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ABSTRACT

We present the Compressive Transformer, an attentive sequence model which
compresses past memories for long-range sequence learning. We find the Com-
pressive Transformer obtains state-of-the-art language modelling results in the
WikiText-103 and Enwik8 benchmarks, achieving 17.1 ppl and 0.97 bpc respec-
tively. We also find it can model high-frequency speech effectively and can be
used as a memory mechanism for RL, demonstrated on an object matching task.
To promote the domain of long-range sequence learning, we propose a new open-
vocabulary language modelling benchmark derived from books, PG-19.

1 INTRODUCTION

Humans have a remarkable ability to remember information over long time horizons. When reading
a book, we build up a compressed representation of the past narrative, such as the characters and
events that have built up the story so far. We can do this even if they are separated by thousands
of words from the current text, or long stretches of time between readings. During daily life, we
make use of memories at varying time-scales: from locating the car keys, placed in the morning,
to recalling the name of an old friend from decades ago. These feats of memorisation are not
achieved by storing every sensory glimpse throughout one’s lifetime, but via lossy compression. We
aggressively select, filter, or integrate input stimuli based on factors of surprise, perceived danger,
or repetition — amongst other signals (Richards and Frankland, 2017).

Memory systems in artificial neural networks began with very compact representations of the past.
Recurrent neural networks (RNNs, Rumelhart et al. (1986)) learn to represent the history of obser-
vations in a compressed state vector. The state is compressed because it uses far less space than the
history of observations — the model only preserving information that is pertinent to the optimization
of the loss. The LSTM (Hochreiter and Schmidhuber, 1997) is perhaps the most ubiquitous RNN
variant; it uses learned gates on its state vector to determine what information is stored or forgotten
from memory.

However since the LSTM, there has been great benefit discovered in not bottlenecking all histori-
cal information in the state, but instead in keeping past activations around in an external memory
and attending to them. The Transformer (Vaswani et al., 2017) is a sequence model which stores
the hidden activation of every time-step, and integrates this information using an attention operator
(Bahdanau et al., 2014). The Transformer will thus represent the past with a tensor (depth × mem-
ory size × dimension) of past observations that is, in practice, an order of magnitude larger than an
LSTM’s hidden state. With this granular memory, the Transformer has brought about a step-change
in state-of-the-art performance, within machine translation (Vaswani et al., 2017), language mod-
elling (Dai et al., 2019; Shoeybi et al., 2019), video captioning (Zhou et al., 2018), and a multitude
of language understanding benchmarks (Devlin et al., 2018; Yang et al., 2019) amongst others.

One drawback in storing everything is the computational cost of attending to every time-step and
the storage cost of preserving this large memory. Several works have focused on reducing the
computational cost of attention with sparse access mechanisms (Rae et al., 2016; Child et al., 2019;
Sukhbaatar et al., 2019; Lample et al., 2019). However sparse attention does not solve the storage
problem, and often requires custom sparse kernels for efficient implementation. Instead we look
back to the notion of compactly representing the past. We show this can be built with simple dense
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linear-algebra components, such as convolutions, and can reduce both the space and compute cost
of our models.

We propose the Compressive Transformer, a simple extension to the Transformer which maps past
hidden activations (memories) to a smaller set of compressed representations (compressed memo-
ries). The Compressive Transformer uses the same attention mechanism over its set of memories
and compressed memories, learning to query both its short-term granular memory and longer-term
coarse memory. We observe this improves the modelling of text, achieving state-of-the-art results
in character-based language modelling — 0.97 bpc on Enwik8 from the Hutter Prize (Hutter, 2012)
— and word-level language modelling — 17.1 perplexity on WikiText-103 (Merity et al., 2016).
Specifically, we see the Compressive Transformer improves the modelling of rare words.

We show the Compressive Transformer works not only for language, but can also model the
waveform of high-frequency speech with a trend of lower likelihood than the TransformerXL and
Wavenet (Oord et al., 2016) when trained over 400,000 steps. We also show the Compressive Trans-
former can be used as a memory component within an RL agent, IMPALA (Espeholt et al., 2018),
and can successfully compress and make use of past observations.

Furthermore we present a new book-level language-modelling benchmark PG-19, extracted from
texts in Project Gutenberg1, to further promote the direction of long-context sequence modelling.
This is over double the size of existing LM benchmarks and contains text with much longer contexts.

2 RELATED WORK

There have been a variety of recent attempts to extend the range of attention, particularly in the
Transformer, or to replace the attention operation with something less expensive.

Wu et al. (2019) show that a convolution-like operator that runs in linear time can actually exceed
the performance of the quadratic-time self-attention layer in the Transformer at sentence-to-sentence
translation and sentence-level language modelling. However such a mechanism inhibits the flow of
information across a large number of time-steps for a given layer, and has not shown to be beneficial
for long-range sequence modelling.

Dai et al. (2019) propose the TransformerXL, which keeps past activations around in memory. They
also propose a novel relative positional embedding scheme which they see outperforms the Trans-
former’s original absolute positional system. Our model incorporates both of these ideas, the use of
a memory to preserve prior activations and their relative positional embedding scheme.

