Under review as a conference paper at ICLR 2020

TOWARD EVALUATING ROBUSTNESS OF DEEP REIN-
FORCEMENT LEARNING WITH CONTINUOUS CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning has achieved great success in many previously diffi-
cult reinforcement learning tasks, yet recent studies show that deep RL agents are
also unavoidably susceptible to adversarial perturbations, similar to deep neural
networks in classification tasks. Prior works mostly focus on model-free adver-
sarial attacks and agents with discrete actions. In this work, we study the problem
of continuous control agents in deep RL with adversarial attacks and propose the
first two-step algorithm based on learned model dynamics. Extensive experiments
on various MuJoCo domains (Cartpole, Fish, Walker, Humanoid) demonstrate
that our proposed framework is much more effective and efficient than model-free
based attacks baselines in degrading agent performance as well as driving agents
to unsafe states.

1 INTRODUCTION

Deep reinforcement learning (RL) has revolutionized the fields of Al and machine learning over
the last decade. The introduction of deep learning has achieved unprecedented success in solving
many problems that were intractable in the field of RL, such as playing Atari games from pixels and
performing robotic control tasks (Mnih et al., 2015 [Lillicrap et al} [2015} [Tassa et al., 2018)). Un-
fortunately, similar to the case of deep neural network classifiers with adversarial examples, recent
studies show that deep RL agents are also vulnerable to adversarial attacks.

A commonly-used threat model allows the adversary to manipulate the agent’s observations at every
time step, where the goal of the adversary is to decrease the agent’s total accumulated reward. As a
pioneering work in this field, (Huang et al., 2017) show that by leveraging the FGSM attack on each
time frame, an agent’s average reward can be significantly decreased with small input adversarial
perturbations in five Atari games. (Lin et al., |2017) further improve the efficiency of the attack
in (Huang et al., [2017) by leveraging heuristics of detecting a good time to attack and luring agents
to bad states with sample-based Monte-Carlo planning on a trained generative video prediction
model.

Since the agents have discrete actions in Atari games (Huang et al.| 2017 |[Lin et al., 2017), the prob-
lem of attacking Atari agents often reduces to the problem of finding adversarial examples on image
classifiers, also pointed out in (Huang et al., 2017), where the adversaries intend to craft the input
perturbations that would drive agent’s new action to deviate from its nominal action. However, for
agents with continuous actions, the above strategies can not be directly applied. Recently, (Uesato
et al., 2018)) studied the problem of adversarial testing for continuous control domains in a similar
but slightly different setting. Their goal was to efficiently and effectively find catastrophic failure
given a trained agent and to predict its failure probability. The key to success in (Uesato et al.,[2018)
is the availability of agent training history. However, such information may not always be accessible
to the users, analysts, and adversaries.

Therefore, in this paper we study the robustness of deep RL agents in a more challenging setting
where the agent has continuous actions and its training history is not available. We consider the
threat models where the adversary is allowed to manipulate an agent’s observations or actions with
small perturbations, and we propose a two-step algorithmic framework to find efficient adversarial
attacks based on learned dynamics models. Experimental results show that our proposed model-
based attack can successfully degrade agent performance and is also more effective and efficient
than model-free attacks baselines. The contributions of this paper are the following:

Under review as a conference paper at ICLR 2020

+As;
Observation s; Actionq; ~ Observations; Action q;
Reward 1; Rewardr;
{Ti+1 w1 +Aa;
(a) Attack observations of agent. (b) Attack actions of agent.

Figure 1: Two commonly-used threat models.

e To the best of our knowledge, we propose the first model-based attack on deep RL agents
with continuous actions. Our proposed attack algorithm is a general two-step algorithm and
can be directly applied to the two commonly-used threat models (observation manipulation
and action manipulation).

o We study the efficiency and effectiveness of our proposed model-based attack with model-
free attack baselines based on random searches and heuristics (rand-U, rand-B, flip, see
Section 4). We show that our model-based attack can degrade agent performance more
significantly and efficiently than model-free based attacks, which remain ineffective in nu-
merous MuJoCo domains ranging from Cartpole, Fish, Walker, and Humanoid.

