
Under review as a conference paper at ICLR 2020

META-LEARNING DEEP ENERGY-BASED MEMORY
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of learning associative memory – a system which is able
to retrieve a remembered pattern based on its distorted or incomplete version.
Attractor networks provide a sound model of associative memory: patterns are
stored as attractors of the network dynamics and associative retrieval is performed
by running the dynamics starting from a query pattern until it converges to an
attractor. In such models the dynamics are often implemented as an optimization
procedure that minimizes an energy function, such as in the classical Hopfield
network. In general it is difficult to derive a writing rule for a given dynamics
and energy that is both compressive and fast. Thus, most research in energy-
based memory has been limited either to tractable energy models not expressive
enough to handle complex high-dimensional objects such as natural images, or to
models that do not offer fast writing. We present a novel meta-learning approach
to energy-based memory models (EBMM) that allows one to use an arbitrary
neural architecture as an energy model and quickly store patterns in its weights.
We demonstrate experimentally that our EBMM approach can build compressed
memories for synthetic and natural data, and is capable of associative retrieval
that outperforms existing memory systems in terms of the reconstruction error and
compression rate.

1 INTRODUCTION

Associative memory has long been of interest to neuroscience and machine learning communities
(Willshaw et al., 1969; Hopfield, 1982; Kanerva, 1988). This interest has generated many proposals
for associative memory models, both biological and synthetic. These models address the problem
of storing a set of patterns in such a way that a stored pattern can be retrieved based on a partially
known or distorted version. This kind of retrieval from memory is known as auto-association.

Due to the generality of associative retrieval, successful implementations of associative memory
models have the potential to impact many applications. Attractor networks provide one well-grounded
foundation for associative memory models (Amit & Amit, 1992). Patterns are stored in such a way
that they become attractors of the update dynamics defined by the network. Then, if a query pattern
that preserves sufficient information for association lies in the basin of attraction for the original
stored pattern, a trajectory initialized by the query will converge to the stored pattern.

A variety of implementations of the general attractor principle have been proposed. The classical
Hopfield network (Hopfield, 1982), for example, defines a simple quadratic energy function whose
parameters serve as a memory. The update dynamics in Hopfield networks iteratively minimize the
energy by changing elements of the pattern until it converges to a minima, typically corresponding
to one of the stored patterns. The goal of the writing process is to find parameter values such that
the stored patterns become attractors for the optimization process and such that, ideally, no spurious
attractors are created.

Many different learning rules have been proposed for Hopfield energy models, and the simplicity
of the model affords compelling closed-form analysis (Storkey & Valabregue, 1999). At the same
time, Hopfield memory models have fundamental limitations: (1) It is not possible to add capacity
for more stored patterns by increasing the number of parameters since the number of parameters in a
Hopfield network is quadratic in the dimensionality of the patterns. (2) The model lacks a means of
modelling the higher-order dependencies that exist in real-world data.

1

Under review as a conference paper at ICLR 2020

E(x; ✓̄)

Input x

Energy E

x

Input x

Energy E

✓ = write({x1,x2,x3}; ✓̄)

E(x;✓)

x1 x2 x3

x̃Query

read(x̃;✓)

Figure 1: A schematic illustration of EBMM. The energy function is modelled by a neural network.
The writing rule is then implemented as a weight update, producing parameters θ from the initializa-
tion θ̄, such that the stored patterns x1, x2, x3 become local minima of the energy (see section 3).
Local minima are attractors for gradient descent which implements associative retrieval starting from
a query x̃, in this case a distorted version of x3.

In domains such as natural images, the potentially large dimensionality of an input makes it both
ineffective and unnecessary to model global dependencies among raw input measurements. In fact,
many auto-correlations that exist in real-world perceptual data can be efficiently compressed without
significant sacrifice of fidelity using either algorithmic (Wallace, 1992; Candes & Tao, 2004) or
machine learning tools (Gregor et al., 2016; Toderici et al., 2017). The success of existing deep
learning techniques suggests a more efficient recipe for processing high-dimensional inputs by
modelling a hierarchy of signals with restricted or local dependencies (LeCun et al., 1995). In this
paper we use a similar idea for building an associative memory: use a deep network’s weights to store
and retrieve data.

