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ABSTRACT

There is a growing interest in studying the languages emerging when neural agents
are jointly trained to solve tasks requiring communication through a discrete chan-
nel. We investigate here the information-theoretic complexity of such languages,
focusing on the basic two-agent, one-exchange setup. We find that, under common
training procedures, the emergent languages are subject to an entropy minimiza-
tion pressure that has also been detected in human language, whereby the mutual
information between the communicating agent’s inputs and the messages is mini-
mized, within the range afforded by the need for successful communication. This
pressure is amplified as we increase communication channel discreteness. Further,
we observe that stronger discrete-channel-driven entropy minimization leads to
representations with increased robustness to overfitting and adversarial attacks. We
conclude by discussing the implications of our findings for the study of natural and
artificial communication systems.

1 INTRODUCTION

There has recently been much interest in the analysis of the communication systems arising when
deep network agents that interact to accomplish a goal are allowed to exchange language-like discrete
messages (Lazaridou et al., 2016; Havrylov & Titov, 2017; Choi et al., 2018; Lazaridou et al., 2018).
Understanding the emergent protocol is important if we want to eventually develop agents capable of
interacting with each other and with us through language (Mikolov et al., 2016; Chevalier-Boisvert
et al., 2019). The pursuit might also provide comparative evidence about how core properties of
human language itself have evolved (Kirby, 2002; Hurford, 2014; Graesser et al., 2019). While earlier
studies reported ways in which deep agent protocols radically depart from human language (Kottur
et al., 2017; Bouchacourt & Baroni, 2018; Chaabouni et al., 2019; Lowe et al., 2019), we show here
that emergent communication shares an important property of the latter, namely a tendency towards
entropy minimization.

Converging evidence indicates that efficiency pressures are at work in language and other biological
communication systems (Ferrer i Cancho et al., 2013; Gibson et al., 2019). One particular aspect
of communicative efficiency, that has been robustly observed across many semantic domains, is a
tendency to minimize lexicon entropy, to the extent allowed by the counteracting need for accuracy
(Zaslavsky et al., 2018; 2019). For example, while most languages distinguish grandmothers from
grandfathers, very few have separate words for mother- and father-side grandmothers, as the latter
distinction would make communication only slightly more accurate at the cost of an increase in
lexicon complexity (Kemp & Regier, 2012). We show here, in two separate games designed to
precisely measure such property, that the protocol evolved by interacting deep agents is subject to the
same complexity minimization pressure.

Entropy minimization in natural language has been connected to the Information Bottleneck princi-
ple (Tishby et al., 1999). In turn, complexity reduction due to the Information Bottleneck provides
a beneficial regularization effect on the learned representations (Fischer, 2019; Alemi et al., 2016;
Achille & Soatto, 2018a;b). It is difficult to experimentally verify the presence of such effect in
human languages, but we can look for it in our emergent language simulations. We confirm that,
when relaxing channel discreteness, the entropy minimization property no longer holds, and the
system becomes less robust against overfitting and adversarial noise.
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2 GENERAL FRAMEWORK

We establish our results in the context of signaling games (Lewis, 1969), as introduced to the current
language emergence literature by Lazaridou et al. (2016) and adopted in several later studies (Havrylov
& Titov, 2017; Bouchacourt & Baroni, 2018; Lazaridou et al., 2018). There are two agents, Sender
and Receiver, provided with individual inputs at the beginning of each episode. Sender sends a single
message to Receiver, and Receiver has to perform an action based on its own input and the received
message. Importantly, there is no direct supervision on the message protocol. We consider agents
that are deterministic functions of their inputs (after training).

As an example, consider the task of communicating a n-bit number, sampled uniformly at random
from 0...2n − 1. The full number is shown to Sender, and its k (0 ≤ k ≤ n) least-significant bits are
also revealed to Receiver. Receiver has to output the full number, based on the message from Sender
and its own input. Would the Sender transmit the entire number through its message? In this case, the
protocol would be “complex,” encoding n bits. Alternatively, Sender could only encode the bits that
Receiver does not know, and let Receiver fill in the rest by itself. This emergent protocol would be
“simple,” encoding less information about the number. We find experimentally that, once the agents
are successfully trained to jointly solve the task, the emergent protocol minimizes the entropy of the
messages or, equivalently in our setup, the mutual information between Sender’s input and messages.
In other words, the agents consistently approximate the simplest successful protocol (in the current
example, the one transmitting ≈ n− k bits).

