
Under review as a conference paper at ICLR 2020

VARIATIONAL HYPER RNN FOR SEQUENCE MODEL-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we propose a novel probabilistic sequence model that excels at
capturing high variability in time series data, both across sequences and within
an individual sequence. Our method uses temporal latent variables to capture
information about the underlying data pattern and dynamically decodes the latent
information into modifications of weights of the base decoder and recurrent model.
The efficacy of the proposed method is demonstrated on a range of synthetic and
real-world sequential data that exhibit large scale variations, regime shifts, and
complex dynamics.

1 INTRODUCTION

Recurrent neural networks (RNNs) are the natural architecture for sequential data as they can handle
variable-length input and output sequences. Initially invented for natural language processing, long
short-term memory (LSTM; Hochreiter & Schmidhuber 1997), gated recurrent unit (GRU; Cho
et al. 2014) as well as the later attention-augmented versions (Vaswani et al., 2017) have found
wide-spread successes from language modeling (Mikolov et al., 2010; Kiros et al., 2015; Jozefowicz
et al., 2016) and machine translation (Bahdanau et al., 2014) to speech recognition (Graves et al.,
2013) and recommendation systems (Wu et al., 2017). However, RNNs use deterministic hidden
states to process input sequences and model the system dynamics using a set of time-invariant weights,
and they do not necessarily have the right inductive bias for time series data outside the originally
intended domains.

Many natural systems have complex feedback mechanisms and numerous exogenous sources of
variabilities. Observations from such systems would contain large variations both across sequences in
a dataset as well as within any single sequence; the dynamics could be switching regimes drastically,
and the noise process could also be heteroskedastic. To capture all these intricate patterns in RNN
with deterministic hidden states and a fixed set of weights requires learning about the patterns, the
subtle deviations from the patterns, the conditions under which regime transitions occur which is
not always predictable. Outside of the deep learning literature, many time series models have been
proposed to capture specific types of high variabilities. For instance, switching linear dynamical
models (Ackerson & Fu, 1970; Ghahramani & Hinton, 1996; Murphy, 1998; Fox et al., 2009) aim
to model complex dynamical systems with a set of simpler linear patterns. Conditional volatility
models (Engle, 1982; Bollerslev, 1986) are introduced to model time series with heteroscedastic noise
process whose noise level itself is a part of the dynamics. However, these models usually encode
specific inductive biases in a hard way, and cannot learn different behaviors and interpolate among
the learned behaviors as deep neural nets.

In this work, we propose a new class of neural recurrent latent variable model, called the variational
hyper RNN (VHRNN), which can perform system identification and re-identification dynamically at
inference time. Our model captures complex time series without encoding a large number of patterns
in static weights, but instead only encodes base dynamics that can be selected and adapted based on
run time observations. Thus it can easily learn to express a rich set of behaviors including but not
limited to the ones mentioned above. Our model can dynamically identify the underlying pattern,
express uncertainty due to observation noise, lack of information, or model misspecification. As such,
VHRNN can model complex patterns with fewer parameters; and when given lots of parameters, it
generalizes better than previous methods.

The VHRNN is built upon the previous variational RNN (VRNN) models (Chung et al., 2015) and
hypernetworks (Ha et al., 2016). The VRNN models introduce stochastic latent variables at every
time step, which are inferred using a variational recognition model. The overall model is trained by
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maximizing the evidence lower bound (ELBO). In VRNN, the latent variables capture the information
in the stochastic hidden states and are then fed as input to the RNN and decoding model to produce
reconstructed observations. While in our work, the latent variables are decoded to produce the RNN
transition weights and observation projection weights in the style of hypernetworks (Ha et al., 2016),
i.e., dynamically generating the scaling and bias vectors to adjust the base weights of the RNN. We
demonstrate that the proposed VHRNN model is better at capturing different types of variability on
several synthetic as well as real-world time series datasets.

2 BACKGROUND AND RELATED WORK

Variational Autoencoder Variational autoencoder (VAE) is one of the most popular unsupervised
approaches to learning a compact representation from data (Kingma & Welling, 2013). It uses
a variational distribution q(z|x) to approximate the intractable posterior distribution of the latent
variable z. With the use of variational approximation, it maximizes the evidence lower bound (ELBO)
of the marginal log-likelihood of data

L(x) = Eq(z|x)[log p(x|z)]−DKL(q(z|x) ‖ p(z)) ≤ log p(x),
where p(z) is a prior distribution of z and DKL denotes the Kullback–Leibler (KL) divergence. The
approximate posterior q(z|x) is usually formulated as a Gaussian with a diagonal covariance matrix.

Variational RNN for Sequential Data Variational autoencoders have demonstrated impressive
performance on non-sequential data like images. Many following works (Bowman et al., 2015;
Chung et al., 2015; Fraccaro et al., 2016; Luo et al., 2018) extend the domain of VAE models to
sequential data. Among them, variational RNN (VRNN; Chung et al. 2015) further incorporate a
latent variable at each time step into their models. A prior distribution conditioned on the contextual
information and a variational posterior is proposed at each time step to optimize a step-wise variational
lower bound. Sampled latent variables from the variational posterior are decoded into the observation
at the current time step. The VHRNN model makes use of the same factorization of sequential data
and joint distribution of latent variables as in VRNN. However, in VHRNN model, the latent variables
also parameterize the weights for decoding and transition in RNN cell across time steps, giving the
model more flexibility to deal with variations within and across sequences.

Importance Weighted Autoencoder and Filtering Variational Objective A parallel stream of
work to improve latent variable models with variational inference study tighter bounds of the data’s
log-probability than ELBO. Importance Weighted Autoencoder (IWAE; Burda et al. 2016) estimates
a different variational bound of the log-likelihood, which is provably tighter than ELBO. Filtering
Variational Objective (FIVO; Maddison et al. 2017) exploits the temporal structure of sequential data
and uses particle filtering to estimate the data log-likelihood. FIVO still computes a step-wise IWAE
bound based on the sampled particles at each time step, but it shows better sampling efficiency and
tightness than IWAE. We use FIVO as the objective to train and evaluate our models.

