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ABSTRACT

Adversarial learning has shown its advances in generating natural and diverse de-
scriptions in image captioning. However, the learned reward of existing adversarial
methods is vague and ill-defined due to the reward ambiguity problem. In this
paper, we propose a refined Adversarial Inverse Reinforcement Learning (rAIRL)
method to handle the reward ambiguity problem by disentangling reward for each
word in a sentence, as well as achieve stable adversarial training by refining the
loss function to shift the stationary point towards Nash equilibrium. In addition,
we introduce a conditional term in the loss function to mitigate mode collapse and
to increase the diversity of the generated descriptions. Our experiments on MS
COCO show that our method can learn compact reward for image captioning.

1 INTRODUCTION

Image captioning is a task of generating descriptions of a given image in natural language. In a
general encoder-decoder structure (Vinyals et al., 2015), image features are encoded in a CNN and
decoded into a caption in a word by word manner. Based on the loss function, standard approaches to
the problem could be divided into three categories: MLE (Maximum Likelihood Estimation), RL
(Reinforcement Learning) and GAN (Generative Adversarial Network).

Early proposed methods were based on MLE function and made improvements by designing specific
model structure (Xu et al., 2015). MLE adopts the cross-entropy loss and learns a one-hot distribution
for each word in the sentence. By maximizing the probability of the ground truth word whilst
suppressing other reasonable vocabularies, the probability distribution learned by MLE tends to be
sparse and the generated captions have limited diversity (Dai et al., 2017). On the other hand, RL
has advantages in boosting the model performance by optimizing the handcrafted metrics (Rennie
et al., 2017; Liu et al., 2017; Chen et al., 2019). However, due to the reward hacking problem,
RL maximizes the reward in an unintended way and fails to produce human-like descriptions (Li
et al., 2019a). Considering naturalness and diversity of the generated captions, GAN has raised
attention in image captioning for its capability of producing descriptions that are indistinguishable
from human-written ones (Dai et al., 2017; Shetty et al., 2017; Chen et al., 2019; Dognin et al., 2019).

In image captioning, the generator of GAN learns true data distribution by maximizing the reward
function learned from a discriminator, and the discriminator distinguishes the generated sample from
the true data. The adversarial training converges to an equilibrium point (i.e., Nash equilibrium) at
which both the generator and discriminator cannot improve (Goodfellow et al., 2014). As shown in
Figure 1, the learned distribution of GAN is closer to the ground truth distribution than that of other
methods (i.e., MLE and RL) on different splits. However, previous work of adversarial networks in
image captioning gives one reward function D for a complete sentence consisting of n words. This
strategy causes the reward ambiguity problem (Ng et al., 1999) since there are many optimal policies
that determine the sentence can explain one reward. The reward ambiguity problem makes the
discriminator unable to distinguish the true reward functions from those shaped by the environment
dynamics (Fu et al., 2018).

Facing the challenge, we adopt AIRL (Fu et al., 2018) to solve the reward ambiguity problem by
disentangling reward for each action (i.e., word in a sentence) and learning a compact reward function.
compact means a smooth reward function of the vocabulary, i.e., words with similar semantics, such
as children and kids, correspond to close reward values. Driven by the compact reward function of
the discriminator, the generator learns the optimal policy and thus produces qualitative descriptions.
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(a) Standard split (Karpathy & Fei-Fei, 2015) (b) Robust split (Lu et al., 2018)

Figure 1: Comparison of word count ratios (Shetty et al., 2017) on two splits of MS COCO. x axis is the {test
frequency}/{train frequency} of a word and y axis is the word count of the corresponding ratio. GT represents
ground truth distribution.

However, there are still two major problems to address: 1) AIRL is difficult to converge to Nash
equilibrium using policy gradient (See Section 4.2 for details); 2) AIRL is designed without mode
control, and thus the outputs have limited diversity, which is a commonly encountered issue called
mode collapse (Mirza & Osindero, 2014).

In this paper, we propose a refined AIRL method to learn a compact reward function for each word,
as well as achieve stable adversarial training by refining the loss function to shift the stationary point
towards Nash equilibrium. The refined method makes it possible to reach the equilibrium point for a
non-concave model function of the generator. In addition, a conditional term is introduced in the loss
function to mitigate mode collapse and to increase the diversity of the generated descriptions. Both
the caption evaluator (i.e., discriminator) (Cui et al., 2018; Sharif et al., 2018) and the generator are
cast into this unified framework, where the discriminator evaluates captions using a learned compact
reward function, and the generator produces qualitative image descriptions. We demonstrate the
effectiveness of our method in the experiments.