After training, we can connect the entropies of Sender and Receiver inputs is and ir, messages
m = S(is), Receiver’s output (the chosen action) o = R(m, ir), and ground-truth outputs l by
using standard inequalities (Cover & Thomas, 2012):

H(is) ≥ H(S(is)) = H(m) ≥ H(m|ir) ≥ H(R(m, ir)|ir) = H(o|ir) ≈ H(l|ir) (1)

(Note that, since agents are deterministic after training, H(m) = I(is;m). We can then use these
quantities interchangeably.) Our empirical measurements indicate that the entropy of the messages
m in the emergent protocol tends to approach the lower bound: H(m) → H(l|ir), even if the
upper-bound H(is) is far.

In our experiments, we observe that when the amount of information that Receiver needs is reduced,
without changing other parameters, the emergent protocol becomes simpler (lower entropy). In other
words, the emergent protocol adapts to minimize the information that passes through it.

We will release the code for our experiments upon acceptance.

3 METHODOLOGY

3.1 GAMES

We study two signaling games. In Guess Number, the agents are trained to recover an integer-
representing vector with uniform Bernoulli-distributed components. This simple setup gives us
full control over the amount of information needed to solve the task. The second game, Image
Classification, uses more naturalistic data, as the agents are jointly trained to classify pairs of
hand-written MNIST digits (LeCun et al., 1998b).

Guess Number We draw an 8-bit integer z, 0 ≤ z ≤ 255 uniformly at random, by sampling its
8 bits independently from the uniform Bernoulli distribution. All bits are revealed to Sender as a
8-dimensional binary vector is. The last k bits are revealed to Receiver (0 ≤ k ≤ 8) as its input ir.
Sender outputs a single-symbol message m to Receiver. In turn, Receiver outputs a vector o that
recovers all the bits of z and should be equal to is.

In this game, Sender has a linear layer that maps the input vector is to a hidden representation of
size 10, followed by a leaky ReLU activation. Next is a linear layer followed by a softmax over
the vocabulary. Receiver linearly maps both its input ir and the message to 10-dimensional vectors,
concatenates them, applies a fully connected layer with output size 20, followed by a leaky ReLU.
Finally, another linear layer and a sigmoid nonlinearity are applied. When training with REINFORCE
and the Stochastic Computation graph approach (see Section 3.2), we increase the hidden layer sizes
threefold, as this leads to more robust convergence.
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Image Classification In this game, the agents are jointly trained to classify 28x56 images of two
MNIST digits, stacked side-by-side (more details in Appendix). Unlike Guess Number, Receiver has
no side input. Instead, we control the informational complexity of Receiver’s task by controlling the
size of its output space, i.e., the number of labels we assign to the images. To do so, we group all
two-digit sequences 00..99 into Nl ∈ {2, 4, 10, 20, 25, 50, 100} equally-sized classes.

In Sender, input images are embedded a LeNet-1 instance (LeCun et al., 1990) into 400-dimensional
vectors. These embedded vectors are passed to a fully connected layer, followed by a softmax
selecting a vocabulary symbol. Receiver embeds the received messages into 400-dimensional vectors,
passed to a fully connected layer with a softmax activation returning the class probabilities.

We report hyperparameter grids in Appendix. In the following experiments, we fix vocabulary to 1024
symbols (experiments with other vocabulary sizes, multi-symbol messages, and larger architectures
are reported in Appendix). No parts of the agents are pre-trained or shared. The optimized loss
depends on the gradient estimation method used (see Section 3.2). We denote it L(o, l), and it is a
function of Receiver’s output o and the ground-truth output l. When training in Guess Number with
REINFORCE, we use a 0/1 loss: the agents get 0 only if all bits of z were correctly recovered. When
training with Gumbel-Softmax relaxation or the Stochastic Computation Graph approach, we use
binary cross-entropy (Guess Number) and negative log-likelihood (Image Classification).

3.2 TRAINING WITH DISCRETE CHANNEL

Training to communicate with discrete messages is non-trivial, as we cannot back-propagate through
the messages. Current language emergence work mostly uses Gumbel-Softmax relaxation (e.g.
(Havrylov & Titov, 2017)) or REINFORCE (e.g. (Lazaridou et al., 2016)) to get gradient estimates.
We also explore the Stochastic Computation Graph optimization approach. We plug the obtained
gradient estimates into the Adam optimizer (Kingma & Ba, 2014).

Gumbel-Softmax relaxation Samples from the Gumbel-Softmax (Maddison et al., 2016; Jang et al.,
2016) distribution (a) are reperameterizable, hence allow gradient-based training, and (b) approximate
samples from the corresponding Categorical distribution. To get a sample that approximates an
n-dimensional Categorical distribution with probabilities pi, we draw n i.i.d. samples gi from
Gumbel(0,1) and use them to calculate a vector y with components:

yi =
exp [(gi + log pi)/τ ]∑
j exp [(gj + log pj)/τ ]

(2)

where τ is the temperature hyperparameter. As τ tends to 0, the samples y get closer to one-hot
samples; as τ → +∞, the components yi become uniform. During training, we use these relaxed
samples as messages from Sender, making the entire Sender/Receiver setup differentiable.