HyperNetworks Our model is motivated by HyperNetworks (Ha et al., 2016) which use one network
to generate the parameters of another. The dynamic version of HyperNetworks can be applied to
sequence data, but due to lack of latent variables, can only capture uncertainty in the output variables.
For discrete sequence data such as text, categorical output variables can model multi-model outputs
very well; but on continuous time series with the typical Gaussian output variables, the model is
much less capable at dealing with stochasticity. Furthermore, it does not allow straightforward
interpretation of the model behaviour using the time-series of KL divergence as we do in Sec. 4.
With the augmentation of latent variables, VHRNN is much more capable of modelling uncertainty.
It is worth noting that Bayesian HyperNetworks (Krueger et al., 2017) also have a latent variable
in the context of Hypernetworks. However, the goal of Bayesian Hypernetwork is an improved
version of Bayesian neural net to capture model uncertainty. The work of Krueger et al. (2017) has
no recurrent structure and cannot be applied to sequential data. Furthermore, the use of normalizing
flow dramatically limits the flexibility of the decoder architecture design, unlike in VHRNN.

3 MODEL FORMULATION

Variational Hyper RNN A recurrent neural network (RNN) can be characterized by ht =
gθ(xt,ht−1), where ht is the hidden state of the RNN at time step t, and θ is the fixed weights of the
RNN model. The hidden state ht is often used to generate the output for other learning tasks, e.g.,
predicting the observation at the next time step. We augment the RNN with a latent random variable
zt, which is also used to output the non-shared parameters of the RNN at time step t.

ht = gθ(zt,ht−1)(xt, zt,ht−1), (1)
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ht
<latexit sha1_base64="yb+zJaVnVxb78D+uSP6sELiCUyQ=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXBTZcV7APaECbTSTt0MgkzE6GGfIkbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8WxubW9s7u5W96v7B4VHNPj7pqTiVhHZJzGM5CLCinAna1UxzOkgkxVHAaT+Y3RV+/5FKxWLxoOcJ9SI8ESxkBGsj+XZtFGE9DcJsmvsZ0rlv152GswBaJ25J6lCi49tfo3FM0ogKTThWaug6ifYyLDUjnObVUapogskMT+jQUIEjqrxsETxHF0YZozCW5gmNFurvjQxHSs2jwEwWMdWqV4j/ecNUh7dexkSSairI8lCYcqRjVLSAxkxSovncEEwkM1kRmWKJiTZdVU0J7uqX10mv2XCvGs3763qrXdZRgTM4h0tw4QZa0IYOdIFACs/wCm/Wk/VivVsfy9ENq9w5hT+wPn8AGZqTZA==</latexit>

ht
<latexit sha1_base64="yb+zJaVnVxb78D+uSP6sELiCUyQ=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXBTZcV7APaECbTSTt0MgkzE6GGfIkbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8WxubW9s7u5W96v7B4VHNPj7pqTiVhHZJzGM5CLCinAna1UxzOkgkxVHAaT+Y3RV+/5FKxWLxoOcJ9SI8ESxkBGsj+XZtFGE9DcJsmvsZ0rlv152GswBaJ25J6lCi49tfo3FM0ogKTThWaug6ifYyLDUjnObVUapogskMT+jQUIEjqrxsETxHF0YZozCW5gmNFurvjQxHSs2jwEwWMdWqV4j/ecNUh7dexkSSairI8lCYcqRjVLSAxkxSovncEEwkM1kRmWKJiTZdVU0J7uqX10mv2XCvGs3763qrXdZRgTM4h0tw4QZa0IYOdIFACs/wCm/Wk/VivVsfy9ENq9w5hT+wPn8AGZqTZA==</latexit>

ht�1
<latexit sha1_base64="pyH59vw3x8S5PYlkOezmTsyQ388=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSRV0GXBTZcV7APaUCbTSTt0MgkzE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhXTnqqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3uZ+94FKxSJxr2cx9UI8FixgBGsjDe3KIMR64gfpJBumSF+42dCuOjVnDrRK3IJUoUBraH8NRhFJQio04VipvuvE2kux1IxwmpUHiaIxJlM8pn1DBQ6p8tJ59AydGWWEgkiaJzSaq783UhwqNQt9M5kHVcteLv7n9RMd3HgpE3GiqSCLQ0HCkY5Q3gMaMUmJ5jNDMJHMZEVkgiUm2rRVNiW4y19eJZ16zb2s1e+uqo1mUUcJTuAUzsGFa2hAE1rQBgKP8Ayv8GY9WS/Wu/WxGF2zip1j+APr8wf+FZPW</latexit>

ht�1
<latexit sha1_base64="pyH59vw3x8S5PYlkOezmTsyQ388=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSRV0GXBTZcV7APaUCbTSTt0MgkzE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhXTnqqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3uZ+94FKxSJxr2cx9UI8FixgBGsjDe3KIMR64gfpJBumSF+42dCuOjVnDrRK3IJUoUBraH8NRhFJQio04VipvuvE2kux1IxwmpUHiaIxJlM8pn1DBQ6p8tJ59AydGWWEgkiaJzSaq783UhwqNQt9M5kHVcteLv7n9RMd3HgpE3GiqSCLQ0HCkY5Q3gMaMUmJ5jNDMJHMZEVkgiUm2rRVNiW4y19eJZ16zb2s1e+uqo1mUUcJTuAUzsGFa2hAE1rQBgKP8Ayv8GY9WS/Wu/WxGF2zip1j+APr8wf+FZPW</latexit>

(b) Recurrence

!<latexit sha1_base64="YSTft55ok6XoL1J2WiNnIEAemaI=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY8BLzlGMA9IljA76U3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWaQosqrnQ3IgY4k9CyzHLoJhqIiDh0osnd3O88gTZMyQc7TSAUZCRZzCixTmr3lYARGZQrftVfAK+TICcVlKM5KH/1h4qmAqSlnBjTC/zEhhnRllEOs1I/NZAQOiEj6DkqiQATZotrZ/jCKUMcK+1KWrxQf09kRBgzFZHrFMSOzao3F//zeqmNb8OMySS1IOlyUZxybBWev46HTAO1fOoIoZq5WzEdE02odQGVXAjB6svrpF2rBlfV2v11pd7I4yiiM3SOLlGAblAdNVATtRBFj+gZvaI3T3kv3rv3sWwtePnMKfoD7/MHk02PJQ==</latexit>!<latexit sha1_base64="YSTft55ok6XoL1J2WiNnIEAemaI=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY8BLzlGMA9IljA76U3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWaQosqrnQ3IgY4k9CyzHLoJhqIiDh0osnd3O88gTZMyQc7TSAUZCRZzCixTmr3lYARGZQrftVfAK+TICcVlKM5KH/1h4qmAqSlnBjTC/zEhhnRllEOs1I/NZAQOiEj6DkqiQATZotrZ/jCKUMcK+1KWrxQf09kRBgzFZHrFMSOzao3F//zeqmNb8OMySS1IOlyUZxybBWev46HTAO1fOoIoZq5WzEdE02odQGVXAjB6svrpF2rBlfV2v11pd7I4yiiM3SOLlGAblAdNVATtRBFj+gZvaI3T3kv3rv3sWwtePnMKfoD7/MHk02PJQ==</latexit>

