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ABSTRACT

We propose a black-box algorithm called Adversarial Variational Inference and
Learning (AdVIL) to perform inference and learning in a general Markov random
field (MRF). AdVIL employs two variational distributions to approximately infer
the latent variables and estimate the partition function of an MRF, respectively.
The two variational distributions provide an estimate of the negative log-likelihood
of the MRF as a minimax optimization problem, which is solved by stochastic
gradient descent. AdVIL is proven convergent under certain conditions. On one
hand, compared with contrastive divergence, AdVIL requires minimal assumptions
about the model structure and can deal with a broader family of MRFs. On the
other hand, compared with existing black-box methods, AdVIL provides a tighter
estimate of the log partition function and achieves much better empirical results.

1 INTRODUCTION

Undirected graphical models, i.e. Markov random fields (MRFs), find applications in a variety of
machine learning areas, including image segmentation (Krähenbühl & Koltun, 2011), generative
modelling (Salakhutdinov & Larochelle, 2010) and sequential labelling (Lafferty et al., 2001).
However, the inference and learning of general MRFs are challenging due to the presence of loopy
structures and a global normalizing factor, i.e. partition function, especially when latent variables
are present. Extensive efforts have been devoted to developing approximate methods. On one hand,
sample-based methods (Neal, 1993) and variational approaches (Jordan et al., 1999; Welling & Sutton,
2005; Salakhutdinov & Larochelle, 2010) are proposed to infer the latent variables. On the other
hand, extensive work (Meng & Wong, 1996; Neal, 2001; Hinton, 2002; Tieleman, 2008; Wainwright
et al., 2005; Wainwright & Jordan, 2006) has been done to estimate the partition function. Among
these methods, contrastive divergence (Hinton, 2002) is proven effective in certain types of models.

Most of the existing methods highly depend on the model structure and require model-specific analysis
in new applications, which makes it important to develop black-box inference and learning methods.
Previous work (Ranganath et al., 2014; Schulman et al., 2015) shows the ability to automatically infer
the latent variables and obtain gradient estimate in directed models. However, there is no black-box
learning method for undirected models except the recent work of NVIL (Kuleshov & Ermon, 2017).

NVIL introduces a variational distribution and derives an upper bound of the partition function in a
general MRF, in the same spirit as amortized inference (Kingma & Welling, 2013; Rezende et al.,
2014; Mnih & Gregor, 2014) for directed models. NVIL has several advantages over existing methods,
including the ability of black-box learning, tracking the partition function during training and getting
approximate samples efficiently during testing. However, NVIL also comes with two disadvantages:
(1) it leaves the inference problem of MRFs unsolved1 and only trains simple MRFs with tractable
posteriors, and (2) the upper bound of the partition function can be underestimated (Kuleshov &
Ermon, 2017), resulting in sub-optimal solutions on high-dimensional data.

We propose Adversarial Variational Inference and Learning (AdVIL) to relieve some headache of
learning an MRF model. AdVIL is a black-box inference and learning method that partly solves the
two problems of NVIL and retains the advantages of NVIL at the same time. First, AdVIL introduces
a variational encoder to infer the latent variables, which provides an upper bound of the free energy.

1NVIL (Kuleshov & Ermon, 2017) presents a hybrid model. The inference in the title refers to directed part
but not for an MRF.
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Second, AdVIL introduces a variational decoder for the MRF, which provides a lower bound of
the log partition function. The two variational distributions provide an estimate of the negative
log-likelihood of the MRF. On one hand, the estimate is in an intuitive form of an approximate
contrastive free energy, which is expressed in terms of the expected energy and the (conditional)
entropy of the corresponding variational distribution. On the other hand, similar to GAN (Goodfellow
et al., 2014), the estimate is a minimax optimization problem, which is solved by stochastic gradient
descent (SGD) in an alternating manner. Theoretically, our algorithm is convergent if the variational
encoder approximates the model well. This motivates us to introduce an auxiliary variable to enhance
the flexibility of the variational decoder, whose entropy is approximated by the third variational trick.

We evaluate AdVIL in various classical undirected generative models, including restricted Boltz-
mann machines (RBM) (Ackley et al., 1985), deep Boltzmann machines (DBM) (Salakhutdinov &
Hinton, 2009), and Gaussian restricted Boltzmann machines (GRBM) (Hinton & Salakhutdinov,
2006), on several real datasets. We empirically demonstrate that (1) compared with the black-box
NVIL (Kuleshov & Ermon, 2017) method, AdVIL provides a tighter estimate of the log partition
function and hence achieves much better log-likelihood results; and (2) compared with the standard
contrastive divergence based methods (Hinton, 2002; Welling & Hinton, 2002; Welling & Sutton,
2005), AdVIL can deal with a broader family of MRFs without model-specific analysis and obtain
better results when the model structure gets complex as in DBM.

2 BACKGROUND

We consider a general case where the model consists of both visible variables v and latent variables
h. An MRF defines the joint distribution over v and h as P (v, h) = e−E(v,h)

Z , where E denotes the
associated energy function that assigns a scalar value for a given configuration of (v, h) and Z is the
partition function such that Z =

∫
v,h

e−E(v,h)dvdh.

Let PD(v) denote the empirical distribution of the training data. Minimizing the negative log-
likelihood (NLL) of an MRF is a commonly chosen learning criterion and it is given by:

L(θ) :=− EPD(v)

[
log

∫
h

e−E(v,h)

Z
dh

]
, (1)

where θ denotes the trainable parameters in E . Further, the gradient of θ is:
∇θL(θ) = EPD(v) [∇θF(v)]− EP (v) [∇θF(v)] , (2)

where F(v) = − log
∫
h
e−E(v,h)dh denotes the free energy and the gradient in Eqn. (2) is the

difference of the free energy in two phases. In the first positive phase, the expectation of the free
energy under the data distribution is decreased. In the second negative phase, the expectation of the
free energy under the model distribution is increased.

Unfortunately, both the NLL in Eqn. (1) and its gradient in Eqn. (2) are intractable in general for two
reasons. First, the integral of the latent variables in Eqn. (1) or equivalently the computation of the
free energy in Eqn. (2) is intractable. Second, the computation of the partition function in Eqn. (1) or
equivalently the negative phase in Eqn. (2) is intractable.

Variational inference. Extensive work introduces deterministic approximations for the intractability
of inference, including the mean-field approximation (Welling & Hinton, 2002; Salakhutdinov &
Hinton, 2009), the Kikuchi and Bethe approximations (Welling & Sutton, 2005) and the recognition
model approach (Salakhutdinov & Larochelle, 2010). In this line of work, the intractability of the
partition function is addressed using Monte Carlo based methods.