2 BACKGROUND

Adversarial attacks in reinforcement learning. Compared to the rich literature of adversarial
examples in image classifications (Szegedy et al., 2013) and other applications (including natural
language processing (Jia & Liang} |2017), speech (Carlini & Wagner, 2018)), etc), there is relatively
little prior work studying adversarial examples in deep RL. One of the first several works in this field
are (Huang et al., 2017) and (Lin et al., 2017, where both works focus on deep RL agent in Atari
games with pixels-based inputs and discrete actions. In addition, both works assume the agent to
be attacked has accurate policy and the problem of finding adversarial perturbation of visual input
reduces to the same problem of finding adversarial examples on image classifiers. Hence, (Huang
et al., 2017) applied FGSM (Goodfellow et al., 2015) to find adversarial perturbations and (Lin
et al., 2017) further improved the efficiency of the attack by heuristics of observing a good timing
to attack — when there is a large gap in agents action preference between most-likely and least-
likely action. In a similar direction, (Uesato et al., 2018)) study the problem of adversarial testing
by leveraging rejection sampling and the agent training histories. With the availability of training
histories, (Uesato et al.l [2018)) successfully uncover bad initial states with much fewer samples
compared to conventional Monte-Carlo sampling techniques. Recent work by (Gleave et al.l 2019)
consider an alternative setting where the agent is attacked by another agent (known as adversarial
policy), which is different from the two threat models considered in this paper. Finally, besides
adversarial attacks in deep RL, a recent work (Wang et al.| |2019) study verification of deep RL
agent under attacks, which is beyond the scope of this paper.

Learning dynamics models. Model-based RL methods first acquire a predictive model of the
environment dynamics, and then use that model to make decisions (Atkeson & Santamaria, [1997).
These model-based methods tend to be more sample efficient than their model-free counterparts,
and the learned dynamics models can be useful across different tasks. Various works have focused
on the most effective ways to learn and utilize dynamics models for planning in RL (Kurutach et al.,
2018;|Chua et al., [2018} |Chiappa et al., 2017; [Fu et al., 2016).

3 PROPOSED FRAMEWORK

In this section, we first describe the problem setup and the two threat models considered in this
paper. Next, we present an algorithmic framework to rigorously design adversarial attacks on deep
RL agents with continuous actions.

Under review as a conference paper at ICLR 2020

3.1 PROBLEM SETUP AND FORMULATION

Let s; € RY and a; € RM be the observation vector and action vector at time step i, and let
7 : RV — RM be the deterministic policy (agent). Let f : RY x RM — R be the dynamics
model of the system (environment) which takes current state-action pair (s;, a;) as inputs and outputs
the next state s; ;. We are now in the role of an adversary, and as an adversary, our goal is to drive
the agent to the (un-safe) target states Sirger Within the € budget constraints.

We can formulate this goal into two optimization problems, as we will illustrate shortly below.
Within this formalism, we can consider two threat models:

Threat model (i): Observation manipulation. For the threat model of observation manipulation,
an adversary is allowed to manipulate the observation s; that the agent perceived within an € budget:

||ASLHOO <e Ls<s;+ As; < Us, (D
where As; € RY is the crafted perturbation and U, € R, L, € R are the observation limits.

Threat model (ii): Action manipulation. For the threat model of action manipulation, an adver-
sary can craft Aa; € RM such that

||Aa'1||oo S €, La S a; + Aai S Uay (2)
where U, € RM | L, € RM are the limits of agent’s actions.
Our formulations. Given an initial state sy and a pre-trained policy 7, our (adversary) objective is
to minimize the total distance of each state s; to the pre-defined target state Syyge; Up to the unrolled

(planning) steps 7T". This can be written as the following optimization problems in Equations [3|and
for the Threat model (i) and (ii) respectively:

T
min Z d(Si, Starget)
=1

st. a; =m(s; + As;), siv1 = f(si,a;), Constraint (1), i € Zp,
T
rggl Lz:; d(Sia Starget))

s.t. a; = W(Si), Si+1 = f(Si, a; + Aai), Constraint (2), 1€ ZT.