zt<latexit sha1_base64="1dW0KQdjrn4/gpiSi603AHCQOEs=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3AhtyJe4caGIWz/FnX/jtM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+Y3i/83hNTmsfyEWYJ8yIyljzklICRfLs6jAhMgjCb536GIfftmlN3lsCbxC1IDRVo+/bXcBTTNGISqCBaD1wnAS8jCjgVLK8MU80SQqdkzAaGShIx7WXL4Dm+NMoIh7EyTwJeqr83MhJpPYsCM7mIqde9hfifN0ghvPMyLpMUmKSrQ2EqMMR40QIeccUoiJkhhCpusmI6IYpQMF1VTAnu+pc3SbdRd6/rjYebWrNV1FFG5+gCXSEX3aImaqE26iCKUvSMXtGbNbderHfrYzVasoqdM/QH1ucPNU6Tdg==</latexit>

zt<latexit sha1_base64="1dW0KQdjrn4/gpiSi603AHCQOEs=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3AhtyJe4caGIWz/FnX/jtM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+Y3i/83hNTmsfyEWYJ8yIyljzklICRfLs6jAhMgjCb536GIfftmlN3lsCbxC1IDRVo+/bXcBTTNGISqCBaD1wnAS8jCjgVLK8MU80SQqdkzAaGShIx7WXL4Dm+NMoIh7EyTwJeqr83MhJpPYsCM7mIqde9hfifN0ghvPMyLpMUmKSrQ2EqMMR40QIeccUoiJkhhCpusmI6IYpQMF1VTAnu+pc3SbdRd6/rjYebWrNV1FFG5+gCXSEX3aImaqE26iCKUvSMXtGbNbderHfrYzVasoqdM/QH1ucPNU6Tdg==</latexit>

xt<latexit sha1_base64="YizIMSTLlo4pfXe6WFTEF9CcE/k=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3Ig19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgkRwDY7zbZU2Nre2d8q7lb39g8OqfXTc1XGqKOvQWMSqHxDNBJesAxwE6yeKkSgQrBdMb3O/98CU5rG8h1nCvIiMJQ85JWAk364OIwKTIMwe536GYe7bNafuLIDXiVuQGirQ9u2v4SimacQkUEG0HrhOAl5GFHAq2LwyTDVLCJ2SMRsYKknEtJctgs/xuVFGOIyVeRLwQv29kZFI61kUmMk8pl71cvE/b5BCeONlXCYpMEmXh8JUYIhx3gIeccUoiJkhhCpusmI6IYpQMF1VTAnu6pfXSbdRdy/rjburWrNV1FFGp+gMXSAXXaMmaqE26iCKUvSMXtGb9WS9WO/Wx3K0ZBU7J+gPrM8fMjqTdA==</latexit>

xt<latexit sha1_base64="YizIMSTLlo4pfXe6WFTEF9CcE/k=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3Ig19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgkRwDY7zbZU2Nre2d8q7lb39g8OqfXTc1XGqKOvQWMSqHxDNBJesAxwE6yeKkSgQrBdMb3O/98CU5rG8h1nCvIiMJQ85JWAk364OIwKTIMwe536GYe7bNafuLIDXiVuQGirQ9u2v4SimacQkUEG0HrhOAl5GFHAq2LwyTDVLCJ2SMRsYKknEtJctgs/xuVFGOIyVeRLwQv29kZFI61kUmMk8pl71cvE/b5BCeONlXCYpMEmXh8JUYIhx3gIeccUoiJkhhCpusmI6IYpQMF1VTAnu6pfXSbdRdy/rjburWrNV1FFGp+gMXSAXXaMmaqE26iCKUvSMXtGb9WS9WO/Wx3K0ZBU7J+gPrM8fMjqTdA==</latexit>

ht
<latexit sha1_base64="yb+zJaVnVxb78D+uSP6sELiCUyQ=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXBTZcV7APaECbTSTt0MgkzE6GGfIkbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8WxubW9s7u5W96v7B4VHNPj7pqTiVhHZJzGM5CLCinAna1UxzOkgkxVHAaT+Y3RV+/5FKxWLxoOcJ9SI8ESxkBGsj+XZtFGE9DcJsmvsZ0rlv152GswBaJ25J6lCi49tfo3FM0ogKTThWaug6ifYyLDUjnObVUapogskMT+jQUIEjqrxsETxHF0YZozCW5gmNFurvjQxHSs2jwEwWMdWqV4j/ecNUh7dexkSSairI8lCYcqRjVLSAxkxSovncEEwkM1kRmWKJiTZdVU0J7uqX10mv2XCvGs3763qrXdZRgTM4h0tw4QZa0IYOdIFACs/wCm/Wk/VivVsfy9ENq9w5hT+wPn8AGZqTZA==</latexit>

ht
<latexit sha1_base64="yb+zJaVnVxb78D+uSP6sELiCUyQ=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXBTZcV7APaECbTSTt0MgkzE6GGfIkbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8WxubW9s7u5W96v7B4VHNPj7pqTiVhHZJzGM5CLCinAna1UxzOkgkxVHAaT+Y3RV+/5FKxWLxoOcJ9SI8ESxkBGsj+XZtFGE9DcJsmvsZ0rlv152GswBaJ25J6lCi49tfo3FM0ogKTThWaug6ifYyLDUjnObVUapogskMT+jQUIEjqrxsETxHF0YZozCW5gmNFurvjQxHSs2jwEwWMdWqV4j/ecNUh7dexkSSairI8lCYcqRjVLSAxkxSovncEEwkM1kRmWKJiTZdVU0J7uqX10mv2XCvGs3763qrXdZRgTM4h0tw4QZa0IYOdIFACs/wCm/Wk/VivVsfy9ENq9w5hT+wPn8AGZqTZA==</latexit>

ht�1
<latexit sha1_base64="pyH59vw3x8S5PYlkOezmTsyQ388=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSRV0GXBTZcV7APaUCbTSTt0MgkzE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhXTnqqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3uZ+94FKxSJxr2cx9UI8FixgBGsjDe3KIMR64gfpJBumSF+42dCuOjVnDrRK3IJUoUBraH8NRhFJQio04VipvuvE2kux1IxwmpUHiaIxJlM8pn1DBQ6p8tJ59AydGWWEgkiaJzSaq783UhwqNQt9M5kHVcteLv7n9RMd3HgpE3GiqSCLQ0HCkY5Q3gMaMUmJ5jNDMJHMZEVkgiUm2rRVNiW4y19eJZ16zb2s1e+uqo1mUUcJTuAUzsGFa2hAE1rQBgKP8Ayv8GY9WS/Wu/WxGF2zip1j+APr8wf+FZPW</latexit>

