
Under review as a conference paper at ICLR 2020

EXPECTED TIGHT BOUNDS FOR ROBUST DEEP
NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training Deep Neural Networks (DNNs) that are robust to norm bounded adver-
sarial attacks remains an elusive problem. While verification based methods are
generally too expensive to robustly train large networks, it was demonstrated by
Gowal et al. (2018) that bounded input intervals can be inexpensively propagated
from layer to layer through deep networks. This interval bound propagation (IBP)
approach led to high robustness and was the first to be employed on large networks.
However, due to the very loose nature of the IBP bounds, particularly for large/deep
networks, the required training procedure is complex and involved. In this paper,
we closely examine the bounds of a block of layers composed of an affine layer,
followed by a ReLU, followed by another affine layer. To this end, we propose
expected bounds (true bounds in expectation), which are provably tighter than
IBP bounds in expectation. We then extend this result to deeper networks through
blockwise propagation and show that we can achieve orders of magnitudes tighter
bounds compared to IBP. Using these tight bounds, we demonstrate that a simple
standard training procedure can achieve impressive robustness-accuracy trade-off
across several architectures on both MNIST and CIFAR10.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated impressive performance in many fields of research
with applications ranging from image classification (Krizhevsky et al., 2012; He et al., 2016) and
semantic segmentation (Long et al., 2015) to speech recognition (Hinton et al., 2012), just to name a
few. Despite this success, DNNs are still susceptible to small imperceptible perturbations, which can
lead to drastic performance degradation, especially in visual classification tasks. Such perturbations
are best known and commonly referred to as adversarial attacks. Early work showed that simple
algorithms (e.g. maximizing the classification loss with respect to the input using a single optimization
iteration (Goodfellow et al., 2014)) can easily construct such adversaries. Since then, a research
surge has emerged to develop simple routines to construct adversarial examples consistently. For
instance, Moosavi-Dezfooli et al. (2016) proposed a simple algorithm, called DeepFool, which finds
the smallest perturbation that fools a linearized version of the network. Interestingly, the work of
Moosavi-Dezfooli et al. (2017) demonstrated that such adversaries can be both network and input
agnostic, i.e. universal deterministic samples that fool a wide range of DNNs across a large number
of input samples. More recently, it was shown that such adversaries can also be as simple as Gaussian
noise (Bibi et al., 2018). Knowing that DNNs are easily susceptible to simple attacks can hinder the
public confidence in them, especially for real-world deployment, e.g. in self-driving cars and devices
for the visually impaired.

Such a performance nuisance has prompted several active research directions, in particular, work
towards network defense and verification. Network defense aims to train networks that are robust
against adversarial attacks through means of robust training or procedures at inference time that
dampen the effectiveness of the attack (Madry et al., 2017; Kolter & Wong, 2017; Raghunathan et al.,
2018; Alfadly et al., 2019). On the other hand, verification aims to certify/verify for a given DNN
that there exists no small perturbation of a given input that can change its output prediction (Katz
et al., 2017; Sankaranarayanan et al., 2016; Weng et al., 2018). However, there are also works at
the intersection of both often referred to as robustness verification methods, which use verification
methods to train robust networks. Such algorithms often try to minimize the exact (or upper bound) of
the worst adversarial loss over all possible bounded energy (often measured in `∞ norm) perturbation
around a given input.

1

Under review as a conference paper at ICLR 2020

Although verification methods prove to be effective in training robust networks (Kolter & Wong,
2017), they are computationally expensive, thus limiting their applicability to only small, at best
medium, sized networks. However, Gowal et al. (2018) recently demonstrated that robustly training
large networks is possible by leveraging the cheap-to-compute but very loose interval-based verifier,
known as interval domain from Mirman et al. (2018). In particular, they propagate the ε-`∞ norm
bounded input centered at x ∈ Rn, i.e. [x− ε1n,x + ε1n], through every layer in the network at a
time. This interval bound propagation (IBP) is inexpensive and simple; however, it results in very
loose output interval bounds, which in turn necessitates a complex and involved training procedure.

In this paper, we are interested in improving the tightness of output interval bounds (referred to as
bounds from now on). We do so by closely examining the bounds for a block of layers composed
of an affine layer, followed by a ReLU nonlinearity, followed by another affine layer under ε-`∞
bounded input. In fact, we propose new expected bounds for this block of layers, which we prove to
be not only supersets to the true bounds of this block in expectation but also very tight to the true
bounds. Lastly, we show how to extend such a result to deeper networks through blockwise bound
propagation leading to several orders of magnitude tighter bounds as compared to IBP.

Contributions. Our contributions are three-fold. (i) We propose new bounds for the block of
layers composed of an affine layer, followed by a ReLU, followed by another affine layer. We prove
that these bounds are in expectation, under a distribution of network parameters, supersets to the
true bounds of this block. Moreover, we prove that these bounds are much tighter, in expectation
than the IBP bounds (Gowal et al., 2018) generated by propagating the input bounds through every
layer in the block. Our bounds get even tighter as the number of hidden nodes in the first affine
layer increases. (ii) We show a practical and efficient approach to propagate our bounds (for the
block of layers) through blocks (not through individual layers) of a deep network, thus resulting
in magnitudes tighter output bounds compared to IBP. (iii) We conduct experiments on synthetic
networks and on real networks, to verify the theory, as well as the factors of improvement over IBP.
Due to the tightness of our proposed expected bounds, we show that with a simple standard training
procedure, large/deep networks can be robustly trained on both MNIST (LeCun, 1998) and CIFAR10
(Krizhevsky & Hinton, 2009) achieving state-of-art robustness-accuracy trade-off compared to IBP.
In other words, we can consistently improve robustness by significant margins with minimal effect
on test accuracy as compared to IBP.

2 RELATED WORK

Training accurate and robust DNNs remains an elusive problem, since several works have demon-
strated that small imperceptible perturbations (adversarial attacks) to the DNN input can drastically
affect their performance. Early works showed that with a very simple algorithm, as simple as max-
imizing the loss with respect to the input for a single iteration (Goodfellow et al., 2014), one can
easily construct such adversaries. This has strengthened the line of work towards network verification
for both evaluating network robustness and for robust network training. In general, verification
approaches can be coarsely categorized as exact or relaxed verifiers.

Exact Verification. Verifiers of this type try to find the exact largest adversarial loss over all possible
bounded energy (usually measured in `∞ norm) perturbations around a given input. They are often
tailored for piecewise linear networks, e.g. networks with ReLU and LeakyReLU nonlinearities.
They typically require mixed integer solvers (Cheng et al., 2017; Lomuscio & Maganti, 2017; Tjeng
& Tedrake, 2019) or Satisfiability Modulo Theory (SMT) solvers (Xiaowei Huang & Wu, 2017;
Ehlers, 2017). The main advantage of these approaches is that they can reason about exact adversarial
robustness; however, they generally are computationally intractable for verification purposes let alone
any sort of robust network training. The largest network used for verification with such verifiers
was with the work of Tjeng & Tedrake (2019), which employed a mixed integer solver applied to
networks of at most 3 hidden layers. The verification is fast for networks that are pretrained with a
relaxed verifier but gets much slower on normally trained similar sized networks.

Relaxed Verification. Verifiers of this type aim to find an upper bound on the worst adversarial
loss across a range of bounded inputs. For instance, a general framework called CROWN was
proposed by Huan Zhang & Daniel (2018) to certify robustness by bounding the activation with
linear and quadratic functions, thus, enabling the study of generic, not necessarily piecewise linear,
activation functions. By utilizing the structure in ReLU based networks, the work of Weng et al.
(2018) proposed two fast algorithms based on linear approximation on the ReLU units. Moreover,
Wang et al. (2018c) proposed ReluVal for network verification based on symbolic interval bounds,

2

Under review as a conference paper at ICLR 2020

while Wang et al. (2018b) proposed Neurify with much tighter bounds. Several other works utilized
the dual view of the verification problem (Kolter & Wong, 2017; Eric Wong & Kolter, 2018). More
recently, Salman et al. (2019) unified a large number of recent works in a single convex relaxation
framework and revealed several relationships between them. In particular, it was shown that convex
relaxation methods that fit this framework suffer from an inherent barrier compared to exact verifiers.