2 RELATED WORK

Image Captioning. The development of image captioning can be summarized into two directions:
model structure design (Lu et al., 2017; Yao et al., 2018) and loss function construction (Rennie et al.,
2017; Ren et al., 2017). In the methods based on model structure design, attention mechanism and
the fusion of visual and semantic information are the key focus. Lu et al. (2017; 2018) proposed a
sentinel gate to learn adaptive attention between visual content and non-visual text. Yao et al. (2018)
explored the role of visual relationship in image captioning. On the other hand, methods based on
loss function construction focus on optimization of the loss function. Rennie et al. (2017) optimized
on non-differentiable evaluation metric using policy gradient, and improved scores of these metrics
on various models. Ren et al. (2017) designed an embedding reward under actor-critic reinforcement
learning. Similarly, we address the construction of loss functions, and thus our algorithm can be built
on existing model structures. See Appendix E for a short discussion about different loss functions.

Adversarial Methods for Image Captioning. Adversarial methods are known for producing plau-
sible samples by training the generator and the discriminator in an adversarial manner (Goodfellow
et al., 2014). In image captioning, the discriminator is formed as a binary classifier that distinguishes
the generated sentence from the ground truth, while the generator produce captions that can fool the
discriminator. Conditional GAN was proposed in (Dai et al., 2017) to improve the naturalness and
diversity of generated captions. CNN and RNN based discriminators were introduced in (Chen et al.,
2019). However, existing methods estimate a reward function for the complete sentence consisting of
n words, where multiple optimal policies that determine the sentences can correspond to one reward
(Ng et al., 1999). Thus the learned reward is ambiguous and ill-defined. We solve this problem by
recovering a compact reward function for each word in the sentence under a refined AIRL framework.
Although AIRL has been utilized to solve problems in other fields (Wang et al., 2018; Li et al.,
2019b; Shi et al., 2018), we are the first to make algorithmic improvements to AIRL such that Nash
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equilibrium can be reached even for a non-concave model function of the generator, and that diversity
of the outputs can be increased.

3 ADVERSARIAL INVERSE REINFORCEMENT LEARNING

Due to the high variance estimate of a full sentence and the reward ambiguity problem, instead
of learning reward for a complete sentence, we could learn reward distribution pθ(at, st) for each
word-state pair (at, st) so that the true reward can be recovered at optimality (Fu et al., 2018). In the
following, we introduce how AIRL disentangles reward for each word-state pair (at, st).

AIRL is an adversarial reward learning algorithm based on IRL. Finn et al. (2016) first proved that
IRL is mathematically equivalent to GAN under a special form of the discriminator:

Dθ(at, st) =
pθ(at, st)

pθ(at, st) + π(at, st)
(1)

pθ(at, st) = exp {fθ(at, st)} (2)
where pθ(at, st) is the actual probability distribution estimated by the discriminator, and π(at, st) is
the policy produced by the generator.

The goal is to estimate a reward distribution pθ(at, st) that approximates the true data distribution
pdata(at, st), as well as to learn an optimal policy π that maximizes the reward. Subsequently,
considering reward ambiguity problem, Fu et al. (2018) further extended the theory of IRL to AIRL
by adding a reward shaping term hϕ into fθ(at, st):

fθ,ϕ(at, st) = gθ(at, st; st+1) + γhϕ(st+1)− hϕ(st) (3)

where gθ denotes the reward approximator that recovers the true reward up to a constant, and hϕ is
the reward shaping term that preserves the optimal policy. γ is a constant in range (0, 1].

In the context of divergence minimization, the adversarial process can be represented as a min-max
game (Mescheder & Geiger, 2017):

min
π

max
θ,ϕ

Eadata
t ∼pdata

[log
(
Dθ,ϕ(a

data
t , sdata

t )
)
] + Eat∼π[log

(
1−Dθ,ϕ(at, st)

)
] (4)

where pdata is the true data distribution and π is the policy distribution learned by the generator.
(adata
t , sdata

t ) is the word-state pair of the true data.

Despite of the capability of AIRL in disentangling reward for each word, it is difficult for the above
AIRL algorithm to converge to Nash equilibrium and to produce diverse outputs through adversarial
training (See Section 4.2 for details). These issues can result in a non-optimal solution and lack of
diversity of the generated descriptions. Aiming to learn the optimal compact reward as well as diverse
captions, we refine the loss function to shift the stationary point towards Nash equilibrium and to
mitigate mode collapse in the two-player game.

4 LEARNING COMPACT REWARD FOR IMAGE CAPTIONING

Algorithm 1: Refined ARIL
Initialize policy πψ and discriminator fθ,ϕ.
for iteration i in {1, ..., N} do

Obtain caption {adata
1 , ..., adata

n } from the ground truth.
Collect generated caption {a1, ..., an} by executing policy πψ .
Dθ,ϕ←sigmoid(fθ,ϕ − log(πψ))
Update (θ, ϕ) via Eq. (5) for the discriminator.
Update ψ via Eq. (11) for the generator.

end

To address the problems discussed above, we refine the loss function to: 1) find a compact reward
function that is optimal; 2) increase diversity of the generated captions. In particular, a constant term
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is used to solve 1) by shifting the stationary point to Nash equilibrium, and a conditional term is
introduced to solve 2) by utilizing mode control techniques. Our algorithm is detailed in Algorithm 1,
where n is the sentence length and N denotes number of iterations.