Contrastive free energy. Contrastive divergence (CD) (Hinton, 2002) addresses the intractability of
the partition function by approximating the negative phase in Eqn. (2) as follows:

∇θL(θ) = EPD(v) [∇θF(v)]− EPCD(v) [∇θF(v)] , (3)

where PCD(v) denotes the empirical distribution obtained by starting from a data point and running
several steps of Gibbs sampling according to the model distribution and the free energy F(v) is
assumed to be tractable. Existing methods (Welling & Hinton, 2002; Welling & Sutton, 2005)
approximate F(v) using certain function G(v) and the gradient of θ is:

∇θL(θ) ≈ EPD(v) [∇θG(v)]− EPCD(v) [∇θG(v)] . (4)
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Figure 1: Illustration of the models involved in AdVIL. From left to right: variational encoderQ(h|v),
MRF P (v, h), variational decoder q(v, h) with a simple prior and q(v, h) with an expressive prior.

Although these generalized methods exist, it is nontrivial to extend CD-based methods to general
MRFs because the Gibbs sampling procedure is highly dependent on the model structure.

Black-box learning. The recent work of NVIL (Kuleshov & Ermon, 2017) addresses the intractability
of the partition function in a black-box manner via a variational upper bound of the partition function:

Eq(v)

[
P̃ (v)2

q(v)2

]
≥ Z2, (5)

where P̃ (v) = e−F(v) is the unnormalized marginal distribution on v and q(v) is a neural variational
distribution. As a black-box learning method, NVIL potentially allows application to broader model
families and improves the capabilities of probabilistic programming systems (Carpenter et al., 2017).
Though promising, NVIL leaves the intractability of inference in an MRF unsolved, and the bound in
Eqn. (5) is of high variance and is easily underestimated (Kuleshov & Ermon, 2017).

3 METHOD

As stated above, the black-box inference and learning of MRFs are still largely open. In this paper,
we make a step towards solving the problems by a new variational approach. For simplicity, we focus
on the resulting objective function in this section. See Appendix A for detailed derivation.

3.1 ADVERSARIAL VARIATIONAL INFERENCE AND LEARNING

First, we rewrite the NLL of the MRF (See an illustration in Fig. 1) as follows:

L(θ) = −EPD(v) [−F(v)] + logZ, (6)

where the negative free energy and the log partition function are in the form of a logarithm of an
integral. Naturally, we can apply the variational trick (Jordan et al., 1999) twice and approximate the
two terms individually. Due to the presence of the minus before the first term in Eqn. (6), the two
variational tricks bound the two parts of the NLL in the opposite directions, detailed as below.

Formally, on one hand, we introduce an approximate posterior for the latent variables Q(h|v),
which is parameterized as a neural variational encoder (See an illustration in Fig. 1), to address the
intractability of inference as follows:

L(θ) ≤ EPD(v)Q(h|v) [E(v, h) + logQ(h|v)] + logZ := L1(θ, φ), (7)

where φ denotes the trainable parameters in Q(h|v). The upper bound is derived via applying the
Jensen inequality and the equality holds if and only if Q(h|v) = P (h|v) for all v. In the bound, the
first term is the expected energy, which encourages Q(h|v) to infer latent variables that have low
values of the energy function E(v, h), or equivalently high probabilities of P (v, h). The second term
corresponds to the negative conditional entropy of Q(h|v), which increases the uncertainty of Q(h|v).
In the paper, we denote the conditional entropy of Q(h|v) asH(Q) := −EPD(v)Q(h|v)[logQ(h|v)].

On the other hand, we introduce an approximate sampler q(v, h), which is parameterized by a neural
variational decoder (See Fig. 1), to address the intractability of the partition function as follows:

L1(θ, φ)≥EPD(v)Q(h|v)

energy term︷ ︸︸ ︷
E(v, h) +

entropy term︷ ︸︸ ︷
logQ(h|v)︸ ︷︷ ︸

Positive Phase

−Eq(v,h)
energy term︷ ︸︸ ︷
E(v, h) +

entropy term︷ ︸︸ ︷
log q(v, h)︸ ︷︷ ︸

Negative Phase

:= L2(θ, φ, ψ), (8)

where ψ denotes the trainable parameters in q(v, h). The lower bound is derived via applying the
Jensen inequality as well, and the equality holds if and only if q(v, h) = P (v, h). It can be seen that
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the lower bound given by q(v, h) consists of the entropy (denoted asH(q)) and energy terms, which
is similar to the upper bound in Eqn. (7), and the overall objective is in the form of approximate
contrastive free energy (Hinton, 2002; Welling & Sutton, 2005). Because the double variational trick
bounds the NLL in opposite directions as above, we have a minimax optimization problem:

min
θ

min
φ

max
ψ
L2(θ, φ, ψ). (9)

The minimax formulation has been investigated in GAN (Goodfellow et al., 2014), which defines an
adversarial game between a generator and a discriminator to train implicit directed models. Therefore,
we name our framework adversarial variational inference and learning (AdVIL).

Note that L2(θ, φ, ψ) is neither an upper bound, nor a lower bound of L(θ) due to the double
variational trick. However, we argue that solving the optimization problem in Eqn. (9) is reasonable
because (1) it is equivalent to optimizing L(θ) under the nonparametric assumption, which is similar
to GAN (Goodfellow et al., 2014); and (2) it converges to a stationary point of L1(θ, φ), which is an
upper bound of L(θ), under a weaker assumption, as stated in the following theoretical analysis.

3.2 THEORETICAL ANALYSIS OF ADVIL

In this section, we present our main convergence theorem. See Appendix C for complementary
analysis and all proofs. To establish our convergence theorem, we first prove that the angle between
∂L2(θ,φ,ψ)

∂θ and ∂L1(θ,φ)
∂θ is positive if q(v, h) approximates P (v, h) well, as stated in Lemma 1.

Lemma 1. For any (θ, φ), there exists a symmetric positive definite matrix H such that ∂L2(θ,φ,ψ)
∂θ =

H ∂L1(θ,φ)
∂θ under the assumption: ||

∑
v,h δ(v, h)

∂E(v,h)
∂θ ||2 < ||∂L1(θ,φ)

∂θ ||2 if ||∂L1(θ,φ)
∂θ ||2 > 0 and

||
∑
v,h δ(v, h)

∂E(v,h)
∂θ ||2 = 0 if ||∂L1(θ,φ)

∂θ ||2 = 0, where δ(v, h) = q(v, h)− P (v, h).

Based on Lemma 1 and other commonly used assumptions in the analysis of stochastic optimiza-
tion (Bottou et al., 2018), AdVIL converges to a stationary point of L1(θ, φ), as stated in Theorem 1.
Theorem 1. Solving the optimization problem in Eqn. (9) using stochastic gradient descent, then
(θ, φ) converges to a stationary point of L1(θ, φ) under the following assumptions.