For completeness, it is important to note that there are also hybrid methods that combine both exact
and relaxed verifiers and have shown to be effective (Rudy Bunel, 2018). Although relaxed verifiers
are much more computationally friendly than exact verifiers, they are still too expensive for robust
training of large/deep networks (with more than 5 hidden layers). However, very loose relaxed
verifiers can possibly still be exploited for this purpose. For instance, Wang et al. (2018a) leveraged
symbolic interval analysis to verifiably train large networks. More recently, the work of Gowal et al.
(2018) proposed to use an inexpensive but very loose interval bound propagation (IBP) certificate
to train (for the first time) large robust networks with state-of-the-art robustness performance. This
was at the expense of a complex and involved training routine resulting from the loose nature of the
bounds. To remedy these training difficulties, we instead propose expected bounds, not for each layer
individually, but for a block of layers jointly. Such bounds are slightly more expensive to compute
but are much tighter in expectation. We then propagate these bounds through every block in a deeper
network to attain much tighter bounds overall as compared to layerwise IBP. The tighter bounds
enable the use of simple standard training routines for robust training of large networks, resulting in
state-of-art robustness-accuracy trade-off.

3 EXPECTED TIGHT INTERVAL BOUNDS

We analyze the interval bounds of a DNN by proposing expected true and tight bounds for a two-layer
network (Affine-ReLU-Affine). Then, we propose a mechanism to extend them for deeper networks.
First, we detail the interval bounds of Gowal et al. (2018) to put our bounds in context.

3.1 INTERVAL BOUNDS FOR A SINGLE AFFINE LAYER

For a single affine layer parameterized by A1 ∈ Rk×n and b1 ∈ Rk, it is easy to show that its output
lower and upper interval bounds for an ε-`∞ norm bounded input x̃ ∈ [x− ε1n,x + ε1n] are:

l1 = A1x + b1 − ε|A1|1n, u1 = A1x + b1 + ε|A1|1n. (1)

Note that |.| is an elementwise absolute operator. In the presence of any non-decreasing elementwise
nonlinearity (e.g. ReLU), the bounds can then be propagated by applying the nonlinearity to {l1,u1}
directly. As such, the interval bounds can be propagated through the network one layer at a time, as
proposed by Gowal et al. (2018). While this interval bound propagation (IBP) mechanism is a very
simple and inexpensive approach to compute bounds, these bounds can be extremely loose for deep
networks, requiring a complex and involved robust network training procedure.

3.2 PROPOSED INTERVAL BOUNDS FOR AN AFFINE-RELU-AFFINE BLOCK

Here, we consider a block of layers of the form Affine-ReLU-Affine in the presence of `∞ pertur-
bations at the input. The functional form of this network is: g(x) = a>2 max (A1x + b1,0) + b2,
where max(.) is an elementwise operator. The affine mappings can be of any size, and throughout
the paper, we take A1 ∈ Rk×n and without loss of generality the second affine map is a single vector
a2 ∈ Rk. Note that g also includes convolutional layers, since they are also affine mappings.

Layerwise Interval Bound Propagation (IBP) on g. Here, we apply the layerwise propagation
strategy of Gowal et al. (2018) detailed in Section 3.1 on function g(x̃) with x̃ ∈ [x− ε1n,x + ε1n]
to obtain bounds [LIBP,UIBP]. We use these bounds for comparison in what follows.

LIBP = a>2

(
max (u1,0k) + max (l1,0k)

2

)
− |a>2 |

(
max (u1,0k)−max (l1,0k)

2

)
+ b2,

UIBP = a>2

(
max (u1,0k) + max (l1,0k)

2

)
+ |a>2 |

(
max (u1,0k)−max (l1,0k)

2

)
+ b2.

Note that max (l1,0k) and max (u1,0k) are the result of propagating [x− ε1n,x + ε1n] through
the first affine map (A1,b1) and then through the ReLU nonlinearity, as stated in (1).

3

Under review as a conference paper at ICLR 2020

Expected Tight Interval Bounds on g. Our goal is to propose new interval bounds for g, as a
block, which are tighter than the IBP bounds [LIBP,UIBP], since we believe that tighter bounds
for a two-layer block, when propagated/extended to deeper networks, can be tighter than applying
IBP layerwise. Denoting the true output interval bounds of g as [Ltrue,Utrue], the following inequality
holds Ltrue ≤ g(x̃) ≤ Utrue ∀x̃ ∈ [x− ε1n,x + ε1n]. Deriving these true (and tight) bounds for g
in closed form is either hard or results in bounds that are generally very difficult to compute, deeming
them impractical for applications such as robust network training. Instead, we propose new closed
form expressions for the interval bounds denoted as [LM,UM], which we prove to be true bounds
and tighter than [LIBP,UIBP] in expectation under a distribution of the network parameters A1 and
a2. As such, we make two main theoretical findings. (i) We prove that LM and UM are true bounds
in expectation, or equivalently EA1,a2

[LM] ≤ EA1,a2
[Ltrue] and EA1,a2

[UM] ≥ EA1,a2
[Utrue]

hold for a sufficiently large input dimension n. (ii) We prove that [LM,UM] can be arbitrarily tighter
than the loose bounds [LIBP,UIBP] in expectation, as the number of hidden nodes k increases.

Analysis. To derive LM and UM, we study the bounds of the following function first:

g̃(x̃) = a>2 M (A1x̃ + b1) + b2 = a>2 MA1x̃ + a>2 Mb1 + b2. (2)

Note that g̃ is very similar to the Affine-ReLU-Affine map captured by g with the ReLU replaced by
a diagonal matrix M constructed as follows. If we denote u1 = A1x + b1 + ε|A1|1n as the upper
bound resulting from the propagation of the input bounds [x− ε1n,x + ε1n] through the first affine
map (A1,b1), then we have M = diag (1 {u1 ≥ 0k}) where 1 is an indicator function. In other
words, Mii = 1 when the ith element of u1 is non-negative and zero otherwise. Note that for a given
u1, g̃(x̃) is an affine function with the following output interval bounds for x̃ ∈ [x− ε1n,x + ε1n]:

LM,UM = a>2 MA1x + a>2 Mb1 + b2 ∓ ε|a>2 MA1|1n (3)

To compare LM and UM to Ltrue and Utrue, respectively, and since having access to Ltrue and Utrue
is not feasible, we make the following mild key assumption.
Assumption 1. (Key Assumption). Consider an `∞ bounded uniform random variable x̃, x̃ ∈
[x− ε1n,x + ε1n] where A1 and a2 have elements that are i.i.d. Gaussian of zero mean and σA1

and σa2
standard deviations, then there exists a sufficiently large m, such that:

EA1,a2
[Ltrue] ≥ Lapprox = EA1,a2,x̃ [g(x̃)]−m

√
VarA1,a2,x̃ [g(x̃)],

EA1,a2 [Utrue] ≤ Uapprox = EA1,a2,x̃ [g(x̃)] +m
√

VarA1,a2,x̃ [g(x̃)].

Under Assumption 1 and to show that LM and UM are true bounds in expectation, it is sufficient to
show that Lapprox ≥ EA1,a2

[LM] and similarly for UM. However, since it is generally difficult to
compute the right hand sides of Assumption 1, they can be well approximated by Lyapunov Central
Limit Theorem. More formally, follows the two propositions.
Proposition 1. For a ∈ Rn ∼ N (0, σ2

aI) and a uniform random vector x̃ ∼ U [x− ε1n,x + ε1n]
where both a and x̃ are independent, we have that Lyapunov Central Limit Theorem holds such that

1

sn

n∑
i=1

(x̃iai − E[aix̃i])→d N (0, 1), where s2
n = Var

(
n∑
i=1

(x̃iai − E[aix̃i])

)
where→d indicates convergence in distribution.