The Sparse Transformer (Child et al., 2019) uses fixed sparse attention masks to attend to roughly√
n locations in memory. This approach still requires keeping all memories around during training,

however with careful re-materialization of activations and custom kernels, the authors are able to
train the model with a reasonable budget of memory and compute. When run on Enwik8, the much
larger attention window of 8, 000 improves model performance, but overall it does not significantly
outperform a simpler TransformerXL with a much smaller attention window.

The use of dynamic attention spans is explored in Sukhbaatar et al. (2019). Different attention heads
can learn to have shorter or longer spans of attention — and they observe this achieves state-of-
the-art in character-based language modelling. This idea could easily be combined with our contri-
bution — a compressive memory. However an efficient implementation is not possible on current
dense-linear-algebra accelerators, such as Google’s TPUs, due to the need for dynamic and sparse
computation. Our approach builds on simple dense linear algebra components, such as convolutions.

3 MODEL

We present the Compressive Transformer, a long-range sequence model which compacts past acti-
vations into a compressed memory. We build on the ideas of the TransformerXL (Dai et al., 2019)
which maintains a memory of past activations at each layer to maintain a longer history of context.
The TransformerXL discards past activations when they become sufficiently old (controlled by the
size of the memory). The key principle of the Compressive Transformer is to compress these old

1https://www.gutenberg.org/
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Compressed  Memory Memory Sequence

Figure 1: The Compressive Transformer keeps a fine-grained memory of past activations, which are
then compressed into coarser representations that represent information from the distant past.

memories, instead of discarding them, and store them in an additional compressed memory. Specifi-
cally, we apply a function f : Rn×d → Rn

c ×d to map the oldest n memories, h1:n to n/c compressed
activations that capture the salient information — instead of discarding them. This is performed at
each layer of the network independently, so we have compressed representations of shallow and
deep features. We set the size of the memory size plus the compressed memory equal to the size of
the original TransformerXL’s memory, so the computational cost of the attention is unchanged.

3.1 COMPRESSION FUNCTIONS

For the compression function f , we consider several approaches:

Pooling. We apply max or mean pooling with a stride equal to the compression-rate c.
Most-used. We sort the n oldest memories by their average attention weight from future
time-points, and preserve the n/c memories with the largest average attention weight.
Convolution. We apply a 1D convolution to the oldest memories h1:n with stride c and a
kernel size k ≥ c. This learns a linear function to combine each k ≈ c memories to a single
compressed vector. When k = c the compressed vectors are disjoint, and when k > c the
compressed vectors can contain overlapping information.
Dilated Convolution. We apply a multi-layer dilated 1D convolution to the set of n oldest
memories, with the final layer applying a 1D convolution with stride c and all prior layers
to map the n oldest memories to n/c compressed memories. Here the compressed vectors
may integrate temporally disparate activations.

The most-used compression scheme is inspired from the garbage collection mechanism in the Dif-
ferentiable Neural Computer (Graves et al., 2016) where low-usage memories are erased. This does
not require additional parameters to train, but does require a heap or sort operation to maintain the
most used elements. The convolutional compression functions are simpler to implement but require
training.

3.2 TRAINING SCHEMES

One can train these compression networks using gradients from the loss; however for very old
memories this requires backpropagating-through-time over long unrolls. As such we also consider
some local auxiliary compression losses. We describe the training schemes for the compression
network f below:

BPTT. We unroll the model over multiple chunks of input and fully backpropagate through
time (BPTT) through both the transformer and the memory compression network, f .
Auto-encoding. We train the compression operation with an auto-encoding loss. Namely
if we define a memory decoding network g : Rn

c ×d → Rn×d, then we optimise
Lae = ||h1:n − g(f(h1:n))||2. Here the compression function attempts to learn a loss-
less compression scheme - reconstructing the vectors in full, regardless of which memories
were attended to.
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Attention. We train the compression operation with an attention-reconstruction
loss. Namely if we denote the multi-head operation used within the transformer be-
tween the current sequence activations xt, . . . xt+m and the memories to discard h1:n

as attn(xt:t+m, h1:n), then we wish to reconstruct the original attention, Latn =
||attn(xt:t+m, h1:n) − attn(xt:t+m, f(h1:n))||2. Here the compression function attempts
to reconstruct what the future activations will attend to. This can be lossy, e.g. if certain
classes of inputs are never attended to in future.

Typically an auxiliary loss results in the need to tune a mixing constant, which trades-off the orig-
inal task loss alongside the auxiliary loss. However this is not the case here, as the compression
network only optimises the auxiliary compression loss and the main network only optimises the task
loss. That is, the main transformer network learns good representations to solve the task, and the
compression network conditions on those representations and attempts to make them more com-
pressible. We experimented with allowing the main network to also optimise the compression loss,
however it promotes a degenerative learning scheme where the network first makes the activations
compressible (usually by shrinking them to zero) and then being stuck in a local minima.

4 PG-19 BENCHMARK

As models begin to incorporate longer-range memories, it is important to train and benchmark them
on data containing larger contexts. Natural language in the form of text provides us with a vast
repository of data containing long-range dependencies, that is easily accessible.