1. L2(θ, φ, ψ) is twice differentiable with respect to θ, φ and ψ.

2. The gradients of L2(θ, φ, ψ) with respect to θ, φ and ψ are Lipschitz.

3. The errors of the stochastic gradients are bounded (Bottou et al., 2018).

4. The stepsize satisfies the diminishing condition (Bottou et al., 2018).

5. The condition of Lemma 1 holds in each step.

Theorem 1 is build upon the analysis of general stochastic optimization (Bottou et al., 2018). See
Appendix C.2 for more details. Note that Assumption 5 is much weaker than the nonparametric
assumption used in GAN (Goodfellow et al., 2014) because it does not require q(v, h) = P (v, h) in
each step. Theorem 1 also provides insights for implementation of AdVIL. Indeed, Assumption 5
motivates us to use a sufficiently powerful q(v, h) with neural networks and auxiliary variables, and
update q(v, h) multiple times per update of P (v, h), as detailed in Sec. 3.3 and Sec. 5.1 respectively.

3.3 SPECIFYING THE VARIATIONAL DISTRIBUTIONS

To efficiently get samples, both variational distributions are directed models. We use a directed neural
network that maps v to h as the variational encoder Q(h|v) (Kingma & Welling, 2013).

As for the variational decoder, we first factorize it as the product of a prior over h and a conditional
distribution, namely q(v, h) = q(v|h)q(h). It is nontrivial to specify the prior q(h) because the
marginal distribution of h in the MRF, i.e. P (h), can be correlated across different dimensions.
Consequently, a simple q(h) is not flexible enough to track P (h) and can violate the condition of
Lemma 1. To this end, we introduce an auxiliary variable z, which can be discrete or continuous,
on top of h and define q(v, h) =

∫
z
q(z)q(h|z)q(v|h)dz.2 (See an illustration in Fig. 1.) However,

2An alternative way is to use an autoregressive model as q(h). See results and analysis in Appendix E.3.
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the entropy term of q(v, h) is intractable because we need to integrate out the auxiliary variable z.
Therefore, we introduce the third variational distribution r(z|h) to approximate the entropy of q(v, h).
As in Eqn. (7), applying the standard variational trick gives an upper bound:

−Eq(v,h) log q(v, h) ≤ −Eq(v,h) log q(v|h)− Eq(h)r(z|h) log
[
q(h, z)

r(z|h)

]
, (10)

which is unsatisfactory because the estimate is minimized with respect to r(z|h) while maximized
with respect to q(v, h). Instead, after some transformations (See details in Appendix A) we get a
lower bound as follows:

−Eq(v,h) log q(v, h) ≥ −Eq(v,h) log q(v|h)− Eq(h,z) log
[
q(h, z)

r(z|h)

]
. (11)

The equality holds if and only if r(z|h) = q(z|h) for all h. The difference between the two bounds
is subtle: the last expectation in Eqn. (10) is over q(h)r(z|h) but that in Eqn. (11) is over q(h, z).
Here, a lower bound is preferable because the estimate is maximized with respect to both r(z|h) and
q(v, h) and we can train them simultaneously. For simplicity, we absorb the trainable parameters of
r(z|h) into ψ. Note that after introducing z and r(z|h), we can still obtain a convergence theorem of
AdVIL under the conditions that r(z|h) approximates q(z|h) well and q(v, h) =

∫
q(v, h, z)dz is

sufficiently close to P (v, h) in every step, together with Assumption 1 to Assumption 4 in Theorem 1.

Following GAN (Goodfellow et al., 2014), we optimize θ, φ and ψ jointly using stochastic gradient
descent (SGD) in an alternating manner. The partial derivatives of φ and ψ are estimated via the
reparameterization trick (Kingma & Welling, 2013) for the continuous variables and the Gumbel-
Softmax trick (Jang et al., 2016; Maddison et al., 2016) for the discrete variables. See Algorithm 1 in
Appendix B for the whole training procedure. Note that ψ is updated K1 > 1 times per update of θ.

4 RELATED WORK

In the context of black-box learning in MRFs, AdVIL competes directly with NVIL (Kuleshov &
Ermon, 2017). It seems that the upper bound in Eqn. (5) is suitable for optimization because P and q
share the same training direction. However, the bound holds only if the support of P̃ is a subset of
the support of q. Further, the Monte Carlo estimate of the upper bound is of high variance. Therefore,
the bound of NVIL can be easily underestimated, which results in sub-optimal solutions (Kuleshov &
Ermon, 2017). In contrast, though AdVIL arrives at a minimax optimization problem, the estimate
of Eqn. (8) is tighter and of lower variance. We empirically verify this argument (See Fig. 3) and
systematically compare the two methods (See Tab. 1) in Sec.5.4.

As shown in Eqn. (8), AdVIL is closely related to contrastive divergence (CD) based algorithms (Hin-
ton, 2002; Welling & Sutton, 2005). Further, the partial derivative of θ in AdVIL is as follows:

∂L2(θ, φ, ψ)

∂θ
= EPD(v)Q(h|v)

[
∂

∂θ
E(v, h)

]
− Eq(v,h)

[
∂

∂θ
E(v, h)

]
, (12)

which also involves a positive phase and a negative phase naturally and is quite similar to Eqn. (3).
However, notably, the two phases average over the (v, h) pairs and only require the knowledge of the
energy function without any further assumption of the model in AdVIL. Therefore, AdVIL is more
suitable to general MRFs than CD (See empirical evidence in Sec. 5.3).

Apart from the work on approximate inference and learning in MRFs as mentioned above, AdVIL
is also related to some directed generative models. Kim & Bengio (2016) jointly trains a deep
energy model (Ngiam et al., 2011) and a directed generative model by minimizing the KL-divergence
between them. Similar ideas have been highlighted in (Finn et al., 2016; Zhai et al., 2016; Dai et al.,
2017; Liu & Wang, 2017). In comparison, generally, AdVIL obtains the objective function in a
unified perspective on the black-box inference and learning in general MRFs. Note that dealing with
latent variables in MRFs is nontrivial (Kim & Bengio, 2016) and therefore existing work focuses on
fully observable models. AdVIL uses a sophisticated decoder with auxiliary variables to handle the
latent variables and derives a principled variational approximation of the entropy term instead of the
heuristics (Kim & Bengio, 2016; Zhai et al., 2016).

Adversarially learned inference (ALI) (Donahue et al., 2016; Dumoulin et al., 2016) is formulated
as a similar minimax optimization problem as AdVIL. However, AdVIL involves extra entropy-
based regularization and has a different update rule for the variational distributions compared to
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Figure 2: Results of AdVIL on the binary digits dataset. (a-c) compare the value of the variational
approximations and the corresponding ground truths. All bounds are rather tight after 5,000 iterations.
(d) shows that the RBM loss tends to zero and the model converges gradually.

Table 1: Anneal importance sampling (AIS) results in RBM. The results are recorded on the test
set according to the best validation performance and averaged over three runs. AdVIL outperforms
NVIL consistently and significantly. See the standard deviations in Appendix E.4.