In the following notations, θ and ϕ are the parameters of the discriminator, ψ represents the parameter
of the generator, and at,st denote the tth word and its corresponding state, respectively.

4.1 DISCRIMINATOR

The objective of the discriminator is to distinguish between the true data and generated samples. At
time t, the discriminator maximizes the divergence in Eq. (4) by

Lt(θ, ϕ) = − log
(
Dθ,ϕ(a

data
t , sdata

t )
)
adata
t ∼pdata

− log
(
1−Dθ,ϕ(at, st)

)
at∼πψ

(5)

where pdata is the true data distribution and πψ is the policy distribution estimated by the generator.
Dθ,ϕ is computed as in Eq. (1) and Eq. (2), where the discriminator learns the state value fθ,ϕ for
Dθ,ϕ and the generator estimates the policy distribution πψ for Dθ,ϕ, respectively.

4.2 GENERATOR

In the following, Dθ,ϕ is represented as below (Fu et al., 2018) using Eq. (1) and Eq. (2):

Dθ,ϕ(at, st) = sigmoid
(
fθ,ϕ(at, st)− log(πψ

)
) (6)

Given word at that is sampled from the policy πψ , the generator maximizes Dθ,ϕ(at, st) by

Lt(ψ) = −Eat∼πψ [log
(
Dθ,ϕ(at, st)

)
− log

(
1−Dθ,ϕ(at, st)

)
]

= −Eat∼πψ [fθ,ϕ(at, st)− log(πψ)]
(7)

Using REINFORCE algorithm (Sutton & Barto, 1998), the gradient∇ψLt becomes:

∇ψLt = −
∑

πψ

(
fθ,ϕ(at, st)− log(πψ)

)
∇ψπψ+πψ∇ψ

(
fθ,ϕ(at, st)− log(πψ)

)
= −

∑
πψ
πψ

[
1

πψ

(
fθ,ϕ(at, st)− log(πψ)

)
∇ψπψ +∇ψ

(
fθ,ϕ(at, st)− log(πψ)

)]
= − 1

πψ

(
fθ,ϕ(at, st)− log(πψ)

)
∇ψπψ −∇ψ

(
fθ,ϕ(at, st)− log(πψ)

)
= − 1

πψ

(
fθ,ϕ(at, st)− log(πψ)− 1

)
∇ψπψ

(8)

When the generator converges (i.e.,∇ψLt = 0), there exists two stationary points: ∇ψπψ = 0 and
log(πψ) = fθ,ϕ(at, st)− 1. If Nash equilibrium can be reached at optimality, the sample distribution
estimated by the generator should converge to the real data distribution (Dθ,ϕ = 0.5 when∇ψLt = 0).
Thus it’s only possible for the first point reach Nash equilibrium since Dθ,ϕ = sigmoid(1) 6= 0.5
(using Eq. (6)) at the second point. However, even for the first point, Nash equilibrium exists only for
a concave πψ, requiring Hessian of the gradient vector filed being positive definite (Mescheder &
Geiger, 2017). To relax the constraint, a constant term is added into the expectation in Eq. (7)

Lt(ψ) = −Eat∼πψ [fθ,ϕ(at, st)− log(πψ) + 1] (9)

∇ψLt = −
1

πψ
(fθ,ϕ(at, st)− log(πψ))∇ψπψ (10)

to expand the feasible region by shifting the second stationary point toDθ,ϕ(at) = sigmoid(0) = 0.5.
According to the intermediate value theorem, Dθ,ϕ = 0.5 at the second stationary point exists as
long as Dθ,ϕ can be regarded as a continuous function with domain [0, 1]. Therefore, it’s possible to
achieve Nash equilibrium even for a non-concave πψ. It is noted that the constant term can also be
regarded as baseline in REINFORCE, except it is utilized to centralize the stationary point instead of
reducing variance of the estimation.

In practice, mode collapse occurs when the generator produces a single or limited modes, which
exhibits as little diversity in image captioning. To mitigate mode collapse (Mirza & Osindero, 2014)
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and increase the diversity of the generated captions, we add ground truth data into the generator as a
conditional term:

Lt(ψ) = −Eat∼πψ [fθ,ϕ(at, st)− log(πψ) + 1]− Eadata
t ∼πdata

ψ
[fθ,ϕ(a

data
t , sdata

t )− log(πdata
ψ ) + 1]

= −
(
fθ,ϕ(at, st)− log(πψ)

)
log(πψ)−

(
fθ,ϕ(a

data
t , sdata

t )− log(πdata
ψ )