A common choice of d(z,y) is the squared ¢ distance ||z — y||3 and f is the learned dynamics
model of the system, and 7" is the unrolled (planning) length using the dynamics models.

3.2 OUR ALGORITHM

In this section, we propose a two-step algorithm to solve Equations [3and [d] The core of our pro-
posal consists of two important steps: learn a dynamics model f of the environment and deploy
optimization technique to solve Equations [3]and [} We first discuss the details of each factor, and
then present the full algorithm by the end of this section.

Step 1: learn a good dynamics model f. Ideally, if f is the exact (perfect) dynamics model of
the environment and assuming we have an optimization oracle to solve Equations [3] and 4] then
the solutions are indeed the optimal adversarial perturbations that give the minimal total loss with
e-budget constraints. Thus, learning a good dynamics model can conceptually help on developing
a strong attack. Depending on the environment, different forms of f can be applied. For example,
if the environment of concerned is close to a linear system, then we could let f(s,a) = As + Bu,
where A and B are unknown matrices to be learned from the sample trajectories (s;, a;, $;11) pairs.
For a more complex environment, we could decide if we still want to use a simple linear model
(the next state prediction may be far deviate from the true next state and thus the learned dynamical
model is less useful) or instead switch to a non-linear model, e.g. neural networks, which usually
has better prediction power but may require more training samples. For either case, the model
parameters A, B or neural network parameters can be learned via standard supervised learning with
the sample trajectories pairs (s;, a;, Si+1)-

Under review as a conference paper at ICLR 2020

Step 2: solve Equations[3]and[d} Once we learned a dynamical model f, the next immediate task
is to solve Equation [3|and 4] to compute the adversarial perturbations of observations/actions. When
the planning (unrolled) length 7" > 1, Equation [3] usually can not be directly solved by off-the-
shelf convex optimization toolbox since the deel RL policy 7 is usually a non-linear and non-convex
neural network. Fortunately, we can incorporate the two equality constraints of Equation [3|into
the objective and with the remaining e-budget constraint (Equation [I)), Equation [3] can be solved
via projected gradient descent (PGD) ﬂ Similarly, Equation |4| can be solved via PGD to get Aa,.
We note that, similar to the n-step model predictive control, our algorithm could use a much larger
planning (unrolled) length 7" when solving Equations [3]and [and then only apply the first n (< T')
adversarial perturbations on the agent over n time steps. Besides, with the PGD framework, f is
not limited to feed-forward neural networks. Our proposed attack is summarized in Algorithm 2] for
Step 1, and Algorithm [3|for Step 2.

Algorithm 1 Collect_trajectories

Input: pre-trained policy m, MaxSampleSize n,, environment env
Output: a set of trajectory pairs S
k< 0,8+ ¢
Sp <— env.reset()
while k£ < n, do
ay, + 7(sk)
Sk4+1 < env.step(ag)
Su {(Skvak7 SkJrl)}
k+—k+1
end while
Return S

TRYRIDIUNRD

—_—

Algorithm 2 learn_dynamics

1: Input: pre-trained policy m, MaxSampleSize n,, environment env, trainable parameters W
Output: learned dynamical model f(s, a; W)

Sagent +— Collect_trajectories(m, n,, env)

Standom < Collect_trajectories(random_policy, ns, env)

f(s,a; W) « supervised_learning_algorithm(S,geni U Srandom, W)

Return f(s,a; W)