Method Digits Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1

NVIL-mean −27.36 −20.05 −24.71 −97.71 −29.28 −290.01 −47.56 −50.47
AdVIL-mean −26.34 −19.29 −21.95 −97.59 −19.59 −276.42 −45.64 −50.22

ALI. Further, the MRF in AdVIL itself can produce new samples as a generative model while the
discriminator in ALI cannot do the same thing.

5 EXPERIMENTS

In this section, we evaluate AdVIL in restricted Boltzmann machines (RBM) (Ackley et al., 1985),
deep Boltzmann machines (DBM) (Salakhutdinov & Hinton, 2009) and Gaussian restricted Boltz-
mann machines (GRBM) (Hinton & Salakhutdinov, 2006) on the Digits dataset, the UCI binary
databases (Dheeru & Karra, 2017) and the Frey faces datasets (See detailed settings in Appendix D
and the source code3). We compare AdVIL with strong baseline methods systematically and show
the promise of AdVIL to learn a broad family of models effectively as a black-box method.

5.1 EMPIRICAL ANALYSIS OF ADVIL

We present a detailed analysis of AdVIL in RBM, whose energy function is defined as E(v, h) =
−b>v−v>Wh−c>h. The conditional distributions of an RBM are tractable, but we still treat P (h|v)
as unknown and train AdVIL in a fully black-box manner. The analysis is performed on the Digits
dataset and we augment the data of five times by shifting the digits following the protocol in (Kuleshov
& Ermon, 2017). The dimensions of v, h and z are 64, 15 and 10, respectively. Therefore, the log
partition function of the RBM and the entropy of the decoder can be computed by brute force.

Firstly, we empirically validate AdVIL in Fig. 2. Specifically, Panel (a) shows that the variational
encoder Q(h|v) provides a tight upper bound of the free energy after 2,000 iterations. Panel (b)
demonstrates that the variational distribution r(z|h) estimate the entropy of q(v, h) accurately. Panel
(c) shows that q(v, h) can successfully track the log partition function after 5,000 iterations. Panel
(d) presents that the RBM loss balances well between the negative phase and positive phase, and the
model converges gradually. See Appendix E.1 for an empirical test of Assumption 5 in Theorem 1.

Secondly, we empirically show that both P and q can generate data samples in Appendix E.2.

Lastly, we analyze the sensitivity of K1. Theoretically, enlarging K1 will make q(v, h) and P (v, h)
to be close and then help the convergence according to Theorem 1. As shown in Fig. 3 (a), a larger
K1 at least won’t hurt the convergence, which agrees with Theorem 1. Though K1 = 15 is sufficient
on the Digits dataset, we use K1 = 100 as a default setting for AdVIL on larger datasets.

3See the source code in https://anonymous.4open.science/r/8c779fbc-6394-40c7-8273-e52504814703/.
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Figure 3: (a) Sensitivity analysis of K1 on the Digits dataset. (b-d) Learning curves of NVIL, AdVIL
and PCD on the Mushrooms dataset. Compared with NVIL, AdVIL provides a tighter and lower
variance estimate of logZ and achieves better performance. Compared with PCD, AdVIL can track
the log partition function and achieve comparable results though trained in a black-box manner.

Table 2: AIS results in DBM. The results are recorded according to the best validation performance
and averaged by three runs. AdVIL achieves higher averaged AIS results on five out of eight datasets
and has a better overall performance than VCD. See the standard deviations in Appendix E.4.

Method Digits Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1

VCD-mean −28.49 −22.26 −26.79 −97.59 −23.15 −356.26 −45.77 −50.83
AdVIL-mean −27.89 −20.29 −26.34 −99.40 −21.21 −287.15 −48.38 −51.02

5.2 RBM RESULTS

To the best of our knowledge, NVIL (Kuleshov & Ermon, 2017) is the only existing black-box
learning method for MRFs and hence it is the most direct competitor of AdVIL. In this section, we
provide a systematic comparison and analysis of these two methods in terms of the log-likelihood
results on the UCI databases (Dheeru & Karra, 2017).

For a fair comparison, we use the widely-adopted and accurate anneal importance sampling
(AIS) (Salakhutdinov & Murray, 2008) metric for quantitative evaluation. Besides, we carefully per-
form grid search over the default settings of NVIL (Kuleshov & Ermon, 2017) and our settings based
on their code, and choose the best configuration including K1 = 100 (See details in Appendix D).
We directly compare with the best version of NVIL in Tab. 1. It can be seen that AdVIL consistently
outperforms NVIL on all datasets, which demonstrate the effectiveness of AdVIL. Besides, the time
complexity of AdVIL is comparable to that of NVIL with the same hyperparameters.

We compare the learning curves of NVIL and AdVIL on the Mushroom dataset. As shown in Fig. 3
(b), the upper bound of NVIL is underestimated after 4,000 iterations and then the model can get
worse or even diverge. In contrast, as shown in Fig. 3 (c), the lower bound of AdVIL is consistently
valid. Besides, the estimate of NVIL is looser and of higher variance than that of AdVIL. The results
agree with our analysis in Sec. 4 and explain why AdVIL significantly outperforms NVIL. Further,
as shown in Fig. 3 (d), AdVIL is comparable to persistent contrastive divergence (PCD) (Tieleman,
2008), which leverages the tractability of the conditional distributions in an RBM.

5.3 DBM RESULTS

We would like to demonstrate that AdVIL has the ability to deal with highly intractable models such
as a DBM conveniently and effectively, compared with standard CD-based methods (Hinton, 2002;
Welling & Hinton, 2002; Welling & Sutton, 2005) and NVIL (Kuleshov & Ermon, 2017).

DBM (Salakhutdinov & Hinton, 2009) is a powerful family of deep models that stack multiple
RBMs together. The energy function of a two-layer DBM is defined as E(v, h1, h2) = −b>v −
v>W1h1 − c>1 h1 − h>1 W2h2 − c>2 h2. Learning a DBM is challenging because P (h1, h2|v) is not
tractable and CD (Hinton, 2002) is not applicable. Inspired by (Welling & Hinton, 2002; Welling
& Sutton, 2005), we construct a variational CD (VCD) baseline by employing the same variational
encoder Q(h1, h2|v) as in AdVIL. The free energy is approximated by the same upper bound as in
Eqn. (7), which is minimized with respect to the parameters in Q(h1, h2|v). The gradient of the

7
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(a) Data (b) Filters of the GRBM (c) Samples from q (d) Samples from P

Figure 4: Filters and samples of a GRBM learned by AdVIL on the Frey faces dataset. (a) presents the
training data. (b) presents the first 40 filters of the GRBM. (c) and (d) show random samples from the
variational decoder and the GRBM, respectively. We present the mean of v for better visualization.

parameters in the DBM is given by Eqn. (4), where the Gibbs sampling procedure is approximated
by h1 ∼ Q(h1|v) and v ∼ P (v|h1). Note that AdVIL can be directly applied to this case. As for
the time complexity, the training speed of AdVIL is around ten times slower than that of VCD in
our implementation. However, the approximate inference and sampling procedure of AdVIL is very
efficient thanks to the directed variational distributions.

