the
task is to predict the subreddit where the comment was posted, i.e., multiclass classification. The
authors are not affiliated with this publicly available dataset (Baumgartner, 2019).

Sticker dataset has 940K samples and 3.4K users (274 messages/user on average) while Subred-
dit has 942K samples and 3.8K users (248 comments/user on average). Each user’s data is split
(0.8/0.1/0.1) to form train/eval/test sets. Table 1 presents the summary statistics of the datasets.

Document Model We formulate the problems as document classification tasks and use the a
LSTM-based (Hochreiter & Schmidhuber, 1997) neural network architecture in Figure 1. The text is
encoded into an input representation vector by using character-level embeddings and a Bidirectional
LSTM (BLSTM) layer. A trainable embedding layer translates each user ID into a user embedding
vector. Finally, an Multi-Layer Perceptron (MLP) produces the prediction from the concatenation
of the input representation and the user embedding. All the parameters in the character embedding,
BLSTM and MLP layers are federated parameters that are shared across all users. These parameters
are locally trained and sent back to the server and averaged as in standard Federated Averaging.
User embedding is considered a private parameter. It is jointly trained with federated parameters,
but kept privately on the device. Even though user embeddings are trained independently on each de-
vice, they evolve collaboratively through the globally shared model, i.e., embeddings are multiplied
by the same shared model weights.

Configurations We ran 4 configurations to evaluate the performance of the models with/without
FL and personalization: Global Server, Personalized Server, Global FL, and Personalized FL.
Global is a synonym for non-personalized, Server is a synonym for centralized training. The ex-
periment combinations are shown in Table 2.

Model Training Server-training uses SGD, while FL training uses Federated Averaging to com-
bine SGD-trained client models (McMahan et al., 2016). Personalization in FL uses FURL training
as described in section 3.5 The models were trained for 30 and 40 epochs for the Sticker and Sub-
reddit datasets, respectively. One epoch in FL means the all samples in the training set were used
once.

We ran hyperparameter sweeps to find the best model architectures (such as user embedding dimen-
sion, BLSTM and MLP dimensions) and learning rates. The FL configurations randomly select 10
users/round and run 1 epoch locally for each user in each round. Separate hyperparameter sweeps
for FL and centralized training resulted in the same optimal embedding dimension for both config-
urations. The optimal dimension was 4 for the Sticker task and 32 for the Subreddit task.
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Config With personalization With FL

Global Server No No
Personalized Server Yes No
Global FL No Yes
Personalized FL Yes Yes

Table 2: Experimental configurations.

Figure 2: Performance of the configurations.

Metrics We report accuracy for experiments on the Subreddit dataset. However, we report AUC
instead of accuracy for the Sticker dataset since classes are highly unbalanced.

4.2 EVALUATION RESULTS

Personalization improves the performance significantly. User embeddings increase the AUC
on the Sticker dataset by 7.85% and 8.39% in the Server and FL configurations, respectively. The
improvement is even larger in the Subreddit dataset with 37.2% and 50.51% increase in the accuracy
for the Server and FL settings, respectively. As shown in Figure 2, these results demonstrate that the
user representations effectively learn the features of the users from their data.

Personalization in FL provides similar performance as server training. There is no AUC re-
duction on the Sticker dataset while the accuracy drops only 3.72% on the Subreddit dataset (as
shown in Figure 2). Furthermore, the small decrease of FL compared to centralized training is
expected and consistent with other results (McMahan et al., 2016). The learning curves on the
evaluation set on Figure 3 show the performance of FL models asymptotically approaches the server
counterpart. Therefore, FL provide similar performance with the centralized setting while protecting
the user privacy.

User embeddings learned in FL have a similar structure to those learned in server training.
Recall that for both datasets, the optimal embedding dimension was the same for both centralized
and FL training. We visualize the user representations learned in both the centralized and FL settings
using t-SNE (van der Maaten & Hinton, Nov 2008). The results demonstrate that similar users are
clustered together in both settings.

Visualization of user embeddings learned in the Sticker dataset in Figure 4 shows that users having
similar (e.g., low or high) click-through rate (CTR) on the suggested stickers are clustered together.
For the Subreddit dataset, we highlight users who comment a lot on a particular subreddit, for the
top 5 subreddits (AskReddit, CFB, The Donald, nba, and politics). Figure 5 indicates that users who
submit their comments to the same subreddits are clustered together, in both settings. Hence, learned
user embeddings reflect users’ subreddit commenting behavior, in both FL and Server training.

5 CONCLUSION AND FUTURE WORK

This paper proposes FURL, a simple, scalable, bandwidth-efficient technique for model person-
alization in FL. FURL improves performance over non-personalized models and achieves similar
performance to centralized personalized model while preserving user privacy. Moreover, represen-
tations learned in both server training and FL show similar structures. In future, we would like to
evaluate FURL on other datasets and models, learn user embeddings jointly across multiple tasks,
address the cold start problem and personalize for users not participating in global FL aggregation.
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Config AUC
(Sticker)

Accuracy
(Subreddit)

Global Server 57.75% 28.93%
Personalized Server 65.60% 66.13%
Global FL 57.24% 11.90%
Personalized FL 65.63% 62.41%

Table 3: Performance of the configurations.

(a) Sticker dataset. (b) Subreddit dataset.

Figure 3: Learning curves on the datasets.

Figure 4: User embeddings in Sticker dataset, colored by user click-through rates (CTR).

Figure 5: User embeddings in Subreddit dataset, colored by each user’s most-posted subreddit.
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