ht�1
<latexit sha1_base64="pyH59vw3x8S5PYlkOezmTsyQ388=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSRV0GXBTZcV7APaUCbTSTt0MgkzE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhXTnqqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3uZ+94FKxSJxr2cx9UI8FixgBGsjDe3KIMR64gfpJBumSF+42dCuOjVnDrRK3IJUoUBraH8NRhFJQio04VipvuvE2kux1IxwmpUHiaIxJlM8pn1DBQ6p8tJ59AydGWWEgkiaJzSaq783UhwqNQt9M5kHVcteLv7n9RMd3HgpE3GiqSCLQ0HCkY5Q3gMaMUmJ5jNDMJHMZEVkgiUm2rRVNiW4y19eJZ16zb2s1e+uqo1mUUcJTuAUzsGFa2hAE1rQBgKP8Ayv8GY9WS/Wu/WxGF2zip1j+APr8wf+FZPW</latexit>

(c) Generation

zt<latexit sha1_base64="1dW0KQdjrn4/gpiSi603AHCQOEs=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3AhtyJe4caGIWz/FnX/jtM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+Y3i/83hNTmsfyEWYJ8yIyljzklICRfLs6jAhMgjCb536GIfftmlN3lsCbxC1IDRVo+/bXcBTTNGISqCBaD1wnAS8jCjgVLK8MU80SQqdkzAaGShIx7WXL4Dm+NMoIh7EyTwJeqr83MhJpPYsCM7mIqde9hfifN0ghvPMyLpMUmKSrQ2EqMMR40QIeccUoiJkhhCpusmI6IYpQMF1VTAnu+pc3SbdRd6/rjYebWrNV1FFG5+gCXSEX3aImaqE26iCKUvSMXtGbNbderHfrYzVasoqdM/QH1ucPNU6Tdg==</latexit>

zt<latexit sha1_base64="1dW0KQdjrn4/gpiSi603AHCQOEs=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3AhtyJe4caGIWz/FnX/jtM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+Y3i/83hNTmsfyEWYJ8yIyljzklICRfLs6jAhMgjCb536GIfftmlN3lsCbxC1IDRVo+/bXcBTTNGISqCBaD1wnAS8jCjgVLK8MU80SQqdkzAaGShIx7WXL4Dm+NMoIh7EyTwJeqr83MhJpPYsCM7mIqde9hfifN0ghvPMyLpMUmKSrQ2EqMMR40QIeccUoiJkhhCpusmI6IYpQMF1VTAnu+pc3SbdRd6/rjYebWrNV1FFG5+gCXSEX3aImaqE26iCKUvSMXtGbNbderHfrYzVasoqdM/QH1ucPNU6Tdg==</latexit>

xt<latexit sha1_base64="YizIMSTLlo4pfXe6WFTEF9CcE/k=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3Ig19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgkRwDY7zbZU2Nre2d8q7lb39g8OqfXTc1XGqKOvQWMSqHxDNBJesAxwE6yeKkSgQrBdMb3O/98CU5rG8h1nCvIiMJQ85JWAk364OIwKTIMwe536GYe7bNafuLIDXiVuQGirQ9u2v4SimacQkUEG0HrhOAl5GFHAq2LwyTDVLCJ2SMRsYKknEtJctgs/xuVFGOIyVeRLwQv29kZFI61kUmMk8pl71cvE/b5BCeONlXCYpMEmXh8JUYIhx3gIeccUoiJkhhCpusmI6IYpQMF1VTAnu6pfXSbdRdy/rjburWrNV1FFGp+gMXSAXXaMmaqE26iCKUvSMXtGb9WS9WO/Wx3K0ZBU7J+gPrM8fMjqTdA==</latexit>

xt<latexit sha1_base64="YizIMSTLlo4pfXe6WFTEF9CcE/k=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JUQZcFN11WsA9oQ5hMJ+3QySTM3Ig19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgkRwDY7zbZU2Nre2d8q7lb39g8OqfXTc1XGqKOvQWMSqHxDNBJesAxwE6yeKkSgQrBdMb3O/98CU5rG8h1nCvIiMJQ85JWAk364OIwKTIMwe536GYe7bNafuLIDXiVuQGirQ9u2v4SimacQkUEG0HrhOAl5GFHAq2LwyTDVLCJ2SMRsYKknEtJctgs/xuVFGOIyVeRLwQv29kZFI61kUmMk8pl71cvE/b5BCeONlXCYpMEmXh8JUYIhx3gIeccUoiJkhhCpusmI6IYpQMF1VTAnu6pfXSbdRdy/rjburWrNV1FFGp+gMXSAXXaMmaqE26iCKUvSMXtGb9WS9WO/Wx3K0ZBU7J+gPrM8fMjqTdA==</latexit>

ht
<latexit sha1_base64="yb+zJaVnVxb78D+uSP6sELiCUyQ=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXBTZcV7APaECbTSTt0MgkzE6GGfIkbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8WxubW9s7u5W96v7B4VHNPj7pqTiVhHZJzGM5CLCinAna1UxzOkgkxVHAaT+Y3RV+/5FKxWLxoOcJ9SI8ESxkBGsj+XZtFGE9DcJsmvsZ0rlv152GswBaJ25J6lCi49tfo3FM0ogKTThWaug6ifYyLDUjnObVUapogskMT+jQUIEjqrxsETxHF0YZozCW5gmNFurvjQxHSs2jwEwWMdWqV4j/ecNUh7dexkSSairI8lCYcqRjVLSAxkxSovncEEwkM1kRmWKJiTZdVU0J7uqX10mv2XCvGs3763qrXdZRgTM4h0tw4QZa0IYOdIFACs/wCm/Wk/VivVsfy9ENq9w5hT+wPn8AGZqTZA==</latexit>