We propose a new language modelling benchmark, PG-19, using text from books extracted from
Project Gutenberg 2. We select Project Gutenberg books which were published over 100 years old,
i.e. before 1919 (hence the name PG-19) to avoid complications with international copyright, and
remove short texts. The dataset contains 28, 752 books, or 11GB of text — which makes it over
double the size of BookCorpus and Billion Word Benchmark.

4.1 RELATED DATASETS

The two most benchmarked word-level language modelling datasets either stress the modelling of
stand-alone sentences (Billion Word Benchmark from Chelba et al. (2013)) or the modelling of a
small selection of short news articles (Penn Treebank processed by Mikolov et al. (2010)).

Merity et al. (2016) proposed the WikiText-103 dataset, which contains text from a high quality
subset of English-language wikipedia articles. These articles are on average 3, 600 words long. This
dataset has been a popular recent LM benchmark due to the potential to exploit longer-range depen-
dencies (Grave et al., 2016; Rae et al., 2018; Bai et al., 2018b). However recent Transformer models,
such as the TransformerXL (Dai et al., 2019) appear to be able to exploit temporal dependencies on
the order of several thousand words. This motivates a larger dataset with longer contexts.

Books are a natural choice of long-form text, and provide us with stylistically rich and varied natural
language. Texts extracted from books have been used for prior NLP benchmarks; such as the Chil-
dren’s Book Test (Hill et al., 2015) and LAMBADA (Paperno et al., 2016). These benchmarks use
text from Project Gutenberg, an online repository of books with expired US copyright, and Book-
Corpus (Zhu et al., 2015), a prior dataset of 11K unpublished (at time of authorship) books. CBT
and LAMBADA contain extracts from books, with a specific task of predicting held-out words. In
the case of LAMBADA the held-out word is specifically designed to be predictable for humans with
access to the full textual context — but difficult to guess with only a local context.

CBT and LAMBADA are useful for probing the linguistic intelligence of models, but are not ideal
for training long-range language models from scratch as they truncate text extracts to at most a
couple of paragraphs, and discard a lot of the books’ text. There has been prior work on training
models on book data using BookCorpus directly (e.g. BERT from Devlin et al. (2018)) however
BookCorpus is no longer distributed due to licensing issues, and the source of data is dynamically
changing — which makes exact benchmarking difficult over time.

2The authors intend to release the PG-19 dataset along with the split into train, validation and test subsets.
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Table 1: Comparison to existing popular language modelling benchmarks.
Avg. len Train Size Vocab Type

Billion Word Benchmark 27 4.15GB 793K Sentences of News
Penn Treebank 355 5.1MB 10K Articles of News
WikiText-103 3.6K 515MB 267K Articles from Wikipedia

PG-19 69K 10.9GB (open vocab) Books

The NarrativeQA Book Comprehension Task (Kočiskỳ et al., 2018) uses Project Gutenberg texts
paired with Wikipedia articles, which can be used as summaries. Due to the requirement of needing
a corresponding summary, NarrativeQA contains a smaller selection of books: 1,527 versus the
28,752 books in PG-19. However it is reasonable that PG-19 may be useful for pre-training book
summarisation models.

4.2 STATISTICS

Table 2: PG-19 statistics split by subsets.
Train Validation Test

# books 28,602 50 100
# words 1,973,136,207 3,007,061 6,966,499

A brief comparison of PG-19 to other LM datasets can be found in Table 1. We intentionally do not
limit the vocabulary by unk-ing rare words, and release the dataset as an open-vocabulary bench-
mark. To compare models we propose to continue measuring the word-level perplexity, by cal-
culating the total likelihood of the dataset (via any chosen subword vocabulary or character-based
scheme) divided by the number of words, specified in Table 2 for each subset.

To better understand the themes represented in these old books, we build an LDA topic model (Blei
et al., 2003) and present key words for several topics in the Supplementary Table 7. These top-
ics include art, education, naval exploration, geographical description, war, ancient civilisations,
and more poetic topics concerning the human condition — love, society, religion, virtue etc. This
contrasts to the more objective domains of Wikipedia and news corpora.

5 EXPERIMENTS

5.1 SETUP

We optimised all models with Adam (Kingma and Ba, 2014). We used a learning rate schedule with
a linear warmup from 1e − 6 to 3e − 4 and a cosine decay back down to 1e − 6. For character-
based LM we used 4, 000 warmup steps with 100, 000 decay steps, and for word-based LM we used
16, 000 warmup steps with 500, 000 decay steps. We found that decreasing the optimisation update
frequency helped (see Section 5.6.3), namely we only applied parameter update every 4 steps after
60, 000 iterations. However we found the models would optimise well for a range of warmup/warm-
down values. We clipped the gradients to have a norm of at most 0.1, which was crucial to successful
optimisation.

5.2 ENWIK8

We compare TransformerXL and the Compressive Transformer on the standard character-level lan-
guage modelling benchmark Enwiki8 taken from the Hutter Prize (Hutter, 2012), which contains
100M bytes of unprocessed Wikipedia text. We select the first 90MB for training, 5MB for valida-
tion, and the latter 5MB for testing — as per convention.