Proposition 2. For a random matrix A1 with i.i.d. Gaussian elements of zero mean and σA1 standard
deviation and a uniform random vector x̃ ∼ U [x− ε1n,x + ε1n] we have that Covariance(Ax̃) =
(1

3ε
2σ2

A1
n+ σ2

A1
trace(xx>))I.

Following Propositions 1 and 2, we have that for a sufficiently large input n:

Lapprox,Uapprox ≈ Ea2,ỹ

[
a>2 max (ỹ,0) + b2

]
∓m

√
Vara2,ỹ

[
a>2 max (ỹ,0) + b2

]
, (4)

where the output of the first affine layer A1x̃ + b1 is approximated by Lyapunov Central Limit
Theorem as ỹ ∼ N (b1, (

1
3ε

2σ2
A1
n+ σ2

A1
trace(xx>))I).

Theorem 1. (True Bounds in Expectation) Let Assumption 1 hold. For large input dimension n,
EA1,a2

[LM] ≤ EA1,a2
[Ltrue] and EA1,a2

[Utrue] ≤ EA1,a2
[UM] . (5)

4

Under review as a conference paper at ICLR 2020

(a) (b)
Figure 1: True Bounds in Expectation. We show that our proposed interval bounds [LM,UM] are a super set
of the true interval bounds [Ltrue,Utrue]. Figure 1a shows how close the two intervals are for a two layer network
(as predicted by Theorem 1), while Figure 1b shows how close they are for networks of varying depth.
Theorem 1 states that the interval bounds for function g̃ are simply looser bounds to the function
of interest g in expectation under a plausible distribution of A1 and a2. Now, we investigate the
tightness of these bounds as compared to the IBP bounds [LIBP,UIBP].

Theorem 2. (Tighter Bounds in Expectation) Consider an `∞ bounded uniform random variable
input x̃ ∈ [x− ε1n,x + ε1n] to a block of layers in the form of Affine-ReLU-Affine (parameterized
by A1,b1,a2 and b2 for the first and second affine layers respectively) and a2 ∼ N (0, σa2

I). Under

the assumption that 1√
2π

xj1
>
kA1(:, j) + 1

2n1
>
k b1 ≥ ε

(
‖A1(:, j)‖2 − 1√

2π
‖A1(:, j)‖1

)
∀j, we

have: Ea2
[(UIBP − LIBP)− (UM − LM)] ≥ 0.

Theorem 2 states that under some assumptions on A1 and under a plausible distribution for a2, our
proposed interval width can be much smaller than the IBP interval width, i.e. our proposed intervals
are much tighter than the IBP intervals in expectation. Next, we show that the inequality assumption
in Theorem 2 is very mild. In fact, a wide range of (A1,b1) satisfy it, and the following proposition
gives an example that does so in expectation.

Proposition 3. For a random matrix A1 ∈ Rk×n with i.i.d elements A1(i, j) ∼ N (0, 1), then

EA1

(
‖A1(:, j)‖2 −

1√
2π
‖A1(:, j)‖1

)
=
√

2
Γ
(
k+1

2

)
Γ
(
k
2

) − k√ 2

π
≈
√
k

(
1−

√
2

π

√
k

)
.

Proposition 3 implies that as the number of hidden nodes k increases, the expectation of the right
hand side of the inequality assumption in Theorem 2 grows more negative, while the left hand side of
the inequality is zero in expectation when b1 ∼ N (0k, I). In other words, for Gaussian zero-mean
weights (A1,b1) and with a large enough number of hidden nodes k, the assumption is satisfied. All
proofs and detailed analyses are provided in the appendix.

Comment on the Assumptions on A1 and a2. The Gaussian i.i.d. assumption on the network
parameters A1 and a2 is reasonable, as it is common to regularize network weights while training
deep neural networks with an `2 regularizer encouraging them to follow a zero mean Gaussian
distribution not to mention that networks in many cases are initialized in such manner. Moreover,
note that for σA1 → 0 and σa2 → 0, Theorem 1 also holds. See appendix for details.

3.3 EXTENDING OUR EXPECTED TIGHT BOUNDS TO DEEPER NETWORKS

To extend our proposed bounds to networks deeper than a two-layer block, we simply apply our
bound procedure described in Section 3.2, recursively for every block. In particular, consider an
L-layer neural network defined as f(x) = ALReLU(AL−1ReLU(· · ·A2ReLU(A1x))) and an ε-
`∞ norm bounded input centered at x, i.e. x̃ ∈ [x − ε1n,x + ε1n]. Without loss of generality,
we assume f is bias-free for ease of notation. Then, the output lower and upper bounds of f are
LM = GL−1x − ε|GL−1|1n and UM = GL−1x + ε|GL−1|1n, respectively. Here, GL−1 is a
linear map that can be obtained recursively as follows:
Gi = Ai+1MiGi−1 (with G0 = A1) and Mi = diag (1 {(Gi−1x + ε|Gi−1|1n) ≥ 0}) (6)

Note that Gi−1x + ε|Gi−1|1n is the output upper bound through a linear layer parameterized by
Gi−1 for input x̃ as in (1). With this blockwise propagation, the output interval bounds of f are now
estimated by the output intervals of f̃(x̃) = GL−1x̃.

5

Under review as a conference paper at ICLR 2020

(a) (b) (c) (d)
Figure 2: Tighter than IBP with Varying Input Size and Hidden Nodes. We show a bound tightness
comparison between our proposed interval bounds and those of IBP by comparing the difference and ratio of
their interval lengths with varying k, n, and ε for a two-layer network. The proposed bounds are significantly
tighter than IBP, as predicted by Theorem 2.

(a) (b) (c) (d)
Figure 3: Tighter than IBP in Deeper Networks. We show a bound tightness comparison between our
proposed interval bounds and those of IBP by varying the number of layers for several choices of ε. The
proposed bounds are significantly tighter than IBP.

4 EXPERIMENTS

True Bounds in Expectation. Here, we validate Theorem 1 with several controlled experiments.
For a network g(x̃) = A2 max (A1x̃ + b1,0) + b2 that has true bounds [Ltrue,Utrue] for x̃ ∈
[x − ε1n,x + ε1n], we empirically show that our proposed bounds [LM,UM], under the mild
assumptions of Theorem 1, indeed are true, i.e. they are a super set to [Ltrue,Utrue] in expectation.
We also verify this as a function of the network input dimension n (as predicted by Theorem 1).

We start by constructing a network g where the biases b1 ∈ Rk and b2 ∈ R are initialized following
the default Pytorch initialization (Paszke et al., 2017). As for the elements of the weight matrices
A1 ∈ Rk×n and A2 ∈ R1×k, they are sampled fromN (0, 1/

√
n) andN (0, 1/

√
k), respectively. We

estimate Ltrue and Utrue by taking the minimum and maximum of 106 + 2n Monte-Carlo evaluations
of g. For a given x ∼ N (0n, I) and with ε = 0.1, we uniformly sample 106 examples from the
interval [x− ε1n,x+ ε1n]. We also sample all 2n corners of the hyper cube [x− ε1n,x+ ε1n]n. To
show that the proposed interval [LM,UM] is a super set of [Ltrue,Utrue] (i.e. they are true bounds),
we evaluate the length of the intersection of the two intervals over the length of the true interval
defined as Γ = |[LM,UM] ∩ [Ltrue,Utrue]|/|[Ltrue,Utrue]|. Note that Γ = 1 if and only if [LM,UM]
is a super set of [Ltrue,Utrue]. For a given n, we conduct this experiment 103 times with varying A1,
A2, b1, b2 and x and report the average Γ. Then, we run this for a varying number of input size
n and a varying number of hidden nodes k, as reported in Figure 1a. As predicted by Theorem 1,
Figure 1a demonstrates that as n increases, the proposed interval will be more likely to be a super set
of the true interval, regardless of the number of hidden nodes k. Note that networks that are as wide
as k = 1000, require no more than n = 15 input dimensions for the proposed intervals to be a super
set of the true intervals. In practice, n is much larger than that, e.g. n ≈ 3× 103 in CIFAR10.