AN AN

Algorithm 3 model_based_attack

1: Input: pre-trained policy 7, learned dynamical model f(s,a; W), threat model, maximum
perturbation magnitude e, unroll length 7', apply perturbation length n (< 7))
Output: a sequence of perturbation 61, . .., d,
if threat model is observation manipulation (Eq. [I)) then
Solve Eq. 3| with parameters (r, f, €, T) via PGD to get 01, ..., o7
else if threat model is action manipulation (Eq.|2)) then
Solve Eq.] with parameters (7, f, €, T) via PGD to get 01, ..., 07
end if
Return 41, ...,9d,

A A S ol

4 EXPERIMENTS

In this section, we conduct experiments on standard reinforcement learning environment for continu-
ous control Tassa et al.| (2018). We demonstrate results on 4 different environments in MuJoCo|Tassa
et al.| (2018) and corresponding tasks: Cartpole-balance/swingup, Fish-upright, Walker-stand/walk
and Humanoid-stand/walk. For the deep RL agent, we train a state-of-the-art D4PG agent (Barth-
Maron et al., [2018) with default Gaussian noise A (0, 0.3I) on the action. The organization is as

1Alternatively, standard optimal control methods such as Linear Quadratic Regulator (LQR) and iterative
Linear Quadratic Regulator (i-LQR) can also be applied to solve Equations E] and E] approximately.

Under review as a conference paper at ICLR 2020

Table 1: Compare three model-free attack baselines (rand-U, rand-B, flip) and our algorithm
(Ours) in 4 different domains and tasks. We report the following statistics over 10 different runs:

mean, standard deviation, averaged ratio, and best attack (number of times having smallest loss over
10 different runs). Results show that our attack outperforms all the model-free attack baselines for

the observation manipulation threat model by a large margin for all the statistics. Our proposed
attack is also superior on the action manipulation threat model and win over most of the evaluation

metrics.

(a) Observation manipulation: mean and standard deviation (in parenthesis)

Total loss rand-U rand-B flip Ours

stand 1462 (70) 1126 (86) 1458 (24) | 258 (55)
Walker

walk 1517 (22) 1231 (31) 1601 (18) | 466 (42)

.. stand 1986 (28) 1808 (189) 1997 (5) | 516 (318)

Humanoid

walk 1935 (22) 1921 (31) 1982 (9) | 1457 (146)

balance | 4000 (0.02) 3999 (0.04) 3989 (2) | 2101 (64)
Cartpole

swingup | 3530 (1) 3525 (1) 3516 (1) | 2032 (172)

(b) Observation manipulation: averaged ratio and rank-1

Total loss (avg ratio) | Ours/rand-U Owurs/rand-B Ours/flip best attack
stand 0.18 0.23 0.18 Ours: 10/10, others: 0/10
Walker
walk 0.31 0.38 0.29 Ours: 10/10, others: 0/10
. stand 0.26 0.29 0.26 Ours: 10/10, others: 0/10
Humanoid
walk 0.75 0.76 0.74 Ours: 10/10, others: 0/10
balance 0.53 0.53 0.53 Ours: 10/10, others: 0/10
Cartpole
swingup 0.58 0.58 0.58 Ours: 10/10, others: 0/10
(c) Action manipulation: mean and standard deviation (in parenthesis)
Total loss rand-U rand-B flip Ours
balance | 4000 (0.03) 3999 (0.08) 3046 (1005) | 1917 (102)
Cartpole
swingup | 3571 (1) 3487 (7) 1433 (4) 1388 (50)
Fish upright 935 (27) 936 (24) 907 (22) 824 (84)
(d) Action manipulation: averaged ratio and rank-1
Total loss (avg ratio) | Ours/rand-U Ours/rand-B Ours/flip best attack
balance 0.48 0.48 0.63 Ours: 10/10, others: 0/10
Cartpole
swingup 0.39 0.40 0.97 Ours: 10/10, others: 0/10
Fish upright 0.88 0.88 0.91 Ours: 8/10, flip: 2/10

Under review as a conference paper at ICLR 2020

follows: we first evaluate the effectiveness of our proposed model-based attack and three model-free
baselines in terms of both loss and reward. Next, we demonstrate the efficiency of our proposed
attack in terms of sample complexity.