We train 24-layer models with a sequence window size of 768. During training, we set the Trans-
formerXL’s memory size to 2304, and for the Compressive Transformer we use memory of size 768
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Table 3: State-of-the-art results on Enwik8.
Model BPC

7L LSTM (Graves, 2013) 1.67
LN HyperNetworks Ha et al. (2016) 1.34
LN HM-LSTM Chung et al. (2016) 1.32
ByteNet (Kalchbrenner et al., 2016) 1.31
RHN Zilly et al. (2017) 1.27
mLSTM Krause et al. (2016) 1.24
64L Transf. Al-Rfou et al. (2019) 1.06
24L TXL (Dai et al., 2019) 0.99
Sparse Transf. (Child et al., 2019) 0.991
Adaptive Transf. (Sukhbaatar et al., 2019) 0.98

24L TXL (ours) 0.98
24L Compressive Transformer 0.97

Table 4: Compression approaches on Enwik8.
Compression fn Compression loss BPC

Conv BPTT 0.996
Max Pooling N/A 0.986
Conv Auto-encoding 0.984
Mean Pooling N/A 0.982
Most-used N/A 0.980
Dilated conv Attention 0.977
Conv Attention 0.973

and compressed memory of size 1152 with compression rate C = 3. During evaluation, we in-
creased the TransformerXL memory size to 4000 and the compressed memory in our model to 3000
(after sweeping over the validation set), obtaining the numbers reported in Table 3. The proposed
model achieves the new state-of-the-art on this dataset with 0.97 bits-per-character.

5.3 COMPRESSION FUNCTIONS

We compare compression functions and the use of auxiliary losses in Table 4. We sweep over
compression rates of 2, 3, and 4 and report results with the best performing value for each row.
BPTT signifies that no auxiliary compression loss was used to train the network other than the
overall training loss. To feed gradients into the compression function we unrolled the model over
double the sequence length and halved the batch size to fit the larger unroll into memory. We find the
single-layered convolutional compression function performed best when paired with the attention-
based auxiliary loss.

5.4 WIKITEXT-103

We train an eighteen-layered Compressive Transformer on the closed-vocabulary word-level lan-
guage modelling benchmark WikiText-103, which contains articles from Wikipedia. We train the
model with a compressed memory size, memory size, and a sequence window size all equal to 512.
We trained the model over 64 Tensor Processing Units (TPU) v3 with a batch size of 2 per core —
making for a total batch size of 128. The model converged in a little over 12 hours. We found the
single-layer convolution worked best, with a compression rate of c = 4. This model obtained 17.6
perplexity on the test set. By tuning the memory size over the validation set — setting the memory
size to 1, 536, and compressed memory size to 1, 280 — we obtain 17.1 perplexity. This is 1.2
perplexity points over prior state of the art, and means the model places a ≈ 5% higher probability
on the correct word over the prior SotA TransformerXL.

It is worth noting that in Table 5 we do not list methods that use additional training data, or that make
use of test-time labels to continue training the model on the test set (known as dynamic evaluation
(Graves, 2013)). If we incorporate a very naive dynamic evaluation approach of loading a model
checkpoint and continuing training over one epoch of the test set, then we obtain a test perplexity
of 16.1. This is slightly better than the published 16.4 from Krause et al. (2019) — which uses a
more sophisticated dynamic evaluation approach on top of the TransformerXL. However in most
settings, one does not have access to test-time labels — and thus we do not focus on this setting.
Furthermore there has been great progress in showing that more data equates to much better lan-
guage modelling; Shoeybi et al. (2019) find a large transformer 8B-parameter transformer trained
on 170GB of text obtains 10.7 word-level perplexity on WikiText-103. However it is not clear to
what extent the WikiText-103 test set may be leaked inside these larger training corpora. For clarity
of model comparisons, we compare to published results trained on the WikiText-103 training set.
Certainly the direction of larger scale and more data appear to bring immediate gains to the quality
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of existing language models. Both data scale and quality alongside intelligent model design are
complementary lines of research towards better sequence modelling.

We break perplexity down by word frequency in Table 6 and see the Compressive Trans-
former makes only a small modelling improvement for frequent words (2.6% over the Trans-
formerXL baseline) but obtains a much larger improvement of ≈ 20% for infrequent words. Fur-
thermore, we see 10X improvement in modelling rare words over the prior state-of-the-art LSTM
language model published in 2018 — which demonstrates the rate of progress in this area.

Table 5: Validation and test perplexities on WikiText-103.
Valid. Test

LSTM (Graves et al., 2014) - 48.7
Temporal CNN (Bai et al., 2018a) - 45.2
GCNN-14 (Dauphin et al., 2016) - 37.2
Quasi-RNN Bradbury et al. (2016) 32 33
RMC (Santoro et al., 2018) 30.8 31.9
LSTM+Hebb. (Rae et al., 2018) 29.0 29.2
Transformer (Baevski and Auli, 2019) - 18.7
18L TransformerXL, M=384 (Dai et al., 2019) - 18.3

18L TransformerXL, M=1024 (ours) - 18.1
18L Compressive Transformer, M=1024 16.0 17.1

5.5 PG-19

We benchmark the Compressive Transformer on the newly proposed PG-19 books dataset. Be-
cause it is open-vocabulary, we train a subword vocabulary of size 32000 with SubwordTextEncoder
from the tfds package in TensorFlow and use the dataset statistics to compute word-level perplex-
ity. Specifically, we calculate the total cross-entropy loss L = −

∑
t log(pt|p<t) and compute the

word-level perplexity eL/nwords where nwords is the number of words in the given subset, taken
from Table 2.