REINFORCE by Williams (1992) is a standard reinforcement learning algorithm. In our setup, it
estimates the gradient of the expectation of the loss L(o, l) w.r.t. the parameter vector θ as follows:

Eis,irEm∼S(is),o∼R(m,ir) [(L(o; l)− b)∇θ logPθ(m,o)] (3)

The expectations are estimated by samplingm from Sender and, after that, sampling o from Receiver.
We use the running mean baseline b (Greensmith et al., 2004; Williams, 1992) as a control variate.
We adopt the common trick to add an entropy regularization term (Williams & Peng, 1991; Mnih
et al., 2016) that favors higher entropy. We impose entropy regularization on the outputs of the agents
with coefficients λs (Sender) and λr (Receiver).

Stochastic Computation Graph In our setup, the gradient estimate approach of Schulman et al.
(2015) reduces to computing the gradient of the following surrogate function:

Eis,irEm∼S(is) [L(o; l) + stop_gradient (L(o; l)− b) logPθ(m)] (4)

Here, we do not sample Receiver actions: Its parameter gradients are obtained with standard back-
propagation (the first term in Eq. 4). Sender’s messages are sampled, and its gradient are calculated
akin to REINFORCE (the second term in Eq. 4). We apply entropy regularization on Sender’s output
(with coefficient λs) and use the mean baseline b.
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(c) Training with Stochastic Compu-
tation Graph.

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

), 
bi

ts

s = 0.01
s = 0.025
s = 0.05
s = 0.075
s = 0.1
s = 0.5

Hmin

(d) Training with REINFORCE.

Figure 1: Guess Number: entropy of the messagesm. Shaded regions mark standard deviation.

3.3 EXPERIMENTAL PROTOCOL

In Guess Number, we use all 28 possible inputs for training, early stopping and analysis. In Image
Classification, we train on random image pairs from the MNIST training data, and use image
pairs from the MNIST held-out set for validation. We select the runs that achieved a high level of
performance (training accuracy above 0.99 for Guess Number and validation accuracy above 0.98 for
Image Classification), thus studying typical agent behavior provided they succeeded at the game.

At test time, we select the Sender’s message symbol greedily, hence the messages are discrete and
Sender represents a (deterministic) function S of its input is, m = S(i). Calculating the entropy
H(m) of the distribution of discrete messagesm is straightforward. In Guess Number, we enumerate
all 256 possible values of z as inputs, save the messages from Sender and calculate entropy H(m).
For Image Classification, we sample image pairs from the MNIST hold-out set.

The upper bound on H(m) is as follow: Hmax = 8 bits (bounded by H(is)) in Guess Number, and
Hmax = 10 bits (bounded by vocabulary size) in Image Classification. Its lower bound is equal
to Hmin = H(l|ir) = 8 − k bits for Guess number. In Image Classification, communication can
only succeed if H(m) is not less than H(l), i.e., Hmin = H(l) = log2Nl, with Nl the number of
equally-sized classes we split the images into.

4 EXPERIMENTS

4.1 ENTROPY MINIMIZATION

Guess Number In Figure 1, the horizontal axes span the number of bits of z that Receiver lacks,
8−k. The vertical axis reports the information content of the protocol, measured by messages entropy
H(m). Each integer on the horizontal axis corresponds to a game configuration, and for each such
configuration we aggregate multiple (successful) runs with different hyperparameters and random
seeds. Hmin indicates the minimal amount of bits Sender has to send in a particular configuration for
the task to be solvable. The upper bound (not shown) is Hmax = 8 bits.
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Figure 2: Image Classification: entropy of the messagesm in function of log number of target classes,
Nl. Shaded regions mark standard deviation.

Consider first the configurations where Receiver’s input is insufficient to answer correctly (at least
one binary digit hidden, k ≤ 7). From Figure 1a, we observe that the transmitted information is
strictly monotonically increasing with the number of binary digits hidden from Receiver. Thus, even
if Sender sees the very same input in all configurations, a more nuanced protocol is only developed
when it is necessary. Moreover, the entropy H(m) (equivalently: the transmitted information) stays
close to the lower bound. This entropy minimization property holds for all the considered training
approaches across all configurations.