Evaluations. We conduct experiments for 10 different runs, where the environment is reset to
different initial states in different runs. For each run, we attack the agent for one episode with 1000
time steps (the default time intervals is usually 10 ms) and we compute the total loss and total return
reward. The total loss calculates the total distance of current state to the unsafe states and the total
return reward measures the true accumulative reward from the environment based on agent’s action.
Hence, the attack algorithm is stronger if the total return reward and the total loss are smaller.

Baselines. We compare our algorithm with the following model-free attack baselines with random
searches and heuristics:

e rand-U: generate m randomly perturbed trajectories from Uniform distribution with inter-
val [—¢, €] and return the trajectory with the smallest loss (or reward),

e rand-B: generate m randomly perturbed trajectories from Bernoulli distribution with prob-
ability 1/2 and interval [—e, €], and return the trajectory with the smallest loss (or reward),

o flip: generate perturbations by flipping agent’s observations/actions within the e budget in
f oo norm.

For rand-U and rand-B, they are similar to Monte-Carlo sampling methods, where we generate
m sample trajectories from random noises and report the loss/reward of the best trajectory (with
minimum loss or reward among all the trajectories). We set m = 1000 throughout the experiments.

Our algorithm. A 4-layer feed-forward neural network with 1000 hidden neurons per layer is
trained as the dynamics model f respectively for the domains of Cartpole, Fish, Walker and Hu-
manoid. We use standard ¢ loss (without regularization) to learn a dynamics model f. Instead of
using recurrent neural network to represent f, we found that the 1-step prediction for dynamics with
the 4-layer feed-forward network is already good for the MuJoCo domains we are studying. Specif-
ically, for the Cartpole and Fish, we found that 1000 episodes (1e6 training points) are sufficient
to train a good dynamics model (the mean square error for both training and test losses are at the
order of 10~° for Cartpole and 10~2 for Fish), while for the more complicated domain like Walker
and Humanoid, more training points (5e6) are required to achieve a low test MSE error (at the order
of 107! and 10° for Walker and Humanoid respectively). Consequently, we use larger planning
(unrolled) length for Cartpole and Fish (e.g. T" = 10, 20), while a smaller 7" (e.g. 3 or 5) is used
for Walker and Humanoid. Meanwhile, we focus on applying projected gradient descent (PGD) to
solve Equation [3]and[4] We use Adam as the optimizer with optimization steps equal to 30 and we
report the best result for each run from a combination of 6 learning rates, 2 unroll length {77, T5}
and n steps of applying PGD solution with n < T;.

4.1 RESULTS

For observation manipulation, we report the results on Walker, Humanoid and Cartpole domains
with tasks (stand, walk, balance, swingup) respectively. The unsafe states Siyger for Walker and
Humanoid are set to be zero head height, targeting the situation of falling down. For Cartpole, the
unsafe states are set to have 180° pole angle, corresponding to the cartpole not swinging up and nor
balanced. For the Fish domain, the unsafe states for the upright task target the pose of swimming
fish to be not upright, e.g. zero projection on the z-axis.

The full results of both two threat models on observation manipulation and action manipulation are
shown in Table [Th, b and ¢, d respectively. Since the loss is defined as the distance to the target
(unsafe) state, the lower the loss, the stronger the attack. It is clear that our proposed attack achieves
much lower loss in Table Eh & c than the other three model-free baselines, and the averaged ratio is
also listed in & d. Notably, over the 10 runs, our proposed attack always outperforms baselines
for the threat model of observation perturbation and the Cartpole domain for the threat model of
action perturbation, while still superior to the baselines despite losing two times to the flip baseline
on the Fish domain.