)
log(πdata

ψ )
(11)

where πdata
ψ is the approximated real data distribution in the generator, and Eadata

t ∼πdata
ψ
[·] is the condi-

tional term. The coefficient of log(πdata
ψ ) is symmetrical to the coefficient of log(πψ) and is updated

adaptively in the training process. The conditional term helps in strengthening the generator in the
adversarial training. When Ddata > Dgen, the gradient of the true data becomes larger than that of
the generated one (∇πdata

ψ
Lt > ∇πψLt), and thus the generator further increases the probability of

the true data (πdata
ψ ). Otherwise (i.e., Ddata < Dgen), the generator prefers sampling its self-generated

words to fool the discriminator. By switching between the true data and the generated samples, the
generator maintains informative gradient during the adversarial training (Peng et al., 2019). Note
that adding the conditional term does not change the model’s convergence to Nash equilibrium since
πψ = πdata

ψ at the second stationary point.

5 EXPERIMENTS

In the experiments, we validate the effectiveness of the proposed algorithm by answering three
questions: 1) Is the caption evaluator (i.e., discriminator) capable of learning compact reward? 2)
Driven by the learned reward, is the caption generator effective to produce qualitative captions? 3)
How does our algorithm perform when built on or compared with existing methods?

To answer 1), we first tested the compactness of the learned reward by observing performance of the
collected top-k captions. Then we explored the correlation between the learned reward and the human
evaluation results. To answer 2), we evaluated the quality of the generated caption on its content,
diversity and grammar. To answer 3), we built our algorithm on existing learning methods and
compared their performance. We also conducted ablation experiments to demonstrate the importance
of each component of our algorithm.

5.1 IMPLEMENTATION DETAILS

We conducted experiments on the well-known benchmark dataset MS COCO (Chen et al., 2015).
The dataset has 123,287 labeled images and each image has at least 5 human annotated captions as
reference. To assess the robustness of our algorithm, we use two splits of the COCO dataset: standard
split (Karpathy & Fei-Fei, 2015) which is created by randomly picking test images, and robust split
(Lu et al., 2018) which is organized to maximize difference of the co-occurrence distribution between
the training and test set. The robust split is recently proposed and is more challenging due to its
distribution difference between the training and test set. The standard split has 113287/5000/5000
train/val/test images and the robust split has 110234/3915/9138 train/val/test images.

We implement our algorithm using Adam optimizer (Kingma & Ba, 2014) with fixed learning rate
10−5. Our vocabulary size is fixed to 10,000 including a special start sign <BOS>and an end sign
<EOS>. In the generator, the number of hidden nodes of every layer is 512. For simplicity, the
discriminator has the same model structure as the generator except having one additional layer for
estimating hϕ. For fair comparison, all the methods in MLE, RL, GAN, AIRL and rAIRL were
produced using the same image features and model structure in (Anderson et al., 2018). Note that
our scores of MLE are lower on the standard split but higher on the robust split than (Anderson
et al., 2018) because 1) we used fixed number of the bounding box (i.e., 36) for simplicity; 2) the
hyperparameters were tuned to adapt to both splits and thus are not exactly the same with (Anderson
et al., 2018).

5.2 PERFORMANCE OF THE RECOVERED REWARD

Compactness. Compactness means smoothness of the reward function with respect to the vocabu-
lary. For example, kid can also be referred to as little boy or little girl, and thus their reward values
should be close in the discriminator. Driven by such reward function, the generator is supposed to
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(a) SPICE scores on the standard split. (b) SPICE scores on the robust split.

Figure 2: Comparison of SPICE scores of the top-k captions on the standard split and robust split, respectively.

give top-k captions that convey the same semantics as the ground truth, which can be evaluated by
SPICE curve with respect to k. Figure 2 shows SPICE of the kth caption (k <= 40) in the adversarial
(i.e., rAIRL, AIRL, GAN) and non-adversarial (i.e., RL of SPICE optimization) methods. RL and the
proposed rAIRL have similar performance on the standard split, whereas on the robust split, the score
of RL drops rapidly as k increases and finally falls below other methods. Note that the distribution
difference of the training and test set is maximized on the robust split. This proves that the way that
RL optimizes the handcrafted reward does not make it learn semantics comprehensively and thus
causes its weaker generalization ability. However, by learning the reward function in an adversarial
manner, the scores of the adversarial methods drop slower with k. And our rAIRL consistently
performs the best as k increases, which proves the compactness of the learned reward.

Table 1: Sentence-level correlation with human evaluation. All p-value (not shown) are less than 0.001.