The log-likelihood results on the UCI databases are shown in Tab. 2. It can be seen that AdVIL has a
better overall performance even trained in a black-box manner, which shows the promise of AdVIL .

We also extend NVIL by using the same Q(h1, h2|v) and q(v, h1, h2) as AdVIL. However, NVIL
diverges after 300 iterations and gets bad AIS results (e.g., less than −40 on Digits) in our implemen-
tation. A potential reason is that the upper bound given by q in NVIL can be underestimated if q is
high-dimensional, as analyzed in Sec. 4 and Fig. 3. Note that q(v, h1, h2) in DBM involves latent
variables and has a higher dimension (e.g. 164 on the Digits dataset) than q(v) in RBM (e.g. 64 on
the Digits dataset). The results again demonstrate the advantages of AdVIL over NVIL.

5.4 GRBM RESULTS

We now show the ability of AdVIL to learn a GRBM on the continuous Frey faces dataset. The energy
function of a GRBM is E(v, h) = 1

2σ2 ||v− b||2− c>h− 1
σv
>Wh, where σ is the standard deviation

of the Gaussian likelihood and is set as 1 manually. We standardize the data by subtracting the mean
and dividing by the standard deviation. The dimensions of h and z are 200 and 50, respectively.

Though a GRBM is more sensitive to the hyperparameters and hence harder to train than an RBM (Cho
et al., 2011; 2013), AdVIL can successfully capture the underlying data distribution using the default
hyperparameters (See Appendix D). As shown in Fig. 4, the samples from both the GRBM (via Gibbs
sampling after 100,000 burn-in steps) and the decoder are meaningful faces. Besides, the filters of
the GRBM outline diverse prototypes of faces, which accords with our expectation.

In summary, the results of the three models together demonstrate that AdVIL can learn a broad family
of models conveniently and effectively in a fully black-box manner.

6 CONCLUSION AND DISCUSSION

A novel black-box learning and inference method for undirected graphical models, called adversarial
variational inference and learning (AdVIL), is proposed. The key to AdVIL is a double variational
trick that approximates the negative free energy and the log partition function separately. A formal
convergence theorem, which provides insights for implementation, is established for AdVIL. Empiri-
cal results show that AdVIL can deal with a broad family of MRFs in a fully black-box manner and
outperforms both the standard contrastive divergence method and the black-box NVIL algorithm.

Though AdVIL shows promising results, we emphasize that the black-box learning and inference of
the MRFs are far from completely solved, especially on high-dimensional data. The two intractability
problems of MRFs are distinct since the posterior of the latent variables is local in terms of v but the
partition function is global by integrating out v. The additional integral makes estimating the partition
function much more challenging. In AdVIL, simply increasing the number of updates of the decoder
to obtain a tighter estimate of the partition function on high-dimensional data can be expensive.
Future work with tighter bounds on the partition function can benefit the black-box learning in MRFs.
Nevertheless, while not perfect, AdVIL can relieve some headache of training an MRF.

8
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A DERIVATION OF THE OBJECTIVE FUNCTION

Here we derive the objective function of AdVIL in detail. Let θ, φ and ψ denote the trainable
parameters in the MRF, the variational encoder and the variational decoder, respectively. The first
variational trick bounds the free energy as follows:

L(θ) = −EPD(v)

[
log(

∫
h

e−E(v,h)dh)

]
+ logZ

= −EPD(v) log[

∫
h

Q(h|v)e
−E(v,h)

Q(h|v)
dh] + logZ

≤ EPD(v)Q(h|v) [E(v, h) + logQ(h|v)] + logZ := L1(θ, φ),

where the bound is derived via applying the Jensen inequality and the equality holds if and only if
Q(h|v) = P (h|v) for all v.

The second variational trick bounds the log partition function as follows:

L1(θ, φ) = EPD(v)Q(h|v) [E(v, h) + logQ(h|v)] + log(

∫
v

∫
h

e−E(v,h)dvdh)

= EPD(v)Q(h|v) [E(v, h) + logQ(h|v)] + log(

∫
v

∫
h

q(v, h)
e−E(v,h)

q(v, h)
dvdh)

≥ EPD(v)Q(h|v) [E(v, h) + logQ(h|v)] + Eq(v,h)
[
log(

e−E(v,h)

q(v, h)
)

]

= EPD(v)Q(h|v)

energy term︷ ︸︸ ︷
E(v, h) +

entropy term︷ ︸︸ ︷
logQ(h|v)︸ ︷︷ ︸

Positive Phase

− Eq(v,h)

energy term︷ ︸︸ ︷
E(v, h) +

entropy term︷ ︸︸ ︷
log q(v, h)︸ ︷︷ ︸

Negative Phase


:= L2(θ, φ, ψ),

where the bound is also derived via applying the Jensen inequality and the equality holds if and only
if q(v, h) = P (v, h).

To enhance the expressive power of the variational decoder, we introduce an auxiliary variable z
and define q(v, h) =

∫
z
q(z)q(h|z)q(v|h)dz, which makes the entropy term in the negative phase

intractable. To address the problem, we propose the third variational approximation. First, we can
decompose the entropy of q(v, h) as −Eq(v,h) log q(v, h) = −Eq(v,h) log q(v|h) − Eq(h) log q(h)
and we only need to approximate−Eq(h) log q(h). However, simply applying the standard variational
trick as above, we get an upper bound as follows:

−Eq(h) log q(h) = −Eq(h) log
∫
z

q(h, z)dz

= −Eq(h) log
∫
z

r(z|h)q(h, z)
r(z|h)

dz

≤ −Eq(h)r(z|h) log
[
q(h, z)

r(z|h)

]
,
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Algorithm 1 Adversarial variational inference and learning by stochastic gradient descent
1: Input: Constants K1 and K2, learning rate schemes α and γ, randomly initialized θ, φ and ψ
2: repeat
3: for i = 1, ...,K1 do
4: Sample a batch of (v, h, z) ∼ q(v, h, z)
5: Estimate the objective of q and r according to Eqn. (11) and the negative phase in Eqn. (8)
6: Update ψ to maximize the objective according to α
7: end for
8: for i = 1, ...,K2 do
9: Sample a batch of (v, h) ∼ PD(v)Q(h|v)