Under review as a conference paper at ICLR 2020

Walker.walk t=0 t=160 t=320 t=480 t=640 t=800

t =960
o 2 15 S EH BN N 3
s 21 B BN BN B E3 B
+ |21 W BY EM BN B3 93
- 3 4 B3 BN BN BN R

Makes Walker fall down {C’;

Figure 2: Video frames of best attacks in each baseline among 10 runs for the Walker.walk example.
Only our proposed attack can constantly make the Walker fall down (since we are minimizing its
head height to be zero).

To have a better sense on the numbers, we give some quick examples below. For instance, as shown
in Table [Th and b, we show that the average total loss of walker head height is almost unaffected
for the three baselines — if the walker successfully stand or walk, its head height usually has to be
greater than 1.2 at every time step, which is 1440 for one episode — while our attack can successfully
lower the walker head height by achieving an average of total loss of 258(468), which is roughly
0.51(0.68) per time step for the stand (walk) task. Similarly, for the humanoid results, a successful
humanoid usually has head height greater than 1.4, equivalently a total loss of 1960 for one episode,
and Table[Th shows that the d4pg agent is robust to the perturbations generated from the three model-
free baselines while being vulnerable to our proposed attack. Indeed, as shown in Figure 2] the
walker and humanoid falls down quickly (head height is close to zero) under our specially-designed
attack while remaining unaffected for all the other baselines.

4.2 DISCUSSION

Evaluating on the total reward. Often times, the reward function is a complicated function and
its exact definition is often unavailable. Learning the reward function is also an active research field,
which is not in the coverage of this paper. Nevertheless, as long as we have some knowledge of
unsafe states (which is often the case in practice), then we can define unsafe states that are related
to low reward and thus performing attacks based on unsafe states (i.e. minimizing the total loss
of distance to unsafe states) would naturally translate to decreasing the total reward of agent. As
demonstrated in Table [2] the results have the same trend of the total loss result in Table [T} where
our proposed attack significantly outperforms all the other three baselines. In particular, our method
can lower the average total reward up to 4.96 x compared to the baselines result, while the baseline
results are close to the perfect total reward of 1000.

Evaluating on the efficiency of attack. We also study the efficiency of the attack in terms of
sample complexity, i.e. how many episodes do we need to perform an effective attack? Here we
adopt the convention in control suite (Tassa et all, [2018)) where one episode corresponds to 1000
time steps (samples), and we learn the neural network dynamical model f with different number of
episodes.

Figure [3] plots the total head height loss of the walker (task stand) for the three baselines and our
method with dynamical model f trained with three different number of samples: {5e5, 1e6,5e6},
or equivalently {500, 1000, 5000} episodes. We note that the sweep of hyper parameters is the same
for all the three models, and the only difference is the number of training samples. The results show
that for the baselines rand-U and flip, the total losses are roughly at the order of 1400-1500, while

Under review as a conference paper at ICLR 2020

Table 2: Compare three attack baselines (rand-U, rand-B, flip) and our algorithm (Ours) in three
different domains and tasks. Performance statistics of 10 different runs are reported.

(a) The mean and standard deviation (in parenthesis) over 10 different runs

Total reward rand-U rand-B flip Ours
stand 937 (41) 744 (48) 993 (8) 235 (38)
Walker
walk 941 (23) 796 (21) 981 (9) 225 (50)
.. stand 927 (21) 809 (85) 959 (5) 193 (114)
Humanoid
walk 934 (22) 913 (21) 966 (6) 608 (66)
balance | 995 (0.17) 986 (0.16) 985 (3) 385 (6)
Cartpole
swingup | 873 (0.75) 851 (2) 852 (0.29) | 353 (61)

(b) Average ratio and number of times our algorithm being the best attack over 10 runs.