Consider next the configuration where Receiver is getting the whole integer z as its input (k = 8, the
leftmost configuration in Figure 1, corresponding to 0 on x axis). Based on the observations above,
one would expect that the protocol would approach zero entropy in this case (as no information needs
to be transmitted). However, the measurements indicate that the protocol is encoding considerably
more information. It turns out that this information is entirely ignored by Receiver. To demonstrate
this, we fed all possible distinct inputs to Sender, retrieved the corresponding messages, and shuffled
them to destroy any information about the inputs they might carry. The shuffled messages were
then passed to Receiver alongside with its own (un-shuffled) inputs. The overall performance was
not affected by this manipulation, confirming the hypothesis that Receiver ignores messages. We
conclude that in this case there is no apparent entropy minimization pressure on Sender simply
because there is no communication. The full experiment is reported in Appendix.

We further consider the effect of various hyperparameters. In Figure 1b, we split the results obtained
with Gumbel-Softmax by relaxation temperature. As discussed in Section 3.2, lower temperatures
more closely approximate discrete communication, hence providing a convenient control of the level
of discreteness imposed during training (recall that at test time we select the symbol greedily). The
figure shows that lower temperatures consistently lead to lower H(m) values. This implies that, as
we increase the “level of discreteness” at training, we get stronger entropy minimization pressures.

In Figures 1c & 1d, we report H(m) when training with Stochastic Graph Optimization and RE-
INFORCE across degrees of entropy regularization. We report curves corresponding to λs values
which converged in more than three configurations. With REINFORCE, we see a weak tendency for
a higher λs to trigger higher entropy in the protocol (only violated at λs = 0.5). However, message
entropy stays generally close to the lower bound even in presence of strong exploration, which favors
higher entropy in Sender’s output distribution.

Image Classification As the models are more complex, we only had consistent success when training
with Gumbel-Softmax. In Figure 2a we aggregate all successful runs. The information encoded by
the protocol grows as Receiver’s output requires more information. However, in all configurations,
the transmitted information stays well below the 10-bit upper bound and tends to be close to Hmin.
A natural interpretation is that Sender prefers to take charge of image classification and directly pass
information about the output label, rather than sending along a presumably more information-heavy
description of the input. In Figure 2b, we split the runs by temperature. Again, we see that lower
temperatures consistently lead to stronger entropy minimization pressures.

Summarizing, when communicating through a discrete channel, there is consistent pressure for the
emergent protocol to encode as little information as necessary. This holds across games, training
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methods and hyperparameters. When training with Gumbel-Softmax, temperature controls the
strength of this pressure, confirming the relation between entropy minimization and discreteness.

4.2 REPRESENTATION DISCRETENESS AND ROBUSTNESS

Explicitly controlling the amount of input information stored in representations–imposing a so-called
“information bottleneck” (Tishby et al., 1999; Achille & Soatto, 2018a)–has been shown to provide a
form of beneficial regularization, leading to robustness to over-fitting (Fischer, 2019) and adversarial
attacks (Alemi et al., 2016; Fischer, 2019). Interestingly, the information-bottleneck principle has
also been claimed to govern entropy minimization in natural language (Zaslavsky et al., 2018; 2019).
However, probably because it is difficult to design the right experiments with human speakers, the
possibility that the bottleneck is “beneficial” to human languages has not been investigated. We test
here whether the expected regularization properties also emerge in our computational simulations,
and whether they are correlated with the degree of discreteness of the communication channel.

The aim of these proof-of-concept experiments is not to propose the multi-agent discrete-channel
architecture as a novel, or even particularly effective, form of regularization. We simply show that
desirable robustness properties emerge in discrete communication, without the need for further
constraints. We will explore the theoretical implications of this result, particularly in relation to the
evolution of human language, in the discussion.

We focus on the Image Classification game with Nl = 10. We use the same architecture as above.
The agents are trained with Gumbel-Softmax relaxation. However, for practicality, we do not switch
to fully discrete communication at test time, only removing the noise component, thus effectively
reducing Sender’s output to softmax with temperature. We refer to this architecture as GS. We also
consider two baseline architectures without relaxed discrete channel. In Linear, the fully connected
output layer of Sender is directly connected to the linear embedding input of Receiver. Softmax
(SM) places a softmax activation (with temperature) after Sender’s output layer and passes the result
to Receiver. At test time, SM coincides with GS with the same temperature, but there was no
discrete-sampling approximation during SM training.

Learning in presence of random labels Following Zhang et al. (2016), we study how successfully
the agents learn to classify pairs of MNIST images (see Section 3.1) in presence of randomly-shuffled
training labels (the test set is untouched). We vary temperature and proportion of training examples
with shuffled labels. We use temperatures τ = 1.0 and τ = 10.0 (the agents reach a test accuracy
of 0.98 when trained with these temperatures on the original training set). SM with τ = 1.0 and
τ = 10.0 behave similarly, hence we only report SM with τ = 1.0.