In Figure 1b, we empirically show that the above behavior also holds for deeper networks. We
propagate the bounds blockwise as discussed in Section 3.3 and conduct similar experiments on
fully-connected networks. We construct networks with varying depth, where each layer has the same
number of nodes equal to the input dimension k = n. These results indeed suggest that the proposed
bounds are true bounds and are more likely so with larger input dimensions. Here, n = 20 performs
better than n = 10 across different network depths.

Tighter Bounds in Expectation. Here, we experimentally affirm that our bounds can be much tighter
than IBP bounds (Gowal et al., 2018). In particular, we validate Theorem 2 by comparing the interval
length of our proposed bounds, WM = UM − LM, with that of IBP, WIBP = UIBP − LIBP, on
networks with functional form g. We compute both the difference and ratio of widths for varying
values of k, n, and ε. Figure 2 reports the average width difference and ratio over 103 runs in a similar

6

Under review as a conference paper at ICLR 2020

Table 1: True and Tight Bounds on Real Networks. Table shows that our bounds are a super set to true
bounds computed with an exact MIP solver. Moreover, they are much tighter than bounds estimated by IBP.

ε Γ Γmin Γmax

Sm
al

l
M

N
IS

T 0.01 1.0± 0 1.0 1.0
0.02 1.0± 0 1.0 1.0
0.03 0.97± 0.088 0.635 1.0

ε WIBP −WM WIBP/WM

Sm
al

l
M

N
IS

T 0.01 644.322 17.391
0.02 1381.980 15.270
0.03 2255.397 14.555

Figure 4: Qualitative Results. We plot visualizations of the output polytope of a 20-100-100-100-100-2
network through Monte-Carlo evaluations of the network with a uniform random input with varying ε. We also
plot our proposed bounds [LM,UM] in red. Each row is for a given ε with different randomized weights for the
network. As for the IBP bounds [LIBP,UIBP], they were omitted as they were significantly larger. For example,
for the first figure with ε = 0.05, IBP bounds are [−43.7, 32.9] for the x-axis and [−47.8, 37.0] for the y-axis.

setup to the previous section. Figures 2a and 2b show that the proposed bounds indeed get tighter
than IBP, as k increases across all ε values (as predicted by Theorem 2). Note that we show tightness
results for ε = {0.01, 0.1} in Figure 2b as the performance of ε = {0.5, 1.0} was very similar to
ε = 0.1. Similar improvement occurs with increasing n, as in Figures 2c and 2d.

We also compare the tightness of our bounds to those of IBP with increasing depth for both fully-
connected networks (refer to Figures 3a and 3b) and convolutional networks (refer to Figures 3c and
3d). For all fully-connected networks, we take n = k = 500. Our proposed bounds get consistently
tighter as the network depth increases over all choices of ε. In particular, the proposed bounds can be
more than 106 times tighter than IBP for a 10 layer DNN. A similar observation can also be made
for convolutional networks, where it is expensive to compute our bounds using the procedure in
Section 3.3, so instead, we obtain matrices Mi using the easy-to-compute IBP upper bounds. Despite
this relaxation, we still obtain very tight expected bounds. Note that this slightly modified approach
reduces exactly to our bounds for two-layer networks.

True and Tight Bounds on Real Networks. Moreover, we also train small network, the architecture
is similar to Gowal et al. (2018), on the MNIST dataset ∼ 99%. To show that our bounds are also
true on real networks, and since the input dimension is too large for Monte Carlo sampling, we use
the MIP formulation by Tjeng & Tedrake (2019). We then report Γ over varying testing ε. Table 1
demonstrates that indeed even on real networks beyond two layers and without the Gaussian weight
distributed assumption, our bounds are still a super set to the true bounds computed with an MIP
formulation. Moreover, Table 1 also demonstrates that our bounds are are much tighter than IBP
bounds. Note that the reported results are averaged over 100 random MNIST images.

Qualitative Results. Following previous work (Kolter & Wong, 2017; Gowal et al., 2018), we
visualize examples of the proposed bounds in Figure 4 and compare them to the true ones for several
choices of ε ∈ {0.05, 0.1, 0.25} and a random five-layer fully-connected network with architecture
n-100-100-100-100-2. We also show the results of the Monte-Carlo sampling for an input size
n = 20. More qualitative visualizations for different values of n are in the appendix.

Training Robust Networks. Here, we conduct experiments showing that our expected bounds can be
used to robustly train DNNs. We compare our method against models trained nominally (i.e. only the
nominal training loss is used), and those trained robustly with IBP (Gowal et al., 2018). Given the well-
known robustness-accuracy trade off, robust models are often less accurate. Therefore, we compare
all methods using an accuracy vs. robustness scatter plot. Following prior work, we use Projected
Gradient Descent (PGD) (Madry et al., 2017) to measure robustness. We use a loss function similar
to the one proposed in (Gowal et al., 2018). In particular, we use L = `(fθ(x),ytrue) + κ`(z,ytrue),

7

Under review as a conference paper at ICLR 2020

Figure 5: Better Test Accuracy and Robustness on MNIST. We compare the PGD robustness and test
accuracy of three models (small, medium, and large) robustly trained on the MNIST dataset using our bounds
and those robustly trained with IBP. We have trained both methods using four different εtrain, but we eliminated all
models with test accuracy lower than 97.5%. Our results demonstrate an impressive trade-off between accuracy
and robustness and, in some cases (medium and large models), we excel in both.

Figure 6: Better Test Accuracy and Robustness on CIFAR10. We compare the PGD robustness and test
accuracy of three models (small, medium, and large) robustly trained on the CIFAR10 dataset using our bounds
and those robustly trained with IBP. We eliminated all models with test accuracy lower than 40.0%. PGD
robustness is averaged over multiple εtest (refer to appendix).

where `, fθ(x), ytrue, and κ are the cross-entropy loss, output logits, true class label, and regularization
hyperparameter respectively. z represents the “adversarial" logits that combine the lower bound of
the true label and the upper bound of all other labels, as in (Gowal et al., 2018). Nominal training
occurs When κ = 0. Due to the tightness of our bounds, in contrast to IBP, we follow a standard
training procedure that avoids the need to vary κ or εtrain during training.

Specifically, we train three network models (small, medium, and large) provided by Gowal
et al. (2018) on both MNIST and CIFAR10. See appendix for more details. Following the
same setup in (Gowal et al., 2018), we train all models with εtrain ∈ {0.1, 0.2, 0.3, 0.4} and
εtrain ∈ {2/255, 8/255, 16/255, 0.1} on MNIST and CIFAR10, respectively. Then, we compute
PGD robustness for every εtrain of every model for all εtest ∈ {0.1, 0.2, 0.3, 0.4} for MNIST and for
all εtest ∈ {2/255, 8/255, 16/255, 0.1} for CIFAR10. To compare training methods, we compute the
average PGD robustness over all εtest and the test accuracy, and report them in a 2D scatter plot. In
all experiments, we grid search over {0.1, 0.001, 0.0001} learning rates and employ a temperature
over the logits with a grid of {1, 1/5} as in (Hinton et al., 2015). We report the performance results
on MNIST and CIFAR10 for the small, medium, and large architectures in Figure 5. For all trained
architectures, we only report the results for those that achieve at least a test accuracy of 97.5%
and 40% on MNIST and CIFAR10, respectively; otherwise, it is an indication of failure in training.
Interestingly, our training scheme can be used to train all architectures for all εtrain. This is unlike
IBP, which for example was only able to successfully train the large architecture with εtrain = 0.1 on
MNIST. Moreover, models trained with our bounds always achieve better PGD robustness than the
nominally trained networks on all architectures while preserving similar if not higher accuracy (on
large networks). Models trained with IBP achieve high robustness but their test accuracy is drastically
affected. Several other experiments are left for the appendix.