We train a 24-layer Compressive Transformer with a window size of 512, both memory and com-
pressed memory size of 1024, and compression rate C = 2. The model was trained on 256 TPUv3
cores with a total batch size of 1024 and converged after processing around 100 billion subword
tokens. The model achieved a word-level perplexity of 42.6 and 36.5 on validation and test sets
respectively. This can suit as a first baseline on the proposed long-range language modelling bench-
mark. We show samples from this model in Supplementary Section C. The model is able to generate
long-form narrative of varying styles.

5.6 MODEL ANALYSIS

5.6.1 COMPRESSIBILITY OF LAYERS

We can use compression to better understand the model’s mode of operation. We inspect how com-
pressible Transformer’s activations are as they progress through higher layers in the network. We

Table 6: WikiText-103 test perplexity broken down by word frequency buckets. The most frequent
bucket is words which appear in the training set more than 10, 000 times, displayed on the left. For
reference, a uniform model would have perplexity |V | = 2.6e5 for all frequency buckets. *LSTM
comparison from Rae et al. (2018)

> 10K 1K−10K 100− 1K < 100 All

LSTM* 12.1 219 1,197 9,725 36.4
TransformerXL (ours) 7.8 61.2 188 1,123 18.1
Compressive Transformer 7.6 55.9 158 937 17.1

Relative gain over TXL 2.6% 9.5% 21% 19.9% 5.8%
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Figure 2: Model analysis. Compression loss broken down by layer.

monitor the compression loss at each layer of our best-performing Compressive Transformer mod-
els trained on Enwik8 and WikiText-103 and display these in Figure 2. Firstly we note that, as to
be expected, the character-level model’s activations are easier to compress — the average loss is
approximately an order of magnitude lower. Secondly we note that the first layers’ activations are
extremely compressible, but after there are successions of more and less compressible layers. There
is certainly no trend of successive layers becoming more difficult to compress, which one may have
speculated to exist if the extracted features were to become successively more abstract. Due to skip
connections, it is reasonable to expect that information does not only flow in a sequential manner
through the network. For example in Enwik8 one may hypothesise from the compression loss that
layers 2, 3, 4 and 6 are processing the sequence with a similar representation, whereas layer 5, 7 and
8 are processing a more coarse or abstract representation.

5.6.2 ATTENTION

We inspect where the network is attending to on average, to determine whether it is using its com-
pressed memory. We average the attention weight over a sample of 20, 000 sequences from a trained
model on Enwik8. We aggregate the attention into six buckets, two for each of the compressed mem-
ory, memory, and sequence respectively. We set the sequence, memory and compressed memory all
to be 784 which were the values used during training, so each bucket represents 384 positions. We
plot this average weight in Figure 3 (along with a regressed trend curve). We see most of the at-
tention is placed on the current sequence, however we also observe there is an increase in attention
from the oldest activations stored in the regular memory, to the activations stored in the compressed
memory. This goes against the trend of older memories being accessed less frequently — and
gives evidence that the network is learning to preserve salient information.
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Figure 3: Attention weight on Enwik8. Av-
erage attention weight from the sequence over
the compressed memory (oldest), memory, and
sequence (newest) respectively. There is an in-
crease in attention at the transition from mem-
ory to compressed memory.
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Figure 4: Learning rate analysis. Reducing the
learning rate (e.g. to zero) during training (on
Enwik8) harms training performance. Reduc-
ing the frequency of optimisation updates (ef-
fectively increasing the batch size) is preferable.

5.6.3 OPTIMISATION SCHEDULE

We make an observation about an interesting but undesirable meta-learning phenomenon during
long-context training. When the learning rate is tuned to be much smaller (or set to zero) during
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training, performance degrades drastically both for the TransformerXL and the Compressive Trans-
former. This is displayed in Figure 4.

Usually we consider distributional shift from the training data to the test data, but we can also
observe a shift in the model when transferring from a training to evaluation mode (even when the
model is evaluated on the training data). In this case, this is due to the online updating of parameters
whilst processing long contiguous articles. We would like the model to generalise well to scenarios
where it is not continuously optimised. Updating the parameters only at article boundaries (and then
resetting the state) could be one solution for long-range memory models, but this would slow down
learning significantly.

Instead, we propose reducing the frequency of optimisation updates during training. We find this
allows for the best of both worlds — fast initial learning with frequent updates, and better gen-
eralisation near the end of training with less frequent updates (e.g. every 4 steps). Reducing the
optimisation frequency increases the effective batch size, which has also been shown to be prefer-
able to learning rate decay in image modelling (Smith et al., 2018).