Method Correctness Throughness

Pearson Spearman Kendall Peason Spearman Kendall

SPICE 0.44 0.45 0.39 0.45 0.46 0.38
GAN 0.12 0.11 0.15 0.12 0.11 0.15
AIRL 0.04 0.06 0.08 0.05 0.06 0.07
rAIRL 0.43 0.40 0.35 0.40 0.37 0.34

rAIRL+SPICE 0.47 0.46 0.41 0.46 0.47 0.39

Correlation with human evaluation. As a caption evaluator, the discriminator learns gθ that
recovers the true reward up to a constant at optimality (Fu et al., 2018). We explore the correlation
between the recovered reward gθ and the human evaluation scores from the COMPOSITE dataset
(Aditya et al., 2017), where the Amazon Mechanical Turk (AMT) workers evaluate two aspects of
the captions (i.e., correctness and throughness) at a range of 1-5, see Appendix B for details of the
human evaluation process. The correlation is evaluated using Pearson p, Kendall’s τ and Spearman’s
r correlation coefficients. In Table 1, SPICE is the handcrafted metric (Anderson et al., 2016). GAN
is the standard adversarial approach which learns reward D for a complete sentence (Dai et al.,
2017). AIRL is the standard adversarial inverse reinforcement learning method in (Fu et al., 2018)
that recovers reward gθ in Eq. (3). rAIRL is the proposed method that recovers reward gθ in Eq.
(3). rAIRL+SPICE is a linear combination of gθ and SPICE score. Among the reward-learning
methods, AIRL poorly correlates with human, whereas the proposed rAIRL improves AIRL on all
the correlation metrics, especially on the Pearson correlation (from 0.04 to 0.43). Furthermore, a
simple combination of SPICE and the recovered reward leads to an increased correlation with the
human scores, which proves the capacity of the discriminator as a caption evaluator.

5.3 EVALUATION ON THE GENERATED CAPTIONS.

Content correctness. For a comprehensive evaluation of the content correctness, the results of both
the handcrafted metrics and human studies are shown in Table 2. For the handcrafted metrics, we
report scores of SPICE and the recently proposed CHAIRs and CHAIRi since they correlate well with
human (Anderson et al., 2016; Rohrbach et al., 2018). SPICE computes similarity with the ground
truth captions based on scene graph whilst CHIAIRs and CHIARi indicate ratio of hallucinated
objects. The full results of other handcrafted metrics can be found in Appendix D. Compared with
non-adversarial methods (i.e., MLE, RL), existing adversarial net (GAN) does not perform well on
SPICE due to the reward ambiguity problem, whereas our rAIRL improves GAN (from 16.8 to 18.7)
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Table 2: Evaluation scores on generated captions. The best score is in bold font and the second best score is
underlined. SPICE is the handcrafted evaluation metric. CHAIRs and CHAIRi represent the object hallucination
ratio at sentence level and instance level, respectively. HE indicates human evaluation. VC indicates vocabulary
coverage and NS is the ratio of novel sentences.

Method Standard Split Robust Split

SPICE CHAIRs CHAIRi HE VC NS SPICE CHAIRs CHAIRi HE VC NS

MLE 19.0 8.3 6.0 16.1 12.4 49.7 18.6 19.1 16.9 18.0 12.5 58.8
RL 20.7 11.4 8.5 8.7 11.4 88.5 18.1 25.2 20.4 6.4 12.7 87.3

GAN 18.3 7.6 6.4 19.9 13.4 75.0 16.8 17.3 15.2 20.2 15.3 75.6
AIRL 17.3 12.7 10.3 14.0 12.3 67.3 16.7 22.7 18.5 14.8 15.6 73.8
rAIRL 20.4 7.2 5.5 41.3 13.6 76.1 18.7 17.1 14.3 40.6 15.8 76.5

by disentangling reward for each word, and even outperforms RL (from 18.1 to 18.7) on the robust
split. The lowest scores on CHIAIRs and CHIARi suggest that object hallucination is less likely
in rAIRL. As for the human evaluation, HE in Table 2 indicates the percentage of captions that are
considered the best among the five methods. See Appendix B for details of the human evaluation
process. The descriptions generated by our rAIRL are considered the best for over 40% images,
whilst RL has the lowest scores that are less than 10%.

Diversity. The diversity of captions is evaluated on a corpus level, indicating to what extent the
generated captions of different images have diverse expressions. The results are presented in Table 2.
VC indicates vocabulary coverage, which is the number of vocabularies of the generated captions
over number of vocabularies of the ground truth captions. NS represents ratio of novel sentence,
which is the ratio of sentences that do not appear in the training set. The fact that RL has high ratio
of novel sentence (88.5%/87.3%) but low vocabulary coverage (11.4%/12.7%) suggests that it uses
high-frequency words (such as “in a”, “of a”) to reconstruct captions that appear to be different from
the training set (Li et al., 2019a). See Appendix A for a few examples. Our rAIRL improves AIRL
on the diversity metrics and outperforms other learning methods on vocabulary coverage, indicating
its capability of generating diverse descriptions on a corpus level.

Table 3: Percentage of different grammar errors found in the generated captions. Re represents Redundancy,
AE is Agreement Error, AM denotes Article Misuse and IS is Incomplete Sentence.