5 CONCLUSION

In this work, we proposed new interval bounds that are tight, relatively cheap to compute, and true
in expectation. We analytically showed that for a Affine-ReLU-Affine block with large input and
hidden layer sizes, our bounds are true in expectation and can be several orders of magnitude tighter
than the bounds obtained with IBP. We conduct extensive experiments verifying our theory, even for
deep networks. As a result, we are able to train large models, with simple standard training routines
while achieving excellent trade-off between accuracy and robustness.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Modar Alfadly, Adel Bibi, and Bernard Ghanem. Analytical moment regularizer for gaussian robust
networks. arXiv preprint arXiv:1904.11005, 2019.

Adel Bibi, Modar Alfadly, and Bernard Ghanem. Analytic expressions for probabilistic moments
of pl-dnn with gaussian input. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 9099–9107, 2018.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neural
networks. In International Symposium on Automated Technology for Verification and Analysis, pp.
251–268. Springer, 2017.

Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. International
Symposium on Automated Technology for Verification and Analysis, 2017.

Jan Hendrik Metzen Eric Wong, Frank Schmidt and Zico Kolter. Scaling provable adversarial
defenses. In Neural Information Processing Systems, NIPS18, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation
for training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Pin-Yu Chen Cho-Jui Hsieh Huan Zhang, Tsui-Wei Weng and Luca Daniel. Efficient neural network
robustness certification with general activation functions. Neural Information Processing Systems,
2018.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient
smt solver for verifying deep neural networks. In International Conference on Computer Aided
Verification, pp. 97–117. Springer, 2017.

J Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the convex outer
adversarial polytope. arXiv preprint arXiv:1711.00851, 1(2):3, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward relu
neural networks. arXiv preprint arXiv:1706.07351, 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3431–3440, 2015.

9

Under review as a conference paper at ICLR 2020

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably
robust neural networks. In International Conference on Machine Learning, pp. 3575–3583, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2574–2582, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. NIPS Workshop, 2017.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

Philip H.S. Torr Pushmeet Kohli-M. Pawan Kumar Rudy Bunel, Ilker Turkaslan. A unified view of
piecewise linear neural network verification. arXiv preprint arXiv:1711.00455, 2018.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robust verification of neural networks. arXiv preprint arXiv:1902.08722, 2019.

Swami Sankaranarayanan, Azadeh Alavi, Carlos D Castillo, and Rama Chellappa. Triplet probabilistic
embedding for face verification and clustering. In 2016 IEEE 8th international conference on
biometrics theory, applications and systems (BTAS), pp. 1–8. IEEE, 2016.

Kai Xiao Tjeng, Vincent and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. International Conference on Learning Representations, ICLR19, 2019.

Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. Mixtrain: Scalable training of formally
robust neural networks. arXiv preprint arXiv:1811.02625, 2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems, pp. 6367–
6377, 2018b.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pp. 1599–1614, 2018c.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S
Dhillon, and Luca Daniel. Towards fast computation of certified robustness for relu networks.
arXiv preprint arXiv:1804.09699, 2018.

Sen Wang Xiaowei Huang, Marta Kwiatkowska and Min Wu. Safety verification of deep neural
networks. International Conference on Computer Aided Verification, 2017.

10

Under review as a conference paper at ICLR 2020

Proposition 1. For a ∈ Rn ∼ N (0, σ2
aI) and a uniform random vector x̃ ∼ U [x− ε1n,x + ε1n]

where both a and x̃ are independent, we have that Lyapunov Central Limit Theorem holds such that

1

sn

n∑
i=1

(x̃iai − E[aix̃i])→d N (0, 1), where s2
n = Var

(
n∑
i=1

(x̃iai − E[aix̃i])

)
where→d indicates convergence in distribution.

Proof. The Lyapunov condition

∃δ > 0,
1

s2+δ
n

n∑
i=1

E
[∣∣x̃iai − E[aix̃i]

∣∣2+δ
]
→ 0, as n→∞ (7)

is sufficient for Lyanunov Central Limit Theorem to hold. Note that

s2
n =

2∑
i=1

Var (x̃iai) =

n∑
i=1

E
[
a2
i x̃

2
i

]
= σ2

a

n∑
i=1

(
ε2

3
+ x2

i

)
= σ2

a

(
nε2

3
+

n∑
i=1

x2
i

)
. (8)

Since for δ = 2, we have that

E[|aix̃i|2+δ] =

∫ ∞
−∞

∫ xi+ε

xi−ε
a2
i x̃

2
i

1

2ε

1√
2πσa

exp

(
− a2

i

2σ2
a

)
daidx̃i

=
3σ4

a

2ε

∫ xi+ε

xi−ε
x̃4
i dx̃i =

3σ4
a

10ε

[
(xi + ε)5 − (xi − ε)5

]
.

Thereafter, Lyanunov Central Limit Theorem with δ = 2 is satisfied since

lim
n→∞

1

s4
n

n∑
i=1

E
[∣∣x̃iai − E[aix̃i]

∣∣2+δ
]

= lim
n→∞

1

s4
n

n∑
i=1

E
[∣∣x̃iai∣∣4]

= lim
n→∞

3
∑n
i=1(xi + ε)5 − (xi − ε)5

10ε
(
nε2

3 +
∑n
i=1 x

2
i

)2
≤ lim
n→∞

3n
(
(xmax + ε)5 − (xmin − ε)5

)
10ε
(
nε2

3 +
∑n
i=1 x

2
i

)2 = 0

Proposition 2. For a random matrix A1 with i.i.d. Gaussian elements of zero mean and σA1 standard
deviation and a uniform random vector x̃ ∼ U [x− ε1n,x + ε1n] we have that Covariance (Ax̃) =(
ε2σ2

A1
n

3 + σ2
A1

trace
(
xx>

))
I.

Proof. The former follows from the fact that

Covariance (A1x̃ + b1) = Covariance (A1x̃) = E
[
A1x̃x̃

>A>1
]
− E [A1x̃] (E [A1x̃])

>
= E

[
A1x̃x̃

>A>1
]

= EA1

[
A1E

[
x̃x̃>

]
A>1
]

= EA1

[
A1

(
Diag

(
ε2

3

)
+ xx>

)
A>1

]
=
ε2

3
EA1

[
A1A

>
1

]
+ E

[
A1xx

>A>1
]

=
ε2

3
EA1

[
A1A

>
1

]
+ σ2

A1
trace

(
xx>

)
I =

(
ε2σ2

A1
n

3
+ σ2

A1
trace

(
xx>

))
I

The last equality follows since:(
E
[
A1xx

>A>1
])
i,j

= E
[
a>i xx

>aj
]

= trace
(
xx>E

[
aja
>
i

])
=

{
0 if i 6= j

σ2
A1

trace
(
xx>

)
if i = j

11

Under review as a conference paper at ICLR 2020

Theorem 1. (True Bounds in Expectation) Let Assumption 1 hold. We have that for large input
dimension n,

EA1,a2 [LM] ≤ EA1,a2 [Ltrue] , EA1,a2 [Utrue] ≤ EA1,a2 [UM] .

Proof.