ht
<latexit sha1_base64="yb+zJaVnVxb78D+uSP6sELiCUyQ=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRV0GXBTZcV7APaECbTSTt0MgkzE6GGfIkbF4q49VPc+TdO2iy09cDA4Zx7uWdOkHCmtON8WxubW9s7u5W96v7B4VHNPj7pqTiVhHZJzGM5CLCinAna1UxzOkgkxVHAaT+Y3RV+/5FKxWLxoOcJ9SI8ESxkBGsj+XZtFGE9DcJsmvsZ0rlv152GswBaJ25J6lCi49tfo3FM0ogKTThWaug6ifYyLDUjnObVUapogskMT+jQUIEjqrxsETxHF0YZozCW5gmNFurvjQxHSs2jwEwWMdWqV4j/ecNUh7dexkSSairI8lCYcqRjVLSAxkxSovncEEwkM1kRmWKJiTZdVU0J7uqX10mv2XCvGs3763qrXdZRgTM4h0tw4QZa0IYOdIFACs/wCm/Wk/VivVsfy9ENq9w5hT+wPn8AGZqTZA==</latexit>

ht�1
<latexit sha1_base64="pyH59vw3x8S5PYlkOezmTsyQ388=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSRV0GXBTZcV7APaUCbTSTt0MgkzE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhXTnqqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3uZ+94FKxSJxr2cx9UI8FixgBGsjDe3KIMR64gfpJBumSF+42dCuOjVnDrRK3IJUoUBraH8NRhFJQio04VipvuvE2kux1IxwmpUHiaIxJlM8pn1DBQ6p8tJ59AydGWWEgkiaJzSaq783UhwqNQt9M5kHVcteLv7n9RMd3HgpE3GiqSCLQ0HCkY5Q3gMaMUmJ5jNDMJHMZEVkgiUm2rRVNiW4y19eJZ16zb2s1e+uqo1mUUcJTuAUzsGFa2hAE1rQBgKP8Ayv8GY9WS/Wu/WxGF2zip1j+APr8wf+FZPW</latexit>
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(e) Overall
Figure 1: Diagrams of the variational hyper RNN. Operators are indicated by arrows in different
colors, and dashed lines and boxes represent the hypernetwork components. (a) Prior distribution in
Eq. 3. (b) Recurrent model in Eq. 1. (c) Generative model in Eq. 2. (d) Inference model in Eq. 5. (e)
The overall computational path. The hypernetwork components are left out.
where θ(zt,ht−1) is a hypernetwork that generates the parameters of the RNN at time step t. The
latent variable zt can also be used to determine the parameters of the generative model p(xt|z≤t,x<t):

xt|z≤t,x<t ∼ N (µdec
t ,Σdec

t ), where (µdec
t ,Σdec

t ) = φdecω(zt,ht−1)
(zt,ht−1). (2)

We hypothesize that the previous observations and latent variables, characterized by ht−1, define a
prior distribution p(zt|x<t, z<t) over the latent variable zt,

zt|x<t, z<t ∼ N (µprior
t ,Σprior

t ), where (µprior
t ,Σprior

t ) = φprior(ht−1). (3)
Eq. 2 and 3 result in the following generation process of sequential data:

p(x≤T , z≤T ) =
T∏
t=1

p(zt|x<t, z<t)p(xt|x<t, z≤t). (4)

The true posterior distributions of zt conditioned on observations x≤t and latent variables z<t are
intractable, posing a challenge in both sampling and learning. Therefore, we introduce an approximate
posterior q(zt|x≤t, z<t) such that

zt|x≤t, z<t ∼ N (µenc
t ,Σenc

t ), where (µenc
t ,Σenc

t ) = φenc(xt,ht−1). (5)
This approximate posterior distribution enables the model to be trained by maximizing a variational
lower bound, e.g., ELBO (Kingma & Welling, 2013), IWAE (Burda et al., 2016) and FIVO (Maddison
et al., 2017). We refer to the main components of our model, including g, φdec, φenc, φprior as primary
networks and refer to the components responsible for generating parameters, θ and ω, as hyper
networks in the following sections.
Implementation Following the practice of VAE, we parametrize the covariance matrices Σprior

t ,
Σdec
t and Σenc

t as diagonal matrices. Note that Σprior
t in our model is no longer an identity matrix as

in a vanilla VAE; it is the output of φprior and depends on the hidden state ht−1 at the previous time
step.

The recurrence model g in Eq. 1 is implemented as an RNN cell, which takes as input xt and zt
at each time step t and updates the hidden states ht−1. The parameters of g are generated by the
hyper network θ(zt,ht−1), as illustrated in Figure 1b. θ is also implemented using an RNN to
capture the history of data dynamics, with zt and ht−1 as input at each time step t. However, it is
computationally costly to generate all the parameters of g using θ(zt,ht−1). Following the practice
of previous works (Ha et al., 2016; Krueger et al., 2017), the hyper network θ maps zt and ht−1 to
bias and scaling vectors. The scaling vectors modify the parameters of g by scaling each row of the
weight matrices, routing information in the input and hidden state vectors through different channels.
To better illustrate this mechanism, we exemplify the recurrence model g using an RNN cell with
LSTM-style update rules and gates. Let ∗ ∈ {i, f, g, o} denote the one of the four LSTM-style gates
in g. W∗ and U∗ denote the input and recurrent weights of each gate in LSTM cell respectively. The
hyper network θ(zt,ht−1) outputs di∗ and dh∗ that are the scaling vectors for the input weights W∗
and recurrent weights U∗ of the recurrent model g in Eq. 1. The overall implementation of g in Eq. 1
can be described as follows:

it = σ (dii(zt,ht−1) ◦ (Wiyt) + dhi(zt,ht−1) ◦ (Uiht−1)) ,

ft = σ (dif(zt,ht−1) ◦ (Wfyt) + dhf(zt,ht−1) ◦ (Ufht−1)) ,

gt = tanh (dig(zt,ht−1) ◦ (Wgyt) + dhg(zt,ht−1) ◦ (Ught−1)) ,

ot = σ (dio(zt,ht−1) ◦ (Woyt) + dho(zt,ht−1) ◦ (Uoht−1)) ,

ct = ft ◦ ct−1 + it ◦ gt,

ht = ot ◦ tanh (ct) ,
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where ◦ denotes the Hadamard product. For simplicity of notation, bias terms are ignored from the
above equations.

Another hyper network ω(zt,ht−1) generates the parameters of the generative model in Eq. 2. It is
implemented as a multilayer perceptron (MLP). Similar to θ(zt,ht−1), the outputs are the bias and
scaling vectors that modify the parameters of the decoder φdecω(zt,ht−1)

.