In Figure 3a we report training accuracy when all labels are shuffled. Linear and SM fit the random
labels almost perfectly within the first 150 epochs. With τ = 10.0, GS achieves 0.8 accuracy within
200 epochs. When GS with τ = 1.0 is considered, the agents only start to improve over random
guessing after 150 epochs, and accuracy is well below 0.2 after 200 epochs. As expected, test set
performance is at chance level (Figure 3b). In the next experiment, we shuffle labels for a randomly
selected half of the training instances. Train and test accuracies are shown in Figures 3c and 3d,
respectively. All models initially fit the true-label examples (train accuracy ≈ 0.5, test accuracy
≈ 0.97). With more training, the baselines and GS with τ = 10.0 start (over)fitting the randomly
labeled examples, too: train accuracy grows, while test accuracy falls. In contrast, GS with τ = 1.0
does not fit random labels, and its test accuracy stays high. Note that SM patterns with Linear and
high-temperature GS, showing that the training-time discretization noise in GS is instrumental for
robustness to over-fitting.

We interpret the results as follows. To fully exploit their joint capacity for “successful” over-fitting,
the agents need to coordinate label memorization. This requires passing large amounts of information
through the channel. With a low temperature (more closely approximating a discrete channel), this is
hard, due to stronger entropy minimization pressure. To test the hypothesis, we ran an experiment
where all labels are shuffled and a layer of size 400x400 is either added to Sender (just before the
channel) or to Receiver (just after the channel). We predict that, with higher τ (less discrete, less
entropy minimization pressure), the training curves will be close, as the extra capacity can be used
for memorization equally easy in both cases. With lower τ (better discrete approximation, more
pressure), the accuracy curves will be more distant, as the extra capacity can only be successfully
exploited for memorization when placed before the channel. Figures 3e & 3f borne out the prediction.
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(b) All train labels are shuffled.
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(c) Half of train labels are shuffled.
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(d) Half of train labels are shuffled.
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Figure 3: Learning in presence of random labels. GS (SM) indicates models trained with Gumbel-
Softmax (Softmax) channel. Linear are models with the channel removed.

Robustness to adversarial attacks Appendix reports experiments showing that agents trained with
a low-temperature channel also display increased robustness against adversarial attacks.

5 RELATED WORK

We briefly reviewed studies of emergent deep agent communication and entropy minimization in
human language in the introduction. We are not aware of earlier work that looks for this property in
emergent communication, although Evtimova et al. (2018) used information theory to study protocol
development during learning, and, closer to us, Kågebäck et al. (2018) studied the effect of explicitly
adding a complexity minimization term to the cost function on an emergent color-naming system.

Discrete representations are explored in many places (e.g., van den Oord et al., 2017; Jang et al.,
2016; Rolfe, 2016). However, these works focus on ways to learn discrete representations, rather than
analyzing the properties of representations that are independently emerging on the side. Other studies,
inspired by the informational bottleneck principle, control the complexity of neural representations
by regulating their information content (Strouse & Schwab, 2017; Fischer, 2019; Alemi et al., 2016;
Achille & Soatto, 2018a;b). While they externally impose the bottleneck, we observe that it is an
intrinsic feature when learning to communicate through a discrete channel.
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6 DISCUSSION

Entropy minimization is pervasive in human language, where it constitutes a specific facet of the more
general pressure towards communication efficiency. We found that the same property consistently
characterizes the protocol emerging in simulations where two neural networks learn to solve a task
jointly through a discrete communication code.

In a comparative perspective, our results suggest that entropy minimization is a general property of
discrete communication systems, independent of specific biological constraints humans are subject
to. In particular, our analysis tentatively establishes a link between this property and the inherent
difficulty of encoding information in discrete form (cf. the effect of adding a layer before or after the
communication bottleneck in the overfitting experiment above).

Exploring entropy minimization in computational simulations provides a flexibility we lack when
studying humans. For example, we uncovered here initial evidence that the communication bottleneck
is acting as a good regularizer, making the joint agent system more robust to noise. This leads to an
intriguing conjecture on the origin of language. Its discrete nature is often traced back to the fact
that it allows us to produce an infinite number of expressions by combining a finite set of primitives
(e.g., Berwick & Chomsky, 2016). However, it is far from clear that the need to communicate
an infinite number of concepts could have provided the initial pressure to develop a discrete code.
More probably, once such code independently emerged, it laid the conditions to develop an infinitely
expressive language (Bickerton, 2014; Collier et al., 2014). Our work suggests that, because of its
inherent regularizing effect, discrete coding is advantageous already when communication is about a
limited number of concepts, providing an alternative explanation for its origin.