We observed a final performance improvement in our TransformerXL baseline on Enwik8, from
0.995 — which approximately replicates the published result — to 0.984 — which matches the most
recent SotA architecture. We note, the additional space and compute cost of accumulating gradients
is negligible across iterations, so there was no performance regression in using this scheme.

5.7 SPEECH

We train the Compressive Transformer on the waveform of speech to assess its performance on
different modalities. Speech is interesting because it is sampled at an incredibly high frequency, but
we know it contains a lot of information on the level of phonemes and entire phrases.

To encourage long-term reasoning, we refrain from conditioning the model on speaker identity or
text features, but focus on unconditional speech modelling. We train the model on 24.6 hours of
24kHz North American speech data. We chunk the sequences into windows of size 3840, roughly
80ms of audio, and compare a 20-layer Compressive Transformer to a 20-layer TransformerXL
and a 30-layer WaveNet model (Oord et al., 2016) — a state-of-the-art audio generative model
used to serve production speech synthesis applications at Google (Oord et al., 2018). All networks
have approximately 40M parameters, as WaveNet is more parameter-efficient per layer. We train
each network with 32 V100 GPUs, and a batch size of 1 per core (total batch size of 32) using
synchronous training.

WaveNet processes an entire chunk in parallel, however the TransformerXL and Compressive Trans-
former are trained with a window size of 784 and a total memory size of 1, 568 (for the Compres-
sive Transformer we use 768 memory + 768 compressed). We thus unroll the model over the se-
quence. Despite this sequential unroll, the attention-based models train at only half the speed of
WaveNet. We see the test-set negative-log-likelihood in Figure 5, and observe that a Compressive
Transformer with a compression rate of 4 is able to outperform the TransformerXL and maintain
a slim advantage over WaveNet. However we only trained models for at most one week (with
32GPUs) and it would be advantageous to continue training until full convergence — before defini-
tive conclusions are made.

5.8 REINFORCEMENT LEARNING

Compression is a good fit for video input sequences because subsequent frames have high mutual
information. Here we do not test out the Compressive Transformer on video, but progress straight to
a reinforcement learning agent task that receives a video stream of visual observations — but must
ultimately learn to use its memory to reason over a policy.

We test the Compressive Transformer as a drop-in replacement to an LSTM in the IMPALA setup
(Espeholt et al., 2018). Otherwise, we use the same training framework and agent architecture as
described in the original work with a fixed learning rate of 1.5e − 5 and entropy cost coefficient of
2e− 3. We test the Compressive Transformer on a challenging memory task within the DMLab-30
(Beattie et al., 2016) domain, rooms select nonmatching object. This requires the agent to explore
a room in a visually rich 3D environment and remember the object present. The agent can then
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Figure 5: Speech Modelling. We see the Com-
pressive Transformer is able to obtain competi-
tive results against the state-of-the-art WaveNet
in the modelling of raw speech sampled at
24kHz.

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e9

0

20

40

60

80

100

H
u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Compression Rate
1

2

4

8

Figure 6: Vision and RL. We see the Com-
pressive Transformer integrates visual informa-
tion across time within an IMPALA RL agent,
trained on an object matching task.

advance to a second room where it must select the object not present in the original room. This
necessitates that the agent both remember events far in the past, and also learn to efficiently reason
about them.

We fix both the memory and compressed memory sizes to 64. In Figure 6, we present results for a
range of compression rates, averaged over 3 seeds. We see that the best performing agents endowed
with the Compressive Transformer are able to solve the task to human-level. We note that the model
with compression rate 1 is unable to learn the task to the same proficiency. The speed of learning
and stability seem to increase proportionally with higher rates of compression (up to a limit) – i.e.
the effective memory window of the agent – and we find compression rate 4 to once again be the
best performing. We see this as a promising sign that the architecture is able to efficiently learn,
and suitably use, compressed representations of its visual input and hope to test this more widely in
future work.

6 CONCLUSION

In this paper we explore the notion of compression as a means of extending the temporal receptive
field of Transformer-based sequence models. We see a benefit to this approach in the domain of
text, with the Compressive Transformer outperforming existing architectures at long-range language
modelling. To continue innovation in this area, we also propose a new book-level LM benchmark,
PG-19. This may be used to compare long-range language models, or to pre-train on other long-
range reasoning language tasks, such as NarrativeQA (Kočiskỳ et al., 2018).

We see the idea of compressive memories is applicable not only to the modality of text, but also
audio, in the form of modelling the waveform of speech, and vision, within a reinforcement-learning
agent trained on a maze-like memory task. In both cases, we compare to very strong baselines
(Wavenet (Oord et al., 2016) and IMPALA (Espeholt et al., 2018)).

The main limitation of this work is additional complexity, if the task one wishes to solve does not
contain long-range reasoning then the Compressive Transformer is unlikely to provide additional
benefit. However as a means of scaling memory and attention, we do think compression is a simpler
approach to dynamic or sparse attention — which often requires custom kernels to make efficient.
One can build effective compression modules from simple neural network components, such as
convolutions. The compression components are immediately efficient to run on GPUs and TPUs.