Total reward (avg ratio) | Ours/rand-U Ours/rand-B Ours/flip best attack
stand 0.25 0.32 0.24 Ours: 10/10, others: 0/10
Walker
walk 0.24 0.28 0.23 Ours: 10/10, others: 0/10
) stand 0.21 0.24 0.20 Ours: 10/10, others: 0/10
Humanoid
walk 0.65 0.67 0.63 Ours: 10/10, others: 0/10
balance 0.39 0.39 0.39 Ours: 10/10, others: 0/10
Cartpole
swingup 0.41 0.42 0.42 Ours: 10/10, others: 0/10

a stronger baseline rand-B still has total losses of 900-1200. However, if we solve Equation [3| with
f trained by 5eb5 or 1e6 samples, the total losses can be decreased to the order of 400-700 and are
already winning over the three baselines by a significant margin. Same as our expectation, if we use
more samples (e.g. 5e6, which is 5-10 times more), to learn a more accurate dynamics model, then
it is beneficial to our attack method — the total losses can be further decreased by more than 2x and
are at the order of 50-250 over 10 different runs.

Here we also give a comparison between our model-based attack to existing works (Uesato et al.,
2018; |Gleave et al., [2019) on the sample complexity. In (Uesato et al., 2018)), 3e5 episodes of
training data is used to learn the adversarial value function, which is roughly 1000 x more data than
even our strongest adversary (with 5e3 episodes). Similarly, (Gleave et al., 2019) use roughly 2e4
episodes to train an adversary via deep RL, which is roughly 4 x more data than ours.

5 CONCLUSIONS

In this paper, we study the problem of adversarial attacks in deep RL with continuous control for two
commonly-used threat models (observation manipulation and action manipulation). Based on the
threat models, we proposed the first model-based attack algorithm and showed that our formulation
can be easily solved by off-the-shelf gradient-based solvers. Through extensive experiments on
4 MuJoCo domains (Cartpole, Fish, Walker, Humanoid), we show that our proposed algorithm
outperforms all the model-free based attack baselines by a large margin while having less samples
complexity compared to prior works.

Under review as a conference paper at ICLR 2020

Walker.stand, total head height loss

2000 ® randU
® randB
Flip

1500 — — -
> — \/\/ ~—~9 ©® PGD, num_train: 55
@ PGD, num_train: 1e6
PGD, num_train: 5e6
1000 .’/./‘\\//\'/‘ °]

500

0 T i T 1
0 2 4 6 8

k_ith episode

Figure 3: Compare sample size on the Walker.stand in 10 different initialization in the environment.
The x-axis is the kth initialization and the y-axis is the total loss of corresponding initialization.

Under review as a conference paper at ICLR 2020

REFERENCES

Christopher G Atkeson and Juan Carlos Santamaria. A comparison of direct and model-based rein-
forcement learning. International Conference on Robotics and Automation, 1997.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Alistair
Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy
gradients. arXiv preprint arXiv:1804.08617, 2018.

Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on speech-to-
text. In 2018 IEEE Security and Privacy Workshops (SPW), pp. 1-7. IEEE, 2018.

Silvia Chiappa, Sbastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. International Conference on Learning Representations (ICLR), 2017.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Neural Information Process-
ing Systems (NIPS), 2018.

Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. Intelligent Robots and Systems (IROS), 2016.

Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart Russell. Adver-
sarial policies: Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. ICLR, 2015.

Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems. In
Empirical Methods in Natural Language Processing (EMNLP), Outstanding paper award, 2017.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tac-
tics of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:1703.06748,
2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Jonathan Uesato, Ananya Kumar, Csaba Szepesvari, Tom Erez, Avraham Ruderman, Keith Ander-
son, Nicolas Heess, Pushmeet Kohli, et al. Rigorous agent evaluation: An adversarial approach
to uncover catastrophic failures. arXiv preprint arXiv:1812.01647, 2018.

Yuh-Shyang Wang, Tsui-Wei Weng, and Luca Daniel. Verification of neural network control policy
under persistent adversarial perturbation. arXiv preprint arXiv:1908.06353, 2019.

10

	Introduction
	Background
	Proposed framework
	Problem setup and formulation
	Our algorithm

	Experiments
	Results
	Discussion

	Conclusions