Method Standard Split Robust Split

Total Re AE AM IS Total Re AE AM IS

MLE 0.78 0.04 0.56 0.14 0.04 0.57 0.04 0.26 0.16 0.10
RL 5.64 0.90 0 3.36 1.38 4.67 0.19 0.02 3.8 0.69

GAN 1.24 0.62 0.18 0.06 0.38 2.40 1.10 0.40 0.26 0.63
AIRL 1.68 0.04 0.62 0.70 0.32 1.20 0.10 0.27 0.72 0.12
rAIRL 0.75 0.14 0.20 0.21 0.20 0.57 0.14 0.17 0.16 0.10

Grammar. We used LanguageTool 1 to check grammar of the generated captions. Table 3 shows
percentage of sentences that have grammar errors found by LanguageTool: 1) Redundancy means
repeated phrases in a sentence; 2) Agreement Error means subject-verb agreement error, such as
“people is”; 3) Article Misuse denotes inappropriate usage of indefinite articles, such as using “a”
before uncountable nouns or plural words; 4) Incomplete Sentence refers to incomplete sentence that
lacks a subject. We found captions produced by RL have the most grammar errors (5.64% on the
standard split and 4.67% on the robust split), especially the Article Misuse. On the other hand, by
approximating the true data distribution of each word in the sentence, rAIRL and MLE have the least
grammar errors among all learning methods (0.75%/0.78% on the standard split and 0.57%/0.57%
on the robust split)). We also noticed that each method except rAIRL is biased towards a particular
type of grammar error: agreement error in MLE, article misuse in RL, redundancy in GAN, article
misuse in AIRL. On both splits, our rAIRL does not appear to be biased towards a specific type of
these grammar errors.

Summary. The proposed rAIRL constantly performs well on both splits of MS COCO and is
capable of producing qualitative captions with few grammar errors. As a new adversarial algorithm,
rAIRL enhances GAN by disentangling compact reward for each word in the caption and improves
AIRL by shifting the stationary point towards Nash equilibrium. In the following sections, we first
give ablation studies to see which component of our method explains the performance improvements,
and then compare rAIRL with existing methods.

1https://languagetool.org/
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5.4 COMPARISON RESULTS

Table 4: Ablation methods of rAIRL. “term1” is the constant term in Eq. (9) and “term2” is the conditional
term in Eq. (11). GE denotes grammar error rate.

Method Standard Split Robust Split

SPICE CHAIRs CHAIRi VC NS GE SPICE CHAIRs CHAIRi VC NS GE

rAIRL(w/o term1) 18.8 10.5 8.2 12.8 73.5 1.07 17.0 19.9 17.5 14.1 71.6 0.95
rAIRL(w/o term2) 19.3 9.4 7.4 12.2 71.3 0.83 17.9 18.9 15.8 13.7 62.4 0.72

rAIRL 20.4 7.2 5.5 13.6 76.1 0.75 18.7 17.1 14.3 15.8 76.5 0.57

Ablation studies. We conducted ablation experiments to understand the importance of each
component of our algorithm. Specifically, the constant term in Eq. (9) and the conditional term in Eq.
(11) is removed, respectively. Scores of all the evaluation techniques mentioned above are presented
in Table 4. We found that all the scores drop after removing either one of the terms. Comparing
these two terms, the constant term seems more important in recognizing objects and relations in the
image since removing it has larger drop on SPICE. The lager drop on vocabulary coverage and ratio
of novel sentence in the second row indicates that the conditional term plays a significant role in
increasing the diversity of the generated captions. More results on using different model architectures
are included in Appendix C.

Table 5: Comparison with existing methods on the handcrafted evaluation metrics.

Learning Method Model Standard Split Robust Split

BLEU4 CIDEr SPICE BLEU4 CIDEr SPICE

MLE

Att2in 31.3 101.3 - 31.5 90.6 17.7
NBT 34.7 107.2 20.1 31.7 94.1 18.3

Up-Down 36.2 113.5 20.3 31.6 92.0 18.1
rAIRL+MLE(Up-Down) 34.6 112.9 20.7 31.1 96.8 19.1

RL

GAN2(SCST, Co-att, log(D)+5×CIDEr) - 111.1 - - - -
Att2in 33.3 111.4 - - - -

Up-Down 36.3 120.1 21.4 - - -
rAIRL+RL(Up-Down) 35.0 115.7 21.3 30.8 97.9 19.7

GAN
G-GAN 20.7 79.5 18.2 - - -

GAN3 (SCST, Co-att, log(D)) - 97.5 - - - -
rAIRL(Up-Down) 33.8 110.2 20.4 30.2 93.7 18.7

Comparison with existing methods. Based on the learning methods, existing models are divided
into three categories in Table 5, and we chose recent proposed methods for comparison: Att2in
(Rennie et al., 2017), G-GAN (Dai & Lin, 2017), NBT (Lu et al., 2018), Up-Down (Anderson et al.,
2018) and GAN2, GAN3 (Dognin et al., 2019). Although some metrics based on n-gram overlapping
(BLEU4, CIDEr) do not correlate well with human, their results are also reported in Table 5 for fair
comparison. Among the adversarial methods (GAN category), our rAIRL performs the best on all
metrics. The results on COCO online server are given in Appendix D.