In the future, we would like to study more continuous domains, such as color maps, where perfect
accuracy is not easily attainable, nor desirable. Will the networks find an accuracy/complexity
trade-off similar to those attested in human languages? Will other core language properties claimed to
be related to this trade-off, such as Zipfian frequency distributions (Ferrer i Cancho & Díaz-Guilera,
2007), concurrently emerge? We would also like to compare the performance of human subjects
equipped with novel continuous vs. discrete communication protocols, adopting the methods of
experimental semiotics (Galantucci, 2009). We expect discrete protocols to favor generalization and
robustness.

Our results have implications for the efforts to evolve agents interacting with each other and with
humans through a discrete channel. First, because of entropy minimization, we should not expect the
agents to develop a richer protocol than the simplest one that will ensure accurate communication.
For example, Bouchacourt & Baroni (2018) found that agents trained to discriminate pairs of natural
images depicting instances of about 500 high-level categories, such as cats and dogs, developed a
lexicon that does not denote such categories, but low-level properties of the image themselves. This
makes sense from an entropy-minimization perspective, as talking about the 500 high-level categories
demands log2 500 bits of information, whereas many low-level strategies (e.g., discriminating average
pixel intensity in the images) will only require transmitting a few bits. To have agents developing
rich linguistic protocols, we must face them with varied challenges that truly demand them.

Second, the focus on a discrete protocol is typically motivated by the goal to develop machines
eventually able to communicate with humans. Indeed, discrete messages are not required in multi-
agent scenarios where no human in the loop is foreseen (Sukhbaatar et al., 2016). Our results suggest
that, long before agents reach the level of complexity necessary to converse with humans, there
are independent reasons to encourage discreteness, as it provides a source of robustness in a noisy
world. An exciting direction for future applied work will be to test, in more practical settings, the
effectiveness of discrete communication as a general form of representation learning.
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A ROBUSTNESS TO ADVERSARIAL ATTACKS

In this Section, we study robustness of the agents equipped with a relaxed discrete channel against
adversarial attacks. We use the same architectures as in Section 4.2 of the main paper. Specifically, by
GS we indicate the architecture where agents are trained with Gumbel-Softmax relaxation, which at
test-time is replaced by (noiseless) softmax with the same temperature. SM is an architecture where
the communication channel is replaced by a Softmax layer with temperature. The Linear baseline has
no “channel”: the output of Sender is directly plugged as input to the Receiver.

We train agents with different random seeds and implement white-box attacks on the trained models,
varying temperature τ and the allowed perturbation norm, ε. We use the standard Fast Gradient Sign
Method (FGSM) of Goodfellow et al. (2014). The original image is is perturbed to i∗s along the
direction that maximizes the loss of Receiver’s output o = R(S(is)) w.r.t. ground-truth class l:

i∗s = clip [is + ε · sign [∇isL(o, l)] , 0, 1] (5)

where ε controls the L∞ norm of the perturbation. Under an attack with a fixed ε, a more robust
method would have a smaller accuracy drop. To avoid numerical stability issues akin to those reported
by Carlini & Wagner (2016), all computations are done in 64-bit floats.

As earlier in Section 4.2, we observed that SM behaves similarly with different temperatures (we
experimented with τ ∈ {0.1, 1.0, 10.0}), we report only results with τ = 1.0. Figure 4a shows that,
as the relaxation temperature decreases, the accuracy drop also decreases. The highest robustness
is achieved with τ = 0.1. Comparison with the baselines (Figure 4b) confirms that relaxed discrete
training with τ = 0.1 improves robustness. However, this robustness comes at the cost of harder
training: 2 out of 5 random seeds did not reach the desired performance level (0.98) after 200 epochs.
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Figure 4: Robustness to adversarial examples: higher accuracy given fixed ε implies more robustness.
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Figure 5: Guess Number: Receiver’s dependence on messages, measured as performance drop under
message intervention.

B HOW MUCH DOES RECEIVER RELY ON MESSAGES IN GUESS NUMBER?

We supplement the experiments of Section 3 of the main text by studying the degree to which Receiver
relies on messages in Guess Number. In particular, we show that when Receiver has the full input
(is = ir), it ignores the messages.

We measure the degree to which Receiver relies on the messages from Sender by constructing a
setup where we break communication, but still let Receiver rely on its own input. More precisely, we
first enumerate all test inputs for Sender is and Receiver ir. We obtain messages that correspond to
Sender’s inputs, and shuffle them. Next, we feed the shuffled messages alongside Receiver’s own
(un-shuffled) inputs and compute accuracy, as a measure of Receiver’s dependence on the messages.
This procedure preserves the marginal distribution of the Receiver input messages, but destroys all
the information Sender transmits.