10: Estimate the objective of Q according to the positive phase in Eqn. (8)
11: Update φ to minimize the objective according to γ
12: end for
13: Sample a batch of (v, h) ∼ PD(v)Q(h|v) and another batch of (v, h) ∼ q(v, h)
14: Estimate the objective of P according to Eqn. (8)
15: Update θ to minimize the objective according to γ
16: until Convergence or reaching certain threshold

which is not satisfactory because the optimization problem will be minP minQmaxqminr. Instead,
we derive a lower bound as follows:

−Eq(h) log q(h) = −Eq(h) log q(h)− Eq(h,z) log q(z|h) + Eq(h,z) log q(z|h)
= −Eq(h,z) log q(h, z) + Eq(h,z) log q(z|h)

= −Eq(h,z) log
[
q(h, z)

r(z|h)

]
+ DKL(q(z|h)||r(z|h))

≥ −Eq(h,z) log
[
q(h, z)

r(z|h)

]
,

where DKL(·||·) denotes the KL-divergence and the equality holds if and only if r(z|h) = q(z|h) for
all h. The difference between the two bounds is that the expectation is taken over q(h)r(z|h) in the
upper bound while over q(h, z) in the lower bound. Using the lower bound, the optimization problem
will be minP minQmaxpmaxr.

B FORMAL TRAINING PROCEDURE

The formal training procedure of AdVIL is presented in Algorithm 1.

C DETAILED THEORETICAL ANALYSIS

For simplicity, we consider discrete v and h (e.g., in an RBM) and the analysis can be extended to the
continuous cases. We assume v ∈ {0, 1}dv and h ∈ {0, 1}dh , where dv and dh are the dimensions of
the visible and latent variables respectively.

C.1 NONPARAMETRIC CASE

We first analyze the nonparametric case in Proposition 1 as follows.

Proposition 1. For any P (v, h) = exp(−E(v, h))/Z , L2(θ, φ, ψ) is a tight estimate of the negative
log-likelihood of P (v), under the following assumptions

1. Q(h|v) and q(v, h) are nonparametric.

2. The inner optimization over Q(h|v) and q(v, h) can get their optima.

12
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Proof. Given P (v, h), i.e., E(v, h), to find q∗(v, h), we optimize L2 over {q(v, h)|v ∈ {0, 1}dv , h ∈
{0, 1}dh} (we will use a shortcut {q(v, h)} for simplicity). The optimization problem is equivalent
to:

min
{q(v,h)}

∑
v,h

q(v, h) [E(v, h) + log q(v, h)]

subject to:
∑
v,h

q(v, h) = 1,

q(v, h) ≥ 0,∀v, h.
Note that the objective function is convex since its Hessian matrix is positive semi-definite. Besides,
the constraints are linear. Therefore, it is a convex optimization problem. Further, we can verify that
the Slater’s condition (Boyd & Vandenberghe, 2004) holds when q is uniform and then the strong
duality holds. Then, we can use the KKT conditions to solve the optimization problem.

The Lagrangian G({q(v, h)}, λ, {µ(v, h)}) is:∑
v,h

q(v, h) [E(v, h) + log q(v, h)] + λ(
∑
v,h

q(v, h)− 1) +
∑
v,h

µ(v, h)q(v, h),

where λ and {µ(v, h)} are the associated Lagrange multipliers.

To satisfy the stationarity, we take gradients with respect to q(v, h) for all (v, h) and get:
[E(v, h) + log q∗(v, h) + 1] + λ+ µ(v, h) = 0,

which implies
q∗(v, h) = exp(−E(v, h)− (1 + λ+ µ(v, h))).

According to the complementary slackness, we have
µ(v, h)q∗(v, h) = 0,∀v, h,

which implies µ(v, h) = 0,∀v, h, since q∗(v, h) > 0,∀v, h.

To satisfy the primal equality constraint, we have∑
v,h

q∗(v, h) =
∑
v,h

exp(−E(v, h)− (1 + λ)) = 1,

which implies

q∗(v, h) =
exp(−E(v, h))∑

v′,h′ exp(−E(v′, h′))
= P (v, h),∀v, h.

To find Q∗(h|v), we optimize L2 over {Q(h|v)|v ∈ {0, 1}dv , h ∈ {0, 1}dh} (we will use a shortcut
{Q(h|v)} for simplicity). The optimization problem is equivalent to:

min
{Q(h|v)}

∑
v

PD(v)
∑
h

Q(h|v) [E(v, h) + logQ(h|v)]

subject to:
∑
h

Q(h|v) = 1,∀v,

Q(h|v) ≥ 0,∀v, h.
Similar to the above procedure, we can get

Q∗(h|v) = exp(−E(v, h))∑
h′ exp(−E(v, h′))

= P (h|v),∀v, h.

Under the assumptions that (1) Q(h|v) and q(v, h) are nonparametric, and (2) the inner optimization
over ψ and φ can get the optimum, the optimal variational distributions P (v, h) and P (h|v) can be
obtained. Plugging them back into L2, we get

L2 = EPD(v)P (h|v) [E(v, h) + logP (h|v)]− EP (v,h) [E(v, h) + logP (v, h)]

= EPD(v)P (h|v)

[
− log

∑
h

e−E(v,h)

]
+ EP (v,h) [logZ]

= EPD(v) [F(v)] + logZ = L.
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Remark Similar to Theorem 1 in (Goodfellow et al., 2014), Proposition 1 is under the nonparametric
assumption, which is relaxed in our following analysis. Namely, we will consider more practical
cases where q(v, h) may not be exactly the same as P (v, h) during training.

C.2 MAIN CONVERGENCE THEOREM

For convenience, we summarize the training dynamics of Algorithm 1 with K1 = 1,K2 = 1 and the
exact gradients (not the stochastic ones), as follows:

ψk+1 = ψk + αk
∂L2(θk, φk, ψk)

∂ψ
,

φk+1 = φk − γk
∂L2(θk, φk, ψk+1)

∂φ
,

θk+1 = θk − γk
∂L2(θk, φk, ψk+1)

∂θ
, (13)

where k = 1, 2, ... . We will prove that even though we are optimizingL2(θ, φ, ψ), (θk, φk) converges
to a stationary point of L1(θ, φ) under certain conditions. To establish this, we first prove that the
angle between ∂L2(θ,φ,ψ)

∂θ and ∂L1(θ,φ)
∂θ are sufficiently positive if q(v, h) and P (v, h) satisfy certain

conditions, as summarized in Lemma 1.

Lemma 1. For any (θ, φ), there exists a symmetric positive definite matrix H such that ∂L2(θ,φ,ψ)
∂θ =

H ∂L1(θ,φ)
∂θ under the assumption: ||

∑
v,h δ(v, h)

∂E(v,h)
∂θ ||2 < ||∂L1(θ,φ)

∂θ ||2 if ||∂L1(θ,φ)
∂θ ||2 > 0 and

||
∑
v,h δ(v, h)

∂E(v,h)
∂θ ||2 = 0 if ||∂L1(θ,φ)

∂θ ||2 = 0, where δ(v, h) = q(v, h)− P (v, h).