To further demonstrate the generalization ability of our algorithm, we built our algorithm on the
non-adversarial based models. The composite models are denoted with rAIRL+MLE and rAIRL+RL.
In rAIRL+MLE, the conditional term is replaced by the cross-entropy loss of MLE; in rAIRL+RL,
the RL loss is added into the loss function of the generator. In Table 5, our rAIRL+MLE further
improves the MLE baseline (i.e., Up-Down using MLE loss) on SPICE, whereas rAIRL+RL does not
improve the RL baseline (i.e., Up-Down using RL loss) on these evaluation metrics. This is caused
by the difficulty of normalizing the learned reward and the handcrafted reward to the same order of
magnitude (Shelton Christian, 2001), and we leave this problem to our future work.

6 CONCLUSION

In this paper, we address the reward ambiguity problem in image captioning and propose a refined
Adversarial Inverse Reinforcement Learning (rAIRL) method that solves the problem by disentangling
reward for each word in a sentence. Moreover, it achieves stable adversarial training by refining the
loss function to shift the stationary point towards Nash equilibrium, and mode control technique is
incorporated to mitigate mode collapse. It is demonstrated that our method can learn compact reward
through extensive experiments on MS COCO.
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A VISUALIZED RESULTS OF GENERATED CAPTIONS

Figure 3: Captions produced by different methods from the test set (standard split). Beside each caption we
report SPICE score. Captions generated by rAIRL are correct and human-like in these examples.

Figure 4: Failed examples of rAIRL. The objects and relations are not correctly recognized in these pictures.

B HUMAN EVALUATION PROCESS

Table 6: Full results of the sentence-level correlation. All p-value (not shown) are less than 0.001.

Method Correctness Throughness

Peason Spearman Kendall Peason Spearman Kendall

BLEU1 0.19 0.27 0.19 0.20 0.28 0.20
BLEU4 0.33 0.30 0.22 0.32 0.31 0.22
CIDEr 0.40 0.45 0.37 0.41 0.45 0.36
SPICE 0.44 0.45 0.39 0.45 0.46 0.38
GAN 0.12 0.11 0.15 0.12 0.11 0.15
AIRL 0.04 0.06 0.08 0.05 0.06 0.07
rAIRL 0.43 0.40 0.35 0.40 0.37 0.34

rAIRL+BLEU1 0.44 0.41 0.35 0.41 0.39 0.34
rAIRL+BLEU4 0.45 0.43 0.36 0.42 0.42 0.35
rAIRL+CIDEr 0.43 0.45 0.38 0.42 0.46 0.37
rAIRL+SPICE 0.47 0.46 0.41 0.46 0.47 0.39

We conducted two types of human studies, one for evaluating the learned reward (in Section 5.2), and
the other for examining quality of the generated captions (in Section 5.3). In the first human study
experiment (in Section 5.2), we used the human scores in the COMPOSITE2 dataset (Aditya et al.,

2https://imagesdg.wordpress.com/image-to-scene-description-graph/

11

https://imagesdg.wordpress.com/image-to-scene-description-graph/


Under review as a conference paper at ICLR 2020

2017), whose images are subsets from Flickr8k, Flickr30k and MS COCO. The descriptions from
this dataset are either ground truth captions or generated sentences by (Aditya et al., 2017; Johnson
et al., 2015). In the human evaluation process, the AMT worker was asked to give a score at range of
1-5 to evaluate the correctness and throughness of each sentence. Captions with length exceeding 20
were discarded, resulting a total of 11, 657 sentences. Full results of the correlation is shown in Table
6. SPICE correlates better with human evaluation when compared with other handcrafted metrics,
whilst the composite metric rAIRL+SPICE further increases the correlation.

In the second human study experiment (in Section 5.3), we randomly selected 500 test images from
the standard split and robust split of MS COCO, respectively. The worker was asked “which caption
is the best” by given an image with five sentences generated from the adversarial and non-adversarial
methods, as shown in Figure 5. The worker was allowed but not encouraged to make multiple choices
if he/she thinks these captions are equally correct. The order of captions produced by different
methods was randomized. Following (Shetty et al., 2017), each image in the test set was evaluated by
5 workers.

Figure 5: An example of the images shown to the human evaluator. The captions were produced by MLE,
GAN, RL, AIRL and rAIRL methods in a randomized order.

C ABLATION EXPERIMENTS ON MODEL ARCHITECTURES

Table 7: Results of using different model architectures in our method.