Lapprox ≈ Ea2,ỹ

[
a>2 max (ỹ,0) + b2

]
−m

√
Vara2,x̃

[
a>2 max (ỹ,0) + b2

]
¬
= b2 −m

√
Ea2

[
Varỹ

(
a>2 max (ỹ,0) + b2|a2

)]
+ Vara2

(
Eỹ

[
a>2 max (ỹ,0) + b2|a2

])
= b2 −m

(
Ea2

[
(a>2 � a>2)

(
Eỹ

[
max2 (ỹ,0)

]
− (Eỹ [max (ỹ,0)])

2
)]

+ Vara2

(
Eỹ

[
a>2 max (ỹ,0) + b2|a2

])) 1
2

= b2 −m

([
k∑
i=1

σ2
a2

(
Eỹ

[
max2 (ỹ,0)

])
i
−

k∑
i=1

σ2
a2

(Eỹ [max (ỹ,0)])
2
i

]
+

k∑
i=1

σ2
a2

(Eỹ [max (ỹ,0)])
2
i

) 1
2

= b2 −mσa2

√√√√ k∑
i=1

(Eỹ [max2 (ỹ,0)])i

­
= b2 −mσa2

√(
b2i

1 + σ2
ỹ

)
� Φ

(
bi1 � σỹ

)
+
(
bi1 � σỹ � φ

(
bi1 � σỹ

))
︸ ︷︷ ︸

Ψ

.

Note that ¬ follows by total expectation and total variance on the two terms, respectively. Lastly,
­ follows from the closed form expression derived in Bibi et al. (2018) where Φ and φ are
the normal cumulative and probability Gaussian density functions, respectively. Note that ỹ ∼

N
(
b1,

(
ε2σ2

A1
n

3 + σ2
A1

trace
(
xx>

))
I

)
and that σ2

ỹ =

(
ε2σ2

A1
n

3 + σ2
A1

trace
(
xx>

))
.

Lapprox − EA1,a2 [LM]

≈ b2 −mσa2
Ψ− EA1,a2

[
a>2 M (A1x + b1) + b2 − ε|a>2 MA1|1

]
= EA1,a2

[
ε|a>2 MA1|1

]
−mσa2

Ψ

= εEA1

 n∑
j=1

Ea2

[
|a>2 MA1(:, j)|

∣∣A1

]−mσa2
Ψ

¬
= ε

√
2

π
EA1

 n∑
j=1

√
Vara2

(
a>2 MA1(:, j))

)−mσa2
Ψ

= εσa2

√
2

π
EA1

 n∑
j=1

√
A1(:, j)>MA1(:, j)

−mσa2
Ψ

= εσa2

√
2

π
EA1

 n∑
j=1

√√√√ k∑
i=1

A1(i, j)21
{
ui1 ≥ 0

}−mσa2
Ψ

= εσa2

√
2

π
E|S|

EA1

 n∑
j=1

√√√√ k∑
i∈S

A1(i, j)2

 |∣∣∣∣∣|S|
−mσa2

Ψ

Note that ¬ follows from the mean of a folded Gaussian. The last equality follows by taking the
total expectation where S is the set of indices where ui1 ≥ 0 for all i ∈ S. Since u1 is random, then

12

Under review as a conference paper at ICLR 2020

|S| is also random. Therefore, one can reparametrize the sum and thus we have

εσa2

√
2

π
E|S|

EA1

 n∑
j=1

√√√√ k∑
i∈S

A1(i, j)2

 |∣∣∣∣∣|S|
 =

2εσA1σa2n√
π

E|S|

Γ
(
|S|+1

2

)
Γ
(
|S|
2

)


≈ 2εσA1
σa2

n√
π

E|S|

[√
|S|
2

]

≥ 2εσA1σa2n√
π

√
k

2

The approximation follows from stirlings formula Γ(x+1/2)/Γ(x/2) ≈
√
x/2 for large x where the last

inequality follows since E
[√
|S|
]
≤ k].

Lapprox − EA1,a2
[LM] ≥ 2εσA1σa2n√

π

√
k

2︸ ︷︷ ︸
¬

−mσa2

√√√√ k∑
i=1

(
b2i

1 + σ2
ỹ

)
� Φ

(
bi1 � σỹ

)
+
(
bi1 � σỹ � φ

(
bi1 � σỹ

))
︸ ︷︷ ︸

­

Note that ¬ is O(n) while ­ is O(
√
n). Thus, for sufficiently large input dimension n we have that

Lapprox ≥ EA1,a2
[LM] and since by construction EA1,a2

[Ltrue] ≥ Lapprox which completes the proof.
Note that a symmetric argument can be applied to show that EA1,a2

[UM] ≥ EA1,a2
[Utrue].

13

Under review as a conference paper at ICLR 2020

Theorem 2. (Tighter Bounds in Expectation) Consider an `∞ bounded uniform random variable
input x̃, i.e. x̃ ∈ [x− ε1n,x + ε1n], to a block of layers in the form of Affine-ReLU-Affine (parame-
terized by A1,b1,a2 and b2 for the first and second affine layers respectively) and a2 ∼ N (0, σa2I).

Under the assumption that 1√
2π

xj1
>
kA1(:, j) + 1

2n1
>
k b1 ≥ ε

(
‖A1(:, j)‖2 − 1√

2π
‖A1(:, j)‖1

)
∀j,

we have: Ea2
[(UIBP − LIBP)− (UM − LM)] ≥ 0.

Proof. Note that

[(UIBP − LIBP)− (UM − LM)] = ε|a>2 ||A1|1n +
1

2
|a>2 ||u1| −

1

2
|a>2 ||l1|

− 2ε|
∣∣∣a>2 diag (1 {u1 ≥ 0})A1|

∣∣∣1n
Consider the coordinate splitting functions S++(.), S+−(.), S−−(.) and S−+(.) such that for x ∈ Rn
S++(x) = x� 1

{
ui1 ≥ 0, li1 ≥ 0

}
where 1

{
ui1 ≥ 0, li1 ≥ 0

}
is a vector of all zeros and 1 in the

locations where both ui1, l
i
1 ≥ 0. However, since u1 ≥ l1, then S−+(.) = 0. Therefore it is clear

that for any vector x and an interval [l1,u1], we have that

x = S++ (x) + S+− (x) + S−− (x) , (9)

since the sets {i;ui1 ≥ 0, li1 ≥ 0}, {i;ui1 ≥ 0, li1 ≤ 0} and {i;ui1 ≤ 0, li1 ≤ 0} are disjoints and
their union {i = 1, i = 2, . . . , i = k}. We will denote the difference in the interval lengths as
WIBP −WM for ease of notation. Thus, we have the following:

WIBP −WM = εS++
(
|a>2 |

)
|A1|1n + εS+− (|a>2 |) |A1|1n + εS−−

(
|a>2 |

)
|A1|1n +

1

2
S++

(
|a>2 |

)
|u1|

+
1

2
S+− (|a>2 |) |u1|+

1

2
S−−

(
|a>2 |

)
|u1| −

1

2
S++

(
|a>2 |

)
|l1| −

1

2
S+− (|a>2 |) |l1|

− 1

2
S−−

(
|a>2 |

)
|l1| − 2ε

∣∣∣∣∣ (S++
(
a>2
)

+ S+− (a>2)+ S−−
(
a>2
))

diag (1 {u1 ≥ 0})

∣∣∣∣∣1n
= 2εS++

(
|a>2 |

)
|A1|1n + S+− (|a>2 |) (A1x + b1) + εS+− (|a>2 |)A11n

− 2ε

∣∣∣∣∣ (S++
(
a>2
)

+ S+− (a>2))A1

∣∣∣∣∣1n
= 2εS++

(
|a>2 |

)
|A1|1n︸ ︷︷ ︸

¬

+S+− (|a>2 |)u1︸ ︷︷ ︸
­

− 2ε

∣∣∣∣∣ (S++
(
a>2
)

+ S+− (a>2))A1

∣∣∣∣∣1n︸ ︷︷ ︸
®

.

Note that we used the property of the coordinate splitting functions defined in Eq 9 along with the
definitions of The previous The penultimate equality follows since S++(.) and S+−(.) corresponds
to the indices that are selected by l1 and u1. The penultimate equality follows since S++ and S+−

corresponds to the indices that are selected by diag (1 {u1 ≥ 0}).