4 SYSTEMATIC GENERALIZATION ANALYSIS OF VHRNN

In terms of the general functional form Eq. 1, the recurrence of VRNN and VHRNN both depend on
zt and ht−1, so a sufficiently large VRNN could capture the same behaviour as VHRNN in theory.
However, VHRNN’s structure better encodes the inductive bias that the underlying dynamics could
change, that they could slightly deviate from the typical behaviour in a regime, or there could be
drastic switch to a new regime. With finite training data and finite parameters, this inductive bias
could lead to qualitatively different learned behaviour, which we demonstrate and analyze now.

In the spirit of Bahdanau et al. (2019), we perform a systematic generalization study of VHRNN in
comparison to the VRNN baseline. We train the models on one synthetic dataset with each sequence
generated by fixed linear dynamics and corrupted by heteroskedastic noise process. We demonstrate
that VHRNN can disentangle the two contributions of variations and learn the different base patterns
of the complex dynamics while doing so with fewer parameters. Furthermore, VHRNN can generalize
to a wide range of unseen dynamics, albeit the much simpler training set.

The synthetic dataset is generated by the following recurrence equation:

xt = Wxt−1 + σtεt, (6)

where εt ∈ R2 is a two-dimensional standard Gaussian noise and x0 is randomly initialized from a
uniform distribution over [−1, 1]2. For each sequence, W ∈ R2×2 is sampled from 10 predefined
random matrices {Wi}10i=1 with equal probability; σt is the standard deviation of the additive noise
at time t and takes value from {0.25, 1, 4}. The noise level shifts twice within a sequence; i.e., there
are exactly two t’s such that σt 6= σt−1. We generate 800 sequences for training, 100 sequences for
validation, and 100 sequences for test using the same sets of predefined matrices. The models are
trained and evaluated using FIVO as the objective. The results on the test set are almost the same
as those on the training set for both VRNN and VHRNN. We also find that VHRNN shows better
performance than VRNN with fewer parameters, as shown in Tab. 1, column Test.

We further study the behavior of VRNN and VHRNN under the following systematically varied
settings:

• NOISELESS In this setting, sequences are generated using a similar recurrence rule with
the same set of predefined weights without the additive noise at each step. That is, σt = 0 in
Eq. 6 for all time step t. The exponential growth of data could happen when the singular
values of the underlying weight matrix are greater than 1.
• SWITCH In this setting, three NOISELESS sequences are concatenated into one, which

contains regime shifts as a result. This setting requires the model to identify and re-identify
the underlying pattern after observing changes.
• RAND In this setting, the deterministic transition matrix in Eq. 6 is set to the identity matrix

(i.e., W = I), leading to long sequences of pure random walks with switching magnitudes
of noise. The standard deviation of the additive noise randomly switches up to 3 times
within {0.25, 1, 4} in one sequence.
• LONG In this setting, we generate extra-long NOISELESS sequences with twice the total

number of steps using the same set of predefined weights. The data scale can exceed well
beyond the range of training data when exponential growth happens.
• ZERO-SHOT In this setting, NOISELESS sequences are generated such that the training

data and test data use different sets of weight matrices.
• ADD In this setting, sequences are generated by a different recurrence rule: xt = xt−1 +b,

where b and x0 are uniformly sampled from [0, 1]2.

We consider a VRNN with a latent dimension of 8 and a VHRNN with a latent dimension of 4. The
size of the hidden state in RNN cells is set to be the same as the latent size for both models. Tab. 1
illustrates the experimental results. The VHRNN model uniformly outperforms VRNN models under
all settings.
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Table 1: Evaluation results on synthetic datasets.

Model Z dim. Param. FIVO estimated log likelihood per time step

Test NOISELESS SWITCH RAND LONG ZERO-SHOT ADD

VRNN 8 2612 −5.43 −2.50 −334173 −5.02 −1033348 −3.64 −3.57
VRNN 6 1516 −5.80 −3.66 −19735 −5.24 −27200 −4.39 −5.09

VHRNN 4 1568 −4.68 −2.08 −4.27 −3.91 −3005 −2.57 −2.62

System Identification and Re-identification Fig. 2 shows a sample sequence under the NOISE-
LESS setting. VRNN has high KL divergence between the prior and the variational posterior most of
the time. In contrast, VHRNN has a decreasing trend of KL divergence while still making accurate
mean reconstruction as it observes more data. As the KL divergence measures the discrepancy
between prior defined in Eq. 3 and the posterior that has information from the current observation,
simultaneous low reconstruction and low KL divergence means that the prior distribution would be
able to predict with low errors as well, indicating that the correct underlying dynamics model has
likely been utilized. This trend even generalizes to settings with sources of variation unseen in the
training data, namely ZEROSHOT and ADD. We speculate that this trend implies the model’s ability
to identify the underlying data generation pattern in the sequence. The decreasing trend is especially
apparent when a sudden and big change in scale happens. We hypothesize that larger changes in
scale can better help our model, VHRNN, identify the underlying data generation process because
our model is trained on sequential data generated with compound noise. The observation further
corroborates our conjecture that the KL divergence would rise again once the sequence switches from
one underlying weight to another, as shown in Fig. 3. It is worth noting that the KL increase happens
with some latency after the sequence switches in the SWITCH setting as the model reacts to the
change and tries to reconcile with the prior belief of the underlying regime in effect.

Uncertainty Identification Fig. 4 shows that the predicted log-variance of VHRNN can more
accurately reflect the change of noise levels under the RAND setting than VRNN. VHRNN can also
better handle uncertainty than VRNN in the following two situations. As shown in Fig. 3f, VHRNN
can more aggressively adapt its variance prediction based on the scale of the data than VRNN. It
keeps its predicted variance at a low level when the data scale is small and increases the value when
the scale of data becomes large. VHRNN makes inaccurate mean prediction relatively far from the
target value when the switch of underlying generation dynamics happens in the SWITCH setting.
The switch of the weight matrix is another important source of uncertainty. We observe that VHRNN
would also make a large log-variance prediction in this situation, even the scale of the observation is
small. Aggressively increasing its uncertainty about the prediction when a switch happens avoids
VHRNN model from paying high reconstruction cost as shown by the second spike in Fig. 3f. This
increase of variance prediction also happens when exponential becomes apparent in setting LONG
and the scale of observed data became out of the range of the training data. Given the large scale
change of the data, such flexibility to predict large variance is key for VHRNN to avoid paying large
reconstruction cost.

These two advantages of VHRNN over VRNN not only explain the better performance of VHRNN on
the synthetic data but also are critical to RNNs’ ability to model real-world data with large variations
both across and within sequences. Examples under other settings showing the above properties are
deferred to the Appendix.