Without messages, Receiver, given k input bits, can only reach an accuracy of 28−k. In Figure 5, we
report results aggregated by training method. Receiver is extremely close to the accuracy’s higher
bound in all configurations. Moreover, when Receiver gets the entire input, the drop in accuracy after
shuffling is tiny, proving that Receiver’s reliance on the message is minimal in that setting.

C INFLUENCE OF ARCHITECTURE CHOICES

C.1 DOES VOCABULARY SIZE AFFECT THE RESULTS?

We repeat the same experiments as in Section 3 of the main text while varying vocabulary size. Note
that, to make Guess Number solvable across each configuration, the vocabulary has to contain at least
256 symbols. Similarly, for Image Classification, vocabulary size must be of at least 100. We tried
vocabulary sizes of 256, 1024, 4096 for Guess Number, and 512, 1024, 2048 for Image Classification.
The results are reported in Figures 6 (Guess Number) and 7 (Image Classification). We observe that
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there is little qualitative variation over vocabulary size, hence the conclusions we had in Section 3 of
the main paper are robust to variations of this parameter.

C.2 DOES RECEIVER’S CAPACITY AFFECT THE RESULTS?

One potential confounding variable is the capacity of Receiver. Indeed, if Receiver is very simple,
then, for the task to be solved, Sender would have to calculate the answer itself and feed it to Receiver.
To investigate this, we repeat the Image Classification experiment from Section 4 of the main paper
while controlling the power of Receiver’s architecture: we put two additional fully-connected 400x400
hidden layers between the input embedding and the output layer, while in Section 4, Receiver had a
single hidden layer.

In Figure 8 we compare the results obtained with these two variations of Receiver. The reported
entropy minimization effect holds: even in presence of additional layers, the entropy of messages
H(m) is far from the upper-bound Hmax = 10 bits and closely follows the lower bound, Hmin =
log2Nl. Thus, again, a more nuanced protocol only appears when it is needed. Finally, we see that
results for both architectures are close, although in three out of seven task setups (the number of
classes Nl is 2, 10, and 20) a deeper model results in a slightly higher entropy of the protocol, on
average. Overall, we conclude that Receiver’s capacity does not play a major role in the entropy
minimization effect and the latter also takes place with a more powerful Receiver.

C.3 WHAT IF COMMUNICATION TAKES PLACE THROUGH SEQUENCES OF SYMBOLS?

We also experiment with Guess Number in a setup where the agents communicate via variable-length
messages. The general architecture of the agents is same as in Section 3.1, however the output of
Sender is used as the initial hidden state of a GRU cell (Cho et al., 2014). In turn, this GRU is
unrolled to generate the message. The message is produced until the GRU outputs a special <eos>
token or until the maximal length is reached. In the latter case, <eos> is appended to the message.
The produced message is consumed by a Receiver’s GRU unit and the hidden state corresponding to
<eos> is used by Receiver as input to further processing. We use the Stochastic Computation Graph
estimator as described in Section 3.2, as it provided fastest convergence.

We consider the entire variable-length message as the realization of a random variable m when
calculating the entropy of the messages, H(m). The results are reported in Figure 9, arranged in
function of maximal message length and vocabulary size. As before, we aggregate the successful
runs according to the entropy regularization coefficient λs applied to Sender’s output layer.

From Figure 9 we observe that the results are in line with those obtained in the one-symbol scenario.
Entropy minimization still holds: a more nuanced (high-entropy) protocol only develops when more
digits are hidden from Receiver, which hence requires more information to perform the task. The
approximation to the lower bound is however less tight as the overall number of possible messages
grows (higher maximum length and/or vocabulary size). There is also a weak tendency for lower λs
to encourage a tighter bottleneck.

In preliminary experiments, we have similar results when the variable-length communication is
performed via Transformer cells (Vaswani et al., 2017) instead of GRUs (not reported here).