Now by taking the expectation over a2, we have for ¬ :

2εE
[
S++

(
|a>2 ||A1|

)]
1n = 2ε

k∑
i=1

E
[
|ai2|
]
|A1(i, :)|1

{
ui1 ≥ 0, li1 ≥ 0

}
1n

= 2εσa2

√
2

π

k∑
i=1

|A1(i, :)|1
{
li1 ≥ 0

}
1n

= 2εσa2

√
2

π

n∑
j=1

k∑
i=1

|A1(i, j)|1
{
li1 ≥ 0

}
The second equality follows from the mean of the folded Gaussian. and the fact that u1 ≥ l1.

14

Under review as a conference paper at ICLR 2020

For ­ , we have:

E
[
S+− (|a>2 |)u1

]
= σa2

√
2

π

k∑
i=1

ui11
{
ui1 ≥ 0, li1 ≤ 0

}
Lastly, for ® , we have:

2εE

[∣∣∣∣∣ (S++
(
a>2
)

+ S+− (a>2))A1

∣∣∣∣∣
]
1n = 2εE

∣∣∣∣∣
[

k∑
i=1

A1(i, :)ai2
(
1
{
ui1 ≥ 0

})] ∣∣∣∣∣1n

Using Holder’s inequality, i.e. E[|x|] ≤
√
E[x2], per coordinate of the vector[∑k

i=1 A1(i, :)ai2
(
1
{
ui1 ≥ 0

})]
and by binomial expansion, we have at the jth coordinate

2ε

√√√√E

[
k∑
i=1

A1(i, j)ai21
{
ui1 ≥ 0

}]2

= 2ε

(
k∑
i=1

(A1(i, j))
2 E
[(
ai2
)2]

1
{
ui1 ≥ 0

}
+ 2

∑
i=1

∑
z<i

A1(i, j)A1(z, j)E
[
ai2a

z
2

]
1
{
ui1 ≥ 0

}
1 {uz1 ≥ 0}

) 1
2

= 2ε

√√√√ k∑
i=1

(A1(i, j))
2 E
[(
ai2
)2]

1
{
ui1 ≥ 0

}
= 2εσa2

√√√√ k∑
i=1

(A(i, j))
2
1 {ui ≥ 0}

The second equality follows from by the independence of ai2 and that they have zero mean. Therefore
it follows from ® that:

2εE

[∣∣∣∣∣ (S++
(
A>2
)

+ S+− (A>2))A1

∣∣∣∣∣
]
1n ≤ 2εσa2

n∑
j=1

√√√√ k∑
i=1

(A1(i, j))
2
1 {ui ≥ 0}

Lastly, putting things together, i.e. E [¬ + ­ −®] we have that

E [WIBP −WM] ≥ 2εσa2

√
2

π

n∑
j=1

k∑
i=1

|A1(i, j)|1
{
li1 ≥ 0

}
+ σa2

√
2

π

k∑
i=1

ui11
{
ui1 ≥ 0, li1 ≤ 0

}

− 2εσa2

n∑
j=1

√√√√ k∑
i=1

A1(i, j)21
{
ui1 ≥ 0

}
.

(10)

Note that to show that the previous inequality is non-negative, it is sufficient to show that the previous
inequality is non-negative for the non-intersecting sets {i : li1 ≥ 0} and {i : ui1 ≥ 0, li1 ≤ 0}. Thus
the right hand side can be written as the sum of two sets.

For the set {i : li1 ≥ 0}, the RHS of inequality 10 reduces to

2εσa2

n∑
j=1

(√
2

π
‖A1(:, j)‖1 − ‖A1(:, j)‖2

)
. (11)

For the set {i : ui1 ≥ 0, li1 ≤ 0} and using the definition of u1, the RHS of inequality 10 reduces to

15

Under review as a conference paper at ICLR 2020

σa2

√
2

π

k∑
i=1

 n∑
j=1

A1(i, j)xj + bi + ε

n∑
j=1

|A1(i, j)|

− 2εσa2

n∑
j=1

‖A1(:, j)‖2

= σa2

√
2

π

n∑
j=1

(
xj1

>
kA1(:, j) +

1

n
1>k b + ε‖A1(:, j)‖1

)
− 2εσa2

n∑
j

‖A1(:, j)‖2

=

n∑
j=1

(
σa2

√
2

π

(
xj1

>
kA1(:, j) +

1

n
1>k b + ε‖A1(:, j)‖1

)
− 2εσa2

‖A1(:, j)‖2

)
(12)

Note that given the assumption in the Theorem where 1√
2π

xj1
>
kA1(:, j) + 1

2n1
>
k b ≥ 0 ≥

ε
(
‖A1(:, j)‖2 − 1√

2π
‖A1(:, j)‖1

)
∀j, then if both Eq 11 and Eq 12 are non-negative complet-

ing the proof.

Lemma 1. For x ∈ Rk ∼ N (0, I), where k ≥ 5 we have that E
[

3√
2π
‖x‖1 − 2‖x‖2

]
≥ 0.

Proof. Note that by the mean of a folded Gaussian, we gave that E [‖x‖1] =
∑k
i E [|xi|] = k

√
2
π .

Moreover, note that

E [‖x‖2] = E


√√√√ k∑

i

x2
i

 = E [
√
y] =

1

2
k
2−1Γ(k2)

∫ ∞
0

xk exp

(
−x

2

2

)
dx =

2
k−1
2 Γ

(
k+1

2

)
2

k
2−1Γ(k2)

=
√

2
Γ
(
k+1

2

)
Γ(k2)

∼
√
k.

Note that y is Chi-Square random variable and that f√y(x) = 2xfy(x2) = xk−1

2
k
2
−1Γ(k

2)
exp

(
−x

2

2

)
where the third inequality follows by integrating by parts recursively. Lastly, the last approximation
follows by stirling’s approximation for large k.

Proposition 3. For a random matrix A1 ∈ Rk×n with i.i.d elements such A1(i, j) ∼ N (0, 1), then

EA1

(
‖A1(:, j)‖2 −

1√
2π
‖A1(:, j)‖1

)
=
√

2
Γ
(
k+1

2

)
Γ
(
k
2

) − k√ 2

π
≈
√
k

(
1−

√
2

π

√
k

)
.

Proof. The proof follows immediately from Lemma 1.

16

Under review as a conference paper at ICLR 2020

A MORE QUALITATIVE RESULTS OF THE NEW BOUNDS

We conduct several more experiments to showcase the tightness of our proposed bounds to the
true bounds and compared them against propagating the bounds layerwise [lDM,uDM] for random
n− 100− 100− 100− 100− 2 networks initialized with N (0, 1/

√
n) similar to Kolter & Wong

(2017). We show our bounds compared to the polytobe estimated from MonteCarlo sampling on
results for n ∈ {2, 10, 20} and ε ∈ {0.05, 0.1, 0.25}. The layer wise bound propagation is shown in
the tables as the bounds were too loose to be presented visually.

Figure 7: Each row represents 5 different randomly initialized networks for a given ε with n = 2.
Note that the proposed bounds are far from being true this is as predicted by Theorem 1 for small n.