5 EXPERIMENTS ON REAL-WORLD DATA

We experiment with the VHRNN model on several real-world datasets and compare it against
VRNN model. VRNN trained and evaluated using FIVO (Maddison et al., 2017) demonstrates the
state-of-the-art performance on various sequence modeling tasks. Our experiments demonstrate the
superior parameter-performance efficiency and generalization ability of VHRNN over VRNN. All the
models are trained using FIVO (Maddison et al., 2017) and we report FIVO per step when evaluating
models. Two polyphonic music dataset are considered: JSB Chorale and Piano-midi.de (Boulanger-
Lewandowski et al., 2012). We also train and test our models on a financial time series data and the
HT Sensor dataset (Huerta et al., 2016), which contains sequences of sensor readings when different
types of stimuli are applied in an environment during experiments.

For the VRNN model, we use a single-layer LSTM and set the dimension of the hidden state to be the
same as the latent dimension. For the VHRNN model, θ in Eq. 1 is implemented using a single-layer
LSTM to generate weights for the recurrence module in the primary networks. We use an RNN cell
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Figure 2: Qualitative study of VRNN and VHRNN under the NOISELESS setting. (a) and (b)
show the values of concatenated data at each time step. (c) shows the KL divergence between the
variational posterior and the prior of the latent variable at each time step for VHRNN. (d) shows the
KL divergence for VRNN. (e) shows L2 distance between the predicted mean values by VHRNN and
VRNN and the target. (f) shows the predicted log-variance of the output distribution for VRNN and
VHRNN.
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Figure 3: Qualitative study of VRNN and VHRNN under the SWITCH setting. The layout of
subfigures is the same as Fig. 2. Vertical red lines indicate time steps when regime shift happen.

with LSTM-style gates and update rules for the recurrence module g in our experiments. The hidden
state sizes of both the primary network and hyper network are the same as the latent dimension. A
multilayer perceptron (MLP) with a single hidden layer of 64 dimensions is used for ω in Eq. 2 in the
hyper networks to project the latent variable and hidden state to scaling vectors and bias vectors in
the generation network.

Polyphonic Music The JSB Chorale and Piano-midi.de are music datasets (Boulanger-Lewandowski
et al., 2012) with complex patterns and large variance both within and across sequences. The datasets
are split into the standard train, validation, and test sets. More details on data preprocessing, training
and evaluation setup are deferred to the appendix.

We report the FIVO per time step of VHRNNs and VRNNs and their parameter counts in Fig. 5a
and Fig. 5b. The results show that VHRNNs have better performance and parameter efficiency. The
number of parameters and FIVO per time step of each model are plotted in the figures, and the
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Figure 4: Qualitative study of VRNN and VHRNN under the RAND setting. (a) shows the L2 norm
and standard deviation of the additive noise at each time step. (b) shows the log-variance of the output
distribution for VRNN and VHRNN.
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(a) JSB Choral (b) Piano-midi.de

(c) Stock (d) HT Sensor
Figure 5: VRNN and VHRNN parameter-performance comparison.

latent dimension is also annotated. The parameter-performance plots show that the VHRNN model
has uniformly better performance than VRNN with a comparable number of parameters. The best
FIVO achieved by VHRNN on JSB dataset is −6.76 (VHRNN-14) compared to −6.92 for VRNN
(VRNN-32), which requires close to one third more parameters. This best VRNN model is even worse
than the smallest VHRNN model we have evaluated. It is also observed that VHRNN is less prone to
overfitting and has better generalization ability than VRNN when the number of parameters keeps
growing. Similar trends can be seen on the Piano-midi.de dataset in Fig. 5b. We also find that the
better performance of VHRNN over VRNN can generalize to the scenario where we replace LSTM
with Gated Recurrent Unit (GRU). Experimental results using GRU implementation are deferred to
the appendix.

Stock Financial time series data, such as daily prices of stocks, are highly volatile with large noise.
The market volatility is affected by many external factors and can experience tremendous changes
in a sudden. To test the models’ ability to adapt to different volatility levels and noise patterns, we
compare VHRNN and VRNN on stock price data collected in a period when the market went through
rapid changes. The data are collected from 445 stocks in the S&P500 index in 2008 when a global
financial crisis happened. The dataset contains the opening, closing, highest and lowest prices, and
volume on each day. The networks are trained on sequences from the first half of the year and tested
on sequences from the second half, during which the market suddenly became significantly more
volatile due to the financial crisis.

The evaluation results are shown in Fig. 5c. The plot shows that VHRNN models consistently
outperform VRNN models regardless of the latent dimension and number of parameters. The results
indicate that VHRNN can have better generalizability to sequential data in which the underlying data
generation pattern suddenly shifts even if the new dynamics are not seen in the training data.

HT Sensor The comparison is also performed on a dataset with less variation and simpler patterns
than the previous datasets. The HT Sensor dataset contains sequences of gas, humidity, and temper-
ature sensor readings in experiments where some stimulus is applied after a period of background
activity (Huerta et al., 2016). There are only two types of stimuli in the experiments: banana and wine.
In some sequences, there is no stimulus applied, and they only contain readings under background
noise. Experimental results on HT Sensor dataset are shown in Fig. 5d.
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It is observed that VHRNN has comparable performance as VRNN on the HT Senor Dataset when
using a similar number of parameters. For example, VHRNN achieves a FIVO per time step of 14.41
with 16 latent dimensions and 24200 parameters, while VRNN shows slightly worse performance
with 28 latent dimensions and approximately 26000 parameters. When the number of parameters
goes slightly beyond 34000, the FIVO of VHRNN decays to 12.45 compared to 12.37 of VRNN.