D TWO-DIGIT MNIST DATASET

As discussed in Section 3, to ensure high output informational complexity in the Image Classification
task, we use a two-digit variant of the MNIST dataset (LeCun et al., 1998a). We construct it as
follows. When iterating over the original MNIST dataset, we take a batch b and (a) select the first
|b|/2 and last |b|/2 images, refer to them as b1 and b2, respectively; (b) create a new batch where the
ith image from b1 is placed to the left of the ith image from b2 and then vice versa. As a result, we
obtain a new stream of images, where each MNIST digit is seen twice, on the left and on the right
side. Note that not all possible pairwise combinations of the original images are generated (there
are 600002 of those in the training set alone) and the exact combinations change across epochs. As
labels, we use the depicted two-digit number modulo Nl, where Nl is the required number of classes.
All pixels are scaled into [0, 1]. We use the same process to generate training and test sets, based on
the training and test images of the original MNIST dataset, respectively.
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Figure 6: Guess Number: Entropy of the messagesm, depending on vocabulary size, training method,
and relaxation temperature τ (when trained with Gumbel-Softmax) or Sender’s entropy regularization
coefficient λs. Shaded regions mark standard deviation.

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

), 
bi

ts

=0.75
=1.0
=1.5
=2.0

Hmin

(a) Vocab. size: 512

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

), 
bi

ts

=0.75
=1.0
=1.5
=2.0

Hmin

(b) Vocab. size: 1024

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

), 
bi

ts

=0.75
=1.0
=1.5
=2.0

Hmin

(c) Vocab. size: 2048

Figure 7: Image Classification: entropy of the messages H(m) across vocabulary sizes. Successful
runs are pooled together. Shaded regions mark standard deviation.

14



Under review as a conference paper at ICLR 2020

1 2 3 4 5 6
log2Nl

1

2

3

4

5

6

7

H
(m

), 
bi

ts
One hidden layer
Three hidden layers
Hmin

Figure 8: Image Classification: entropy of the messages H(m) across Receiver model sizes. Suc-
cessful runs are pooled together. Shaded regions mark standard deviation.

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

), 
bi

ts

=0.05
=0.1
=0.01

Hmin

(a) Max length: 5, vocabulary size:
16

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

), 
bi

ts

=0.05
=0.1
=0.01

Hmin

(b) Max length: 10, vocabulary size:
16

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

), 
bi

ts

=0.05
=0.1
=0.01

Hmin

(c) Max length: 5, vocabulary size:
64

0 2 4 6 8
Binary digits hidden

0

2

4

6

8

H
(m

), 
bi

ts

=0.05
=0.1
=0.01

Hmin

(d) Max length: 5, vocabulary size:
64

Figure 9: Guess Number: Entropy of the emergent protocol when communication is performed with
variable-length messages. Shaded regions mark standard deviation.

15



Under review as a conference paper at ICLR 2020

E HYPERPARAMETERS

In our experiments, we used the following hyperparameter grids.

Guess Number (Gumbel-Softmax) Vocab. size: [256, 1024, 4096]; temperature, τ : [0.5, 0.75, 1.0,
1.25, 1.5]; learning rate: [0.001, 0.0001]; max. number of epochs: 250; random seeds: [0, 1, 2, 3];
batch size: 8; early stopping thr.: 0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Guess Number (REINFORCE) Vocab. size: [256, 1024, 4096]; Sender entropy regularization coef.,
λs: [0.01, 0.05, 0.025, 0.1, 0.5, 1.0]; Receiver entropy regularization coef., λr: [0.01, 0.1, 0.5, 1.0];
learning rate: [0.0001, 0.001, 0.01]; max. number of epochs: 1000; random seeds: [0, 1, 2, 3]; batch
size: 2048; early stopping thr.: 0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Guess Number (Stochastic Computation Graph approach): Vocab. size: [256, 1024, 4096];
Sender entropy regularization coef., λs: [0.01, 0.025, 0.05, 0.075, 0.1, 0.25]; learning rate: [0.0001,
0.001]; max. number of epochs: 1000; random seeds: [0, 1, 2, 3]; batch size: 2048; early stopping
thr.: 0.99; bits shown to Receiver: [0, 1, 2, 3, 4, 5, 6, 7, 8].

Image Classification experiments Vocab. size: [512, 1024, 2048]; temperature, τ : [0.5, 0.75, 1.0,
1.5, 2.0]; learning rate: [0.01, 0.001, 0.0001], max. number of epochs: 100; random seeds: [0, 1, 2];
batch size: 32; early stopping thr.: 0.98; number of classes: [2, 4, 10, 20, 25, 50, 100].

Fitting random labels experiments Vocab. size: 1024; temperature, τ : [1.0, 10.0]; learning rate:
1e-4, max. number of epochs: 200; random seeds: [0, 1, 2, 3, 4]; batch size: 32; early stopping thr.:
∞; prob. of label corruption: [0.0, 0.5, 1.0].

Adversarial attack experiments Vocab. size: 1024; temperature, τ : [0.1, 1.0, 10.0]; learning rate:
1e-4, max. number of epochs: 200; random seeds: [0, 1, 2, 3, 4]; batch size: 32; early stopping thr.:
0.98.
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