ε, Figure Number l1DM u1
DM l2DM u2

DM

ε = 0.05, Figure Number = 1 -10.1261 19.0773 -18.1500 13.3573
ε = 0.05, Figure Number = 2 -12.2529 14.3428 -14.4295 12.3479
ε = 0.05, Figure Number = 3 -12.6594 14.1837 -12.5873 12.2612
ε = 0.05, Figure Number = 4 -17.7825 16.4048 -15.3843 15.1688
ε = 0.05, Figure Number = 5 -12.5260 11.1149 -8.9242 12.7539

ε = 0.1, Figure Number = 1 -27.4598 23.6603 -17.9481 23.4817
ε = 0.1, Figure Number = 2 -23.2877 34.0542 -28.1535 21.8703
ε = 0.1, Figure Number = 3 -35.2950 36.4901 -31.7465 36.0421
ε = 0.1, Figure Number = 4 -31.7154 29.3062 -30.3900 35.7105
ε = 0.1, Figure Number = 5 -25.0870 39.4373 -24.5087 32.5493

ε = 0.25, Figure Number = 1 -54.0557 56.2884 -52.5686 73.9621
ε = 0.25, Figure Number = 2 -59.2115 82.8742 -75.7999 65.6898
ε = 0.25, Figure Number = 3 -50.1142 56.2330 -72.4221 54.4631
ε = 0.25, Figure Number = 4 -52.6030 83.3950 -92.8100 69.1401
ε = 0.25, Figure Number = 5 -89.1335 43.4685 -74.4519 91.5137

Table 2: Shows the interval bounds obtained by propagating ε ∈ {0.05, 0.1, 0.25} with n = 2 and
denoted as l1DM, u1

DM for the first output function of the 2-dimensional output network (shown along
the x-axis in the previous figure) while l2DM and u2

DM is for the other function (shown along the y-axis
in the previous figure).

17

Under review as a conference paper at ICLR 2020

Figure 8: Each row represents 5 different randomly initialized networks for a given ε with n = 10.
Note how the bounds are more likely now to enclose the true output region for all given ε compared
to previous case where n = 2.

ε, Figure Number l1DM u1
DM l2DM u2

DM

ε = 0.05, Figure Number = 1 -16.9716 24.9259 -21.2584 20.6358
ε = 0.05, Figure Number = 2 -42.6267 48.1786 -38.6958 37.7851
ε = 0.05, Figure Number = 3 -41.4147 36.4056 -42.0363 36.6605
ε = 0.05, Figure Number = 4 -32.1013 25.1485 -37.7864 33.3652
ε = 0.05, Figure Number = 5 -45.4368 32.9774 -44.8946 38.6805

ε = 0.1, Figure Number = 1 -48.1221 86.6800 -54.3059 71.2724
ε = 0.1, Figure Number = 2 -51.2668 46.1237 -38.8089 33.6512
ε = 0.1, Figure Number = 3 -51.3915 52.4437 -52.7149 49.1031
ε = 0.1, Figure Number = 4 -71.7738 54.4836 -91.0335 37.0950
ε = 0.1, Figure Number = 5 -48.1744 33.2927 -40.9540 47.2282

ε = 0.25, Figure Number = 1 -152.7639 192.4156 -188.4030 148.2482
ε = 0.25, Figure Number = 2 -196.8923 195.4355 -163.2691 177.3766
ε = 0.25, Figure Number = 3 -141.6800 207.5414 -207.9396 190.2823
ε = 0.25, Figure Number = 4 -200.7513 156.2560 -227.6427 182.0180
ε = 0.25, Figure Number = 5 -153.3898 164.8314 -147.8662 137.4380

Table 3: Shows the interval bounds obtained by propagating ε ∈ {0.05, 0.1, 0.25} with n = 10 and
denoted as l1DM, u1

DM for the first output function of the 2-dimensional output network (shown along
the x-axis in the previous figure) while l2DM and u2

DM is for the other function (shown along the y-axis
in the previous figure).

18

Under review as a conference paper at ICLR 2020

Figure 9: Each row represents 5 different randomly initialized networks for a given ε with n = 20.
The bounds almost always enclose the polytope computed from Monte-Carlo compared to n = 2, 10.

ε, Figure Number l1DM u1
DM l2DM u2

DM

ε = 0.05, Figure Number = 1 -43.6689 32.8572 -47.7856 36.9842
ε = 0.05, Figure Number = 2 -53.2447 47.1651 -46.5306 53.1638
ε = 0.05, Figure Number = 3 -59.1694 42.6647 -43.4659 57.2781
ε = 0.05, Figure Number = 4 -39.8479 42.4197 -42.1962 39.7649
ε = 0.05, Figure Number = 5 -54.3150 42.8637 -44.5742 43.8117

ε = 0.1, Figure Number = 1 -83.5804 81.9034 -97.5203 98.8713
ε = 0.1, Figure Number = 2 -64.8464 76.8083 -84.9223 83.9505
ε = 0.1, Figure Number = 3 -70.5862 92.6652 -88.6098 71.8915
ε = 0.1, Figure Number = 4 -78.0557 151.4360 -106.073 123.3686
ε = 0.1, Figure Number = 5 -91.8368 97.3438 -103.2845 76.6581

ε = 0.25, Figure Number = 1 -188.7623 256.2275 -211.3972 255.5101
ε = 0.25, Figure Number = 2 -219.5642 274.5287 -217.7622 349.4256
ε = 0.25, Figure Number = 3 -214.7457 160.7498 -186.5554 184.1767
ε = 0.25, Figure Number = 4 -188.7623 256.2275 -211.3972 255.5101
ε = 0.25, Figure Number = 5 -276.9137 177.7929 -202.2031 245.8731

Table 4: Shows the interval bounds obtained by propagating ε ∈ {0.05, 0.1, 0.25} with n = 20 and
denoted as l1DM, u1

DM for the first output function of the 2-dimensional output network (shown along
the x-axis in the previous figure) while l2DM and u2

DM is for the other function (shown along the y-axis
in the previous figure).

19

Under review as a conference paper at ICLR 2020

B EXPERIMENTAL SETUP FOR TRAINING DNNS

small medium large

CONV 16× 4× 4 + 2 CONV 32× 3× 3 + 1 CONV 64× 3× 3 + 1

CONV 32× 4× 4 + 1 CONV 32× 4× 4 + 2 CONV 64× 3× 3 + 1

FC 100 CONV 64× 3× 3 + 1 CONV 128× 3× 3 + 2

CONV 64× 4× 4 + 2 CONV 128× 3× 3 + 1

FC 512 CONV 128× 3× 3 + 1

FC 512 FC 200

Table 5: Architectures for the three models trained on MNIST and CIFAR10. "CONV p×w×h+s",
correspond to p 2D convolutional filters with size (w × h) and strides of s. While "FC d" is a fully
connected layer with d outputs. Note that the last fully connected layer is omitted.

20

Under review as a conference paper at ICLR 2020

C PGD ROBUSTNESS ON SPECIFIC INPUT BOUNDS ON MNIST

Figure 10: Compares PGD (εtest = 0.1) and test accuracy of our models against IBP on MNIST.

Figure 11: Compares PGD (εtest = 0.2) and test accuracy of our models against IBP on MNIST.

Figure 12: Compares PGD (εtest = 0.3) and test accuracy of our models against IBP on MNIST.

Figure 13: Compares PGD (εtest = 0.4) and test accuracy of our models against IBP on MNIST.

21

Under review as a conference paper at ICLR 2020

D PGD ROBUSTNESS ON SPECIFIC INPUT BOUNDS ON CIFAR10

Figure 14: Compares PGD (εtest = 2/255) and test accuracy of our models against IBP on CIFAR10.

Figure 15: Compares PGD (εtest = 8/255) and test accuracy of our models against IBP on CIFAR10.

Figure 16: Compares PGD (εtest = 16/255) and test accuracy of our models against IBP on CIFAR10.

Figure 17: Compares PGD (εtest = 0.1) and test accuracy of our models against IBP on CIFAR10.

22

	Introduction
	Related Work
	Expected Tight Interval Bounds
	Interval Bounds for a Single Affine Layer
	Proposed Interval Bounds for an Affine-ReLU-Affine Block
	Extending Our Expected Tight Bounds to Deeper Networks

	Experiments
	Conclusion
	More Qualitative Results of the New Bounds
	Experimental Setup for Training DNNs
	PGD Robustness on Specific Input Bounds on MNIST
	PGD Robustness on Specific Input Bounds on CIFAR10