Proof. According to the Cauchy-Schwarz inequality, we have

〈∂L1(θ, φ)

∂θ
,
∑
v,h

δ(v, h)
∂E(v, h)
∂θ

〉 ≤ ||∂L1(θ, φ)

∂θ
||2||

∑
v,h

δ(v, h)
∂E(v, h)
∂θ

||2.

If ||∂L1(θ,φ)
∂θ ||2 > 0, according to the assumption ||

∑
v,h δ(v, h)

∂E(v,h)
∂θ ||2 < ||∂L1(θ,φ)

∂θ ||2, we have

〈∂L1(θ, φ)

∂θ
,
∑
v,h

δ(v, h)
∂E(v, h)
∂θ

〉 < ||∂L1(θ, φ)

∂θ
||22 = 〈∂L1(θ, φ)

∂θ
,
∂L1(θ, φ)

∂θ
〉,

which implies that

〈∂L1(θ, φ)

∂θ
,
∂L1(θ, φ)

∂θ
−
∑
v,h

δ(v, h)
∂E(v, h)
∂θ

〉 > 0.

According to the definitions of L1(θ, φ) and L2(θ, φ, ψ), we have

∂L1(θ, φ)

∂θ
−
∑
v,h

δ(v, h)
∂E(v, h)
∂θ

=
∑
v,h

[PD(v)Q(h|v)− P (v, h)]∂E(v, h)
∂θ

−
∑
v,h

[q(v, h)− P (v, h)]∂E(v, h)
∂θ

=
∑
v,h

[PD(v)Q(h|v)− q(v, h)]∂E(v, h)
∂θ

=
∂L2(θ, φ, ψ)

∂θ
,

which implies that

〈∂L1(θ, φ)

∂θ
,
∂L2(θ, φ, ψ)

∂θ
〉 > 0.

Equivalently, there exists a symmetric positive definite matrix H such that ∂L2(θ,φ,ψ)
∂θ = H ∂L1(θ,φ)

∂θ .

Note that this also holds when ||∂L1(θ,φ)
∂θ ||2 = 0 (i.e., ∂L1(θ,φ)

∂θ = ~0) because ||∂L2(θ,φ,ψ)
∂θ ||2 ≤

||∂L1(θ,φ)
∂θ ||2+ ||

∑
v,h δ(v, h)

∂E(v,h)
∂θ ||2 = 0 (i.e., ∂L2(θ,φ,ψ)

∂θ = ~0), according to the assumption.
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Remark Lemma 1 assumes that q(v, h) and P (v, h) are sufficiently close, which is encouraged
by choosing a sufficiently powerful family of q(v, h) and updating ψ multiple times per update of
θ, i.e. K1 > 1. If Lemma 1 holds, optimizing L2(θ, φ, ψ) with respect to θ will decrease L1(θ, φ)

with a sufficiently small stepsize. Also note that for any (θ, ψ), ∂L2(θ,φ,ψ)
∂φ = ∂L1(θ,φ)

∂φ and therefore,
optimizing L2(θ, φ, ψ) with respect to φ will decrease L1(θ, φ) with a sufficiently small stepsize.

Based on Lemma 1 and other commonly used assumptions in the analysis of stochastic gradient
descent (Bottou et al., 2018), Algorithm 1 converges to a stationary point of L1(θ, φ), as stated in
Theorem 1.
Theorem 1. Solving the optimization problem in Eqn. (9) using stochastic gradient descent according
to Algorithm 1, then

lim
k→∞

E[||∂L1(θk, φk)

∂θ
||22] = 0,

under the following assumptions.

1. The condition of Corollary 4.12 in (Bottou et al., 2018): L2(θ, φ, ψ) is twice differentiable
with respect to θ, φ and ψ.

2. Assumption 4.1 in (Bottou et al., 2018): the gradients of L2(θ, φ, ψ) with respect to θ, φ
and ψ are Lipschitz.

3. Assumption 4.3 in (Bottou et al., 2018): the first and second moments of the stochastic
gradients are bounded by the expected gradients.

4. The stepsize satisfies the diminishing condition (Bottou et al., 2018), i.e., αk = γk,∑∞
k=1 γk =∞,

∑∞
k=1 γ

2
k <∞.

5. The condition of Lemma 1 holds in each step k. Therefore,

∀k,∃Hk,
∂L2(θk, φk, ψk+1)

∂θ
= Hk

∂L1(θk, φk)

∂θ
.

Proof. See Corollary 4.12 in (Bottou et al., 2018).

Remark Assumption 1 and Assumption 2 in Theorem 1 are ensured because we use the sigmoid and
tanh activation functions. Assumption 3 and Assumption 4 in Theorem 1 are ensured by the sampling
and learning rate schemes of the stochastic gradient descent. Assumption 5 in Theorem 1 is much
weaker than the nonparametric assumption of Proposition 1 but still requires large K1.

C.3 COMPLEMENTARY CONVERGENCE THEOREM

Heusel et al. (2017) propose a two-time scale update rule to train minimax optimization problems
with a convergence guarantee even using K1 = 1. AdVIL converges if using the same training
method as in (Heusel et al., 2017), which is summarized in Proposition 2.
Proposition 2. AdVIL trained with a two-time scale update rule (Heusel et al., 2017) converges to a
stationary local Nash equilibrium almost surely under the following assumptions.

1. The gradients with respect to θ, φ and ψ are Lipschitz.

2.
∑
k αk =∞,

∑
k α

2
k <∞,

∑
k γk =∞,

∑
k γ

2
k <∞,γk = o(αk).

3. The stochastic gradient errors are bounded in expectation.

4. For each θ, the ordinary differentiable equation corresponding to Equation 13 has a local
asymptotically stable attractor within a domain of attraction such that the attractor is
Lipschitz. Similar assumptions are required for φ and ψ.

5. supk ||θk|| <∞, supk ||ψk|| <∞, supk ||φk|| <∞.

Proof. See Theorem 1 in (Heusel et al., 2017).
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Table 3: Dimensions of the visible variables and sizes of the train, validation and test splits.

Datasets # visible Train Valid. Test

Digits 64 1438 359 -
Adult 123 5000 1414 26147
Connect4 126 16000 4000 47557
DNA 180 1400 600 1186
Mushrooms 112 2000 500 5624
NIPS-0-12 500 400 100 1240
OCR-letters 128 32152 10000 10000
RCV1 150 40000 10000 150000
Frey faces 560 1965 - -

Table 4: The model structures in RBM experiments.

Digits Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1

dimension of z 15 15 15 15 15 50 15 15
dimension of h 50 50 50 50 50 200 50 50
dimension of v 64 123 126 180 112 500 128 150

Remark Compared to Theorem 1, Proposition 2 ensures the convergence of AdVIL without assuming
q(v, h) is sufficiently close to P (v, h) in each step. However, a two time-sclae update rule (Heusel
et al., 2017) is required to satisfy Assumption 2 and extra weight decay terms are needed to satisfy
Assumption 4. Further, the convergence point is not necessarily a stationary point of L1(θ, φ).