Memory systems for neural networks began as compressed state representations within RNNs. The
recent wave of progress using attention-based models with deep and granular memories shows us
that it is beneficial to refrain from immediately compressing the past. However we hypothesise that
more powerful models will contain a mixture of granular recent memories and coarser compressed
memories. Future directions could include the investigation of adaptive compression rates by layer,
the use of long-range shallow memory layers together with deep short-range memory, and even the
use of RNNs as compressors. Compressive memories should not be forgotten about just yet.
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SUPPLEMENTARY MATERIALS

A PG-19 PREPROCESSING

The raw texts from the Gutenberg project were minimally pre-processed by removing boilerplate
license text. We then also replaced discriminatory words with a unique 〈DWx〉 token using the
Ofcom list of discriminatory words 3.

B PG-19 TOPICS

We present top-words for some of the topics on the PG-19 corpus. These were generated with LDA
topic model (Blei et al., 2003).

Table 7: Examples of top topics on PG-19 corpus.

Geography War Civilisations Human Condition Naval Education Art
water people roman love island work poet
river emperor rome religion ship school music
feet war greek religious sea life one

miles army city life men children poetry
north death gods moral captain may work
south battle king human coast social literature

mountains city first society land child art
sea soldiers caesar man great education great
lake power great virtue found conditions poem
rock thousand romans nature islands well written

mountain arms athens marriage shore study english
country empire greece women voyage best author
valley upon temple christian vessels years play

ice country son age time possible genius
west time egypt law english class style

C PG-19 SAMPLES

We show a few different samples from the Compressive Transformer trained on PG-19. We use
Nucleus Sampling with p = 0.98 (Holtzman et al., 2019). We choose extracts of books from the
test set as prefixes. We see the model is able to continue in the style of the text, creating artificial
dialogue or descriptive text, and remembering the names of characters over hundreds of words.

As the Compressive Transformer is trained without state resetting, it is actually slightly out of sample
when provided with the (relatively) short contexts. This is because its memory and compressed
memory may be still empty (whereas they are always full during training). However we see a trend
of the samples usually improving towards the end.

3https://www.ofcom.org.uk/__data/assets/pdf_file/0023/91625/
OfcomQRG-AOC.pdf

14

https://www.ofcom.org.uk/__data/assets/pdf_file/0023/91625/OfcomQRG-AOC.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0023/91625/OfcomQRG-AOC.pdf


Under review as a conference paper at ICLR 2020

Context from Baby Mine by Maragaret Mayo:

CHAPTER I

Even in college Alfred Hardy was a young man of fixed ideas and high ideals and proud of it.

His friend, Jimmy Jinks, had few ideas and no ideals, and was glad of it, and before half of their
first college term had passed, Jimmy had ridded himself of all such worries as making up his
own mind or directing his own morals. Alfred did all these things so much better, argued Jimmy,
furthermore, Alfred LIKED to do them–Jimmy owed it to his friend to give him that pleasure.

Compressive Transformer:

He did not like doing them in the most elegant of all possible marble walks–where freshmen
and sophomores stand and talk and laugh and chatter till evening falls and look cool and still
and cool and beautifully white in spite of the hot sun, but had to go there for a month before
going home. It happened one day that he and Jimmy were strolling together in the green shade
of St. Martin’s, and Jimmy naturally asked why he was so silent. He was very talkative as
most boys are who have once got the habit of it on shore, so the need for answering was soon
supplied.

”I am wondering,” he said, ”why my old friend and chum, Jimmy Jinks, is living a single life
and so has no boys. Have you not noticed that many of his old friends had their own boys to
follow in their footsteps and help, and often helped successfully too?”

”Oh, yes,” said Alfred, ”it was plain enough then that he liked to live by himself and got none
of his present pleasures or entertainments because of the other fellow’s giving it to him.”

”Then it IS sad,” said Jimmy, ”that an old friend like the friend of Big Lights, Jimmy Reynolds,
should be living the single life and having no boys.”

”And it is pretty true, too,” said Alfred, ”yet I believe it is the best thing that could happen even
now.”

”And so do I,” said Jimmy, ”and I also believe that it is time someone did something to make
the things worse for the other’s partner.”

”And so do I,” said Alfred, ”and so do I, and so do I.”

”What can we do?” asked Jimmy.

”I don’t know,” said Alfred, ”but if someone will come down to the valley and go through a
regular mill with the old forces at work, doing the work of the two, and doing it better than any
other Miller he ever saw or ever hoped to see, I think there will be a good deal of change in the
things and things to be cared for for and for driven and counter-driven.”

”I will come and do that mill,” said Jimmy.
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Context from The Diary of Samuel Pepys:

June 1st. Having taken our leaves of Sir W. Batten and my Lady, who are gone this morn-
ing to keep their Whitsuntide, Sir W. Pen and I and Mr. Gauden by water to Woolwich, and
there went from ship to ship to give order for and take notice of their forwardness to go forth,
and then to Deptford and did the like, having dined at Woolwich with Captain Poole at the
tavern there. From Deptford we walked to Redriffe, calling at the half-way house, and there
come into a room where there was infinite of new cakes placed that are made against Whit-
suntide, and there we were very merry. By water home, and there did businesses of the office.
Among others got my Lord’s imprest of L1000 and Mr. Creed’s of L10,000 against this voyage
their bills signed. Having wrote letters into the country and read some things I went to bed.