6 ABLATION STUDY

We further investigate the effects of hidden state and latent variable on the performance of variational
hyper RNN in the following two aspects: the dimension of the latent variable and the contributions
by hidden state and latent variable as inputs to hyper networks.
Latent Dimension In previous experiments on real-world datasets, the latent dimension and hidden
state dimension are set to be the same for each model. This causes VHRNN to have significantly
more parameters than a VRNN when using the same latent dimension. To eliminate the effects of the
difference in model size, we allow the latent dimension and hidden state dimension to be different.
We also reduce the hidden layer size of the hyper network that generates the weight of the decoder.
These changes allow us to compare VRNN and VHRNN models with the same latent dimension and
a similar number of parameters. The results on JSB Chorale datasets are presented in Tab. 2 in which
we denote latent dimension by Z dim. We observe that VHRNNs always have better FIVO with the
same latent dimensions than VRNNs. The results show that the superior performance of VHRNN
over VRNN does not stem from smaller latent dimension when using the comparable number of
parameters.
Inputs to the Hyper Networks We retrain and evaluate the performance of VHRNN models on JSB
Chorale dataset and the synthetic sequences when feeding the latent variable only, the hidden state
only, or both to the hyper networks. The results are shown in Tab. 3. It is observed that VHRNN
has the best performance and generalization ability when it takes the latent variable as its only input.
Relying on the primary network’s hidden state only or the combination of latent variable and hidden
state leads to worse performance. When the dimension of the hidden state is 32, VHRNN only taking
the hidden state as hyper input suffers from over-parameterization and has worse performance than
VRNN with the same dimension of the hidden state. On the test set of synthetic data, VHRNN obtains
the best performance when it takes both hidden state and latent variable as inputs. We surmise that
this difference is due to the fact that historical information is critical to determine the underlying
recurrent weights and current noise level for synthetic data. However, the ablation study on both
datasets shows the importance of the sampled latent variable as an input to the hyper networks.
Therefore, both hidden state and latent variable are used as inputs to hyper networks on other datasets
for consistency.

7 CONCLUSION

In this paper, we introduce the variational hyper RNN (VHRNN) model, which can generate parame-
ters based on the observations and latent variables dynamically. Such flexibility enables VHRNN to
better model sequential data with complex patterns and large variations within and across samples
than VRNN models that use fixed weights. VHRNN can be trained with the existing off-the-shelf
variational objectives. Experiments on synthetic datasets with different generating patterns show that
VHRNN can better disentangle and identify the underlying dynamics and uncertainty in data than
VRNN. We also demonstrate the superb parameter-performance efficiency and generalization ability
of VHRNN on real-world datasets with different levels of variability and complexity.

Table 2: VRNN and VHRNN with same latent
dimensions.

Model Z dim.
Hidden Hyper

Param. FIVO
dim. size

VRNN
24 24 - 23k −7.04
28 28 - 31k −6.99
32 32 - 39k −6.91

VHRNN
24 12 16 24k −6.92
28 14 18 31k −6.73
32 16 20 39k −6.70

Table 3: Ablation study with different hyper
network inputs.

Dataset Z dim. Hyper Input FIVO

JSB

14 latent only −6.68
14 hidden only −6.71
14 latent+hidden −6.76
32 latent only −6.76
32 hidden only −7.03
32 latent+hidden −6.82

Synthetic 4 latent only −5.01

Test 4 hidden only −4.79
4 latent+hidden −4.68
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A QUALITATIVE STUDY OF VRNN AND VHRNN UNDER ADD,
ZERO-SHOT, LONG SETTINGS ON SYNTHETIC DATASETS
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Figure 6: Qualitative study of VRNN and VHRNN under the ADD setting. (a) and (b) show the values
of concatenated data at each time step. (c) shows the KL divergence between the variational posterior
and the prior of the latent variable at each time step for VHRNN. (d) shows the KL divergence for
VRNN. (e) shows L2 distance between the predicted mean values by VHRNN and VRNN and the
target. (f) shows the predicted log-variance of the output distribution for VRNN and VHRNN.
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Figure 7: Qualitative study of VRNN and VHRNN under the ZERO-SHOT setting. The layout of
subfigures is the same as Fig. 6.
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Figure 8: Qualitative study of VRNN and VHRNN under the LONG setting. The layout of subfigures
is the same as Fig. 6. Fig. 8a, 8b, 8d, 8e use scientific notations for the value of Y axis.

Fig. 6 and Fig. 7 show the qualitative study results of VHRNN and VRNN under the ADD and
ZERO-SHOT settings. We can see that the KL divergence of VHRNN model decreases as it observes
more data. Meanwhile the mean predictions by VHRNN stay relatively close to the actual target
value as shown in Fig. 6e and Fig. 7e. The prediction are especially accurate in the ADD setting as
Fig. 6e shows. The results demonstrate VHRNN’s ability to identify system dynamics can generalize
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to unseen data generation patterns. By contrast, we does not see any trend of variational RNN that
indicates it is capable of doing system identification.

Fig. 8 illustrates the qualitative study of VHRNN and VRNN under the LONG setting. The magnitude
of the data grows rapidly in such setting due to exponential growth and it is well beyond the scale of
training data. We can see both VRNN and VHRNN make very inaccurrate mean predictions that
are far from the target values as Fig. 8e shows. However, VHRNN pays smaller reconstruction cost
than VRNN by also making large predictions of variance. This setting demonstrates a special case in
which VHRNN has better ability to handle uncertainty in data than vanilla variational RNN.

B REAL-WORLD DATASET PREPROCESSING DETAILS

Polyphonic Music Each sample in the polyphonic music datasets, JSB Chorale and Piano-midi.de
is represented as a sequence of 88-dimensional binary vectors. The data are preprocessed by mean-
centering along each dimension per dataset.

Stock We randomly select 345 companies and use their daily stock price and volume in the first
half of 2008 to obtain training data. We another 50 companies’ data in the second half of 2008 to
generate validation set and get the test set from the remaining 50 companies during the second half
of 2008. The sequences are first preprocessed by taking log ratio of the values between consecutive
days. Each sequence has a fixed length of 125. The log ratio sequences are normalized using the
mean and standard deviation of the training set along each dimension.

HT Sensor The HT Sensor dataset collects readings from 11 sensors under certain stimulus in an
experiment. The readings of the sensors are recorded at a rate of once per second. We segment a
sequence of 3000 seconds every 1000 seconds in the dataset and downsample the sequence by a rate
of 30. Each sequence we obtained has a fixed length of 100. The types of sequences include pure
background noise, stimulus before and after background noise and stimulus between two periods of
background noise. The data are normalized to zero mean and unit variance along each dimension.
We use 532 sequences for training, 68 sequences for validation and 74 sequences for testing.

C TRAINING AND EVALUATION DETAILS ON REAL-WORLD DATASETS.

For all the real-world data, the models, both VRNN and VHRNN, are trained with batch size of 4
and particle size of 4. When evaluating the models, we use particle size of 128 for polyphonic music
datasets and 1024 for Stock and HT Sensor datasets.

D VHRNN AND VRNN PERFORMANCE-PARAMETER COMPARISON USING
GRU ON JSB CHORALE DATASET

Figure 9: VRNN and VHRNN arameter-performance comparison using GRU implementation on
JSB Chorale dataset.

12



Under review as a conference paper at ICLR 2020

Fig. 9 shows the parameter performance plots of VHRNN and VRNN using GRU implementation on
the JSB Chorale dataset. VHRNN models consistently outperform VRNN models under all settings.
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