D DATASETS AND EXPERIMENTAL SETTINGS

We evaluate our method on the binary digits dataset4, the UCI binary databases and the Frey faces
datasets5. The information of the datasets is summarized in Tab. 3. We implement our model using
the TensorFlow (Abadi et al., 2016) library. In all experiments, q and r are updated 100 times per
update of P and Q, i.e. K1 = 100 and K2 = 1. We use the ADAM (Kingma & Ba, 2014) optimizer
with the learning rate α = 0.0003, the moving average ratios β1 = 0.5 and β2 = 0.999, and the batch
size of 500. We use a continuous z and the sigmoid activation function . All these hyperparameters
are set according to the validation performance of an RBM on the binary digits dataset and fixed
throughout the paper unless otherwise stated. The sizes of the variational distributions depend on the
structure of the MRF and are chosen according to the validation performance. The model structures
in RBM and DBM experiments are summarized in Tab. 4 and Tab. 5, respectively.

The authors of NVIL (Kuleshov & Ermon, 2017) propose two variants. The first one employs a
mixture of Bernoulli as q. The second one involves auxiliary variables and employs a neural network
as q. Both variants scale up to an RBM of at most 64 visible units as reported in their paper (Kuleshov
& Ermon, 2017). For a fair comparison, we carefully perform grid search over the default settings
of NVIL and our settings based on their code and choose the best configuration. In this setting, the
first variant of NVIL still fails to scale up to larger datasets and the best version of the second variant
shares the same key hyperparameters as AdVIL, including K1 = 100 and a batch size of 500.
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Table 5: The model structures in DBM experiments.

Digits Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1

dimension of z 15 15 15 15 15 50 15 15
dimension of h1 50 50 50 50 50 200 50 50
dimension of h2 50 50 50 50 50 200 50 50
dimension of v 64 123 126 180 112 500 128 150
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Figure 5: (a) shows that ||
∑
v,h δ(v, h)

∂E(v,h)
∂θk

||2 (in red) is less than ||∂L1(θk,φk)
∂θk

||2 (in blue) during
training. (b) shows that the NLL converges gradually.

E MORE RESULTS

E.1 EMPIRICAL VERIFICATION OF ASSUMPTION 5 IN THEOREM 1

We empirically test the assumption ||
∑
v,h δ(v, h)

∂E(v,h)
∂θk

||2 < ||∂L1(θk,φk)
∂θk

||2 for k < 10000, where

δ(v, h) = q(v, h)− P (v, h). Note that computing ||∂L1(θk,φk)
∂θk

||2 exactly requires summing over v
and h and therefore we train a small RBM ,where the dimensions of v, h and z are 4, on the Digits
dataset. We find K1 = 10 is sufficient in this case.

The results are shown in Fig. 5. It can be seen that a decoder with neural networks and auxiliary
variables are sufficiently powerful to track the model distribution and Assumption 5 in Theorem 1
holds. Besides, the model converges gradually, which agrees with our convergence analysis.

E.2 SAMPLES IN RBM

We present the samples from the RBM P and the decoder q in Fig. 6. In this case, we set the
number of the hidden units to 50 and other settings remain the same as in Sec. 5.1. The first column
demonstrates that the decoder is a good approximate sampler for the RBM. Note that the samples
from the decoder are obtained from efficient ancestral sampling but those from the RBM is obtained
by Gibbs sampling after 100,000 burn-in steps. The second column shows that ifH(Q) is removed,
both models collapse to a certain mode of the data. The third column shows that ifH(q) is removed,
both models fail to generate meaningful digits. These results demonstrate the importance of the
entropy terms and the necessity of approximatingH(q) in a principled way.

4 https://scikit-learn.org/stable/modules/generated/ sklearn.datasets.load digits.html#sklearn.datasets.load digits
5 http://www.cs.nyu.edu/∼roweis/data.html
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(a) P normal (b) P w.o. H(Q) (c) P w.o. H(q) (d) q normal (e) q w.o. H(Q) (f) q w.o. H(q)

Figure 6: (a-c) Samples from the RBM in different settings. (d-f) Samples from the decoder in
different settings. We present the mean of v for better visualization in all settings.
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(a) AdVIL with the NADE decoder
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(b) AdVIL with the hierarchial decoder

Figure 7: AdVIL with two types of decoders. We set K1 = 5 in the NADE decoder and K1 = 100 in
the hierarchical decoder. The two models have a similar model capacity and training time.

E.3 ADVIL WITH AN AUTOREGRESSIVE PRIOR

Here we present the results of AdVIL with a neural autoregressive distribution estimator (NADE)
(Larochelle & Murray, 2011) as the prior on the Digits dataset. We use the same RBM as in Sec. 5.1.
The dimension of the latent units in NADE is 15, which is the same as the dimension of the auxiliary
variables in the hierarchical decoder presented in Sec. 3.3.

Compared with the hierarchical decoder, the NADE decoder has a tractable entropy and hence
does not require r(z|h). However, getting samples from NADE is slow while AdVIL requires
samples during training. Therefore, K1 = 5 for the NADE decoder has a similar training cost as the
hierarchical decoder.

Fig. 7 compares the two decoders. AdVIL with the NADE decoder achieves a slightly worse and
unstable result.

E.4 AIS RESULTS WITH STANDARD DEVIATIONS

The AIS results in RBM and RBM with the means and standard deviations are shown in Tab. 6 and
Tab. 7 respectively.
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Table 6: The AIS results of NVIL and AdVIL in RBM with the means and standard deviations. The
results are averaged over three runs with different random seeds.

Method Digits Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1

NVIL-mean −27.36 −20.05 −24.71 −97.71 −29.28 −290.01 −47.56 −50.47
NVIL-std 0.13 0.27 0.61 0.12 0.31 2.68 0.14 0.09

AdVIL-mean −26.34 −19.29 −21.95 −97.59 −19.59 −276.42 −45.64 −50.22
AdVIL-std 0.02 0.07 1.04 0.10 2.01 0.21 0.34 0.06

Table 7: The AIS results of VCD-1 and AdVIL in DBM with the means and standard deviations. The
results are averaged over three runs with different random seeds.

Method Digits Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1

VCD-mean −28.49 −22.26 −26.79 −97.59 −23.15 −356.26 −45.77 −50.83
VCD-std 0.47 0.51 1.42 0.03 1.42 34.70 1.15 0.62

AdVIL-mean −27.89 −20.29 −26.34 −99.40 −21.21 −287.15 −48.38 −51.02
AdVIL-std 0.44 0.24 1.50 0.71 0.40 0.63 1.32 0.42
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