Compressive Transformer:

So I rose and did some business at the office, and then to dinner, where great abundance of
good things of the kitchen I only being partaker in the feast. After dinner I went to look at the
yard and found it in a very bad condition, so I went home and there finding no delight in seeing
things I should make shift to get in my way and so I will leave off.

So I took leave of my great friend, and the next day being Sunday, my wife and I and a
great number of friends went by water to Deptford, and there took the oaths of allegiance and
supremacy and promised such obedience to the Lord as should hereafter turn to the advantage
of our State. Being come back we found the shops and warehouses in a pitiable condition, so
my wife and I and all the rest of the friends went home and there did the like and by Saturday
day I being alone in my office I found myself in a very bad situation, for my Lord, and Mr.
Creed, and Pett were all standing ready to receive and receive the oaths of allegiance and right
to make use of the ten days’ licence I had allowed for this purpose by virtue of the law that was
such a help to the servant. Having looked at the ships, I told my wife what I had seen and that
I was greatly troubled at my situation and, I hope that will mend it.

So that is the end of a long and patient seeking after those things which in my opinion I deserve
and may get if I can only by fair means get them.
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Context from The Patrol of the Sun Dance Trail by Ralph Connor:

High up on the hillside in the midst of a rugged group of jack pines the Union Jack shook
out its folds gallantly in the breeze that swept down the Kicking Horse Pass. That gallant flag
marked the headquarters of Superintendent Strong, of the North West Mounted Police, whose
special duty it was to preserve law and order along the construction line of the Canadian Pacific
Railway Company, now pushed west some scores of miles.

Along the tote-road, which ran parallel to the steel, a man, dark of skin, slight but wiry,
came running, his hard panting, his streaming face, his open mouth proclaiming his ex-
haustion. At a little trail that led to the left he paused, noted its course toward the flaunt-
ing flag, turned into it, then struggled up the rocky hillside till he came to the wooden
shack, with a deep porch running round it, and surrounded by a rustic fence which en-
closed a garden whose neatness illustrated a characteristic of the British soldier. The run-
ner passed in through the gate and up the little gravel walk and began to ascend the steps.

Compressive Transformer:

As though by mutual consent, all the three members of the Superintendent Force were standing
on the veranda watching his progress, a man came strolling slowly down the path, stopping
often to gaze curiously about him, then stopping once more when he saw the four standing on
the veranda. His face was dark, his eyes prominent, and the lines that furrowed his forehead
showed marks of many woes, yet his step was alert and he began to mount the steps with steady
strides.

The man’s attention was diverted by the unexpected appearance of the two policemen; a third
man came slipping up, grumbling under his breath, and stopped long enough to look doubtfully
around him, then slipped away again. In the meantime, the four on the veranda continued to
watch the approach of the new arrival. In spite of himself, the Superintendent Force became
conscious of a curious feeling–uneasiness that was almost fear–in the presence of that strange
man. He would not allow himself to admit the fact, yet he felt it in his bones. But to the
watchers, the plain, everyday features of that stranger and his coming, seemed only just what
the Seven White Shee owed him–their weight, their hurry, their blast.

Had a chariot been made for the good of the three horses, and had the driver been given orders
that he should speed them that he might win, they would have been heartening things in the
sight of the veteran and the victor. To you they would have been unintelligible to the root of
your understanding. When you gaze up in the faces of those four gray horses, you can see
clearly through the clouds of dust that rise from their hoofs, and discern plainly where the
banker is and where the hobo. Then you will understand why you shall not press the bitter
grapes and why you shall not spurn the generous doctrines. You will understand why you shall
not praise the lash or the spur, for you will know where the true would be and where the false
would be. Then you will understand why you, a man with reason and heart, need not tear your
hair over-bitter and why you need not laugh over the blunders of an ignorant man.

About nine o’clock that morning, two buggies, drawn by powerful horses, crossed the Rubicon
and turned the railroad from Sandhurst into the Hollow of the Mountains. And though the char-
ioteers stood at their horses’ heads, and their drivers cried at their loudest, there was not a man
in the four teams who did not feel that his day was worth all the toil and all the peril that he
had undergone. And if there were a man in them who did not know that–who did not feel that
the road through the Hollow of the Mountains is made easy by the arrival of travelers and by
the coming of government, there was one who did not at that moment care whether his day’s
work were worth all the toil and all the danger that he had had to endure or whether it were not
worth more than all.

17


	Introduction
	Related Work
	Model
	Compression Functions
	Training Schemes

	PG-19 Benchmark
	Related Datasets
	Statistics

	Experiments
	Setup
	Enwik8
	Compression Functions
	Wikitext-103
	PG-19
	Model analysis
	Compressibility of layers
	Attention
	Optimisation Schedule

	Speech
	Reinforcement Learning

	Conclusion
	PG-19 Preprocessing
	PG-19 Topics
	PG-19 Samples