Method Standard Split Robust Split

BLEU4 CIDEr SPICE BLEU4 CIDEr SPICE

Att2in 31.0 101.3 - 31.5 90.6 17.7
rAIRL(Att2in) 31.3 105.2 19.9 30.7 92.5 18.0

Up-Down 36.2 113.5 20.3 31.6 92.0 18.1
rAIRL(Up-Down) 33.8 110.2 20.4 30.2 93.7 18.7

Theoretically, our algorithm is model-agnostic since it is independent of the design of model
architecture. For empirical support of the claim, we show results of using Att2in (Rennie et al., 2017)
and Up-Down (Anderson et al., 2018) architectures in Table 7. We report the metrics used in the
original paper for fair comparison. The proposed rAIRL mainly improves SPICE, which correlates
well with human evaluations, on both architectures.

12
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D FULL RESULTS ON MS COCO

We adopt SPICE to evaluate content correctness in the paper because it has better correlation with
human judgments(Anderson et al., 2016). Table 8 gives full results of the handcrafted metrics on two
splits of MS COCO. Comparing the adversarial (GAN, AIRL, rARIL) and non-adversarial (MLE,
RL) methods, RL outperforms other methods on most metrics. In adversarial methods, the proposed
rAIRL performs the best. Table 9 shows results on the MS COCO online test server. The proposed
rAIRL improves AIRL on all the metrics.

Table 8: Results of the conventional handcrafted metrics on MS COCO test split.

Method Standard Split Robust Split

BLEU1 BLEU2 BLEU3 BLEU4 ROUGE L CIDEr SPICE BLEU1 BLEU2 BLEU3 BLEU4 ROUGE L CIDEr SPICE

MLE 74.5 57.0 41.7 30.3 50.2 104.6 19.0 69.5 52.7 39.2 29.3 48.7 93.4 18.9
RL 75.5 58.2 43.8 35.0 51.6 115.1 20.7 73.5 55.9 40.8 29.9 49.9 95.1 18.1

GAN 67.7 51.9 38.6 28.3 48.7 93.4 18.3 64.7 48.0 34.5 24.6 46.2 78.3 16.8
AIRL 69.9 53.6 39.1 27.5 49.8 87.4 17.3 67.6 50.5 36.3 25.9 47.3 79.5 16.7
rAIRL 73.8 58.2 44.6 33.8 52.1 110.2 20.4 70.3 54.1 40.5 30.2 49.4 93.7 18.7

Table 9: Results on COCO test server. Methods marked with ∗ adopt RL of CIDEr optimization.

Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Adaptive (Lu et al., 2017) 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9
Att2all∗ (Rennie et al., 2017) 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

Up-Down∗(Anderson et al., 2018) 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

AIRL(Up-Down) 72.5 90.4 55.2 83.7 42.3 73.6 30.8 62.6 25.0 34.2 53.5 68.5 81.9 82.6
rAIRL(Up-Down) 75.4 93.1 59.8 86.5 45.9 77.2 35.0 66.7 26.1 35.4 55.6 71.1 104.1 105.2

rAIRL+MLE(Up-Down) 75.5 93.3 59.8 86.7 46.2 77.4 35.4 67.0 26.5 36.0 55.8 71.5 105.9 106.2
rAIRL+RL(Up-Down) ∗ 79.5 94.1 63.5 88.0 48.3 78.9 36.2 68.5 27.5 36.6 56.2 71.8 112.3 115.1

E DISCUSSION ON LOSS FUNCTIONS

Table 10: Formulas of different loss functions.

Method Loss Function

MLE −
n∑

t=1

log(πdata
t )

RL −r
n∑

t=1

log(πt)

GAN (generator) −Dgen

n∑
t=1

log(πt)

rAIRL (generator) −
n∑

t=1

σ−1(Dgen
t ) log(πt)− σ−1(Ddata

t ) log(πdata
t )

We compare the formula of the proposed loss function with existing methods in Table 10, including
MLE, RL and GAN. n is the length of a sentence. r is the handcrafted metric, such as BLEU, CIDEr
and SPICE. πt is the probability of the tth generated word, and πtdata is the probability of the tth true
word. The loss functions are rewritten using similar symbols for direct comparison. MLE maximizes
the probability of the true data πdata

t whist RL and GAN optimize the reward by sampling from πt.
GAN is different from RL in that its reward is learned from the discriminator adversarially instead of
being predefined. GAN is capable of mimicking human-written captions by adversarial learning, but
the estimated reward function Dgen of a full trajectory can be explained by multiple optimal policies
and thus is too ambiguous. The proposed rAIRL further disentangles the reward into Dgen

t at each
time step t, as well as incorporating the true data for better diversity. From the perspective of loss
functions, rAIRL can be regarded as an integration of GAN and MLE using coefficients σ−1(Dgen

t )
and σ−1(Ddata

t ).
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