Fast writing rules A variety of energy-based memory models have been proposed since the
original Hopfield network to mitigate its limitations (Hinton et al., 2006b; Du & Mordatch, 2019).
Restricted Boltzmann Machines (RBMs) (Hinton, 2012) add capacity to the model by introducing
latent variables, and deep variants of RBMs (Hinton et al., 2006b; Salakhutdinov & Larochelle,
2010) afford more expressive energy functions. Unfortunately, training Boltzmann machines remains
challenging, and while recent probabilistic models such as variational auto-encoders (Kingma &
Welling, 2013; Rezende et al., 2014) are easier to train, they nevertheless pay the price for expressivity
in the form of slow writing. While Hopfield networks memorize patterns quickly using a simple
Hebbian rule, deep probabilistic models are slow in that they rely on gradient training that requires
many updates (typically thousands or more) to settle new inputs into the weights of a network. Hence,
writing memories via parametric gradient based optimization is not straightforwardly applicable to
memory problems where fast adaptation is a crucial requirement. In contrast, and by explicit design,
our proposed method enjoys fast writing, requiring few parameter updates (we employ just 5 steps)
to write new inputs into the weights of the net once meta-learning is complete. It also enjoys fast
reading, requiring few gradient descent steps (again just 5 in our experiments) to retrieve a pattern.
Furthermore, our writing rules are also fast in the sense that they use O(N) operations to store N
patterns in the memory – this scaling is the best one can hope for without additional assumptions

We propose a novel approach that leverages meta-learning to enable fast storage of patterns into the
weights of arbitrarily structured neural networks, as well as fast associative retrieval. Our networks
output a single scalar value which we treat as an energy function whose parameters implement a
distributed storage scheme. We use gradient-based reading dynamics and meta-learn a writing rule in
the form of truncated gradient descent over the parameters defining the energy function. We show
that the proposed approach enables compression via efficient utilization of network weights, as well
as fast-converging attractor dynamics.

2 RETRIEVAL IN ENERGY-BASED MODELS

We focus on attractor networks as a basis for associative memory. Attractor networks define update
dynamics for iterative evolution of the input pattern: x(k+1) = f(x(k)).

For simplicity, we will assume that this process is discrete in time and deterministic, however there are
examples of both continuous-time (Yoon et al., 2013) and stochastic dynamics (Aarts & Korst, 1988).
A fixed-point attractor of deterministic dynamics can be defined as a point x for which it converges,
i.e. x = f(x). Learning the associative memory in the attractor network is then equivalent to learning

2

Under review as a conference paper at ICLR 2020

the dynamics f such that its fixed-point attractors are the stored patterns and the corresponding basins
of attraction are sufficiently wide for retrieval.

An energy-based attractor network is defined by the energy function E(x) mapping an input object
x ∈ X to a real scalar value. A particular model may then impose additional requirements on the
energy function. For example if the model has a probabilistic interpretation, the energy function
is usually a negative unnormalized logarithm of the object probability log p(x) = −E(x) + const,
implying that the energy has to be well-behaved for the normalizing constant to exist.

The attractor dynamics in energy-based models is often implemented either by iterative energy
optimization (Hopfield, 1982) or sampling (Aarts & Korst, 1988). In the optimization case considered
further in the paper, attractors are conveniently defined as local minimizers of the energy function.

While a particular energy function may suggest a number of different optimization schemes for
retrieval, convergence to a local minimum of an arbitrary function is NP-hard. Thus, we consider
a class of energy functions that are differentiable on X ⊆ Rd, bounded from below and define the
update dynamics over k = 1, . . . ,K steps via gradient descent:

read(x̃;θ) = x(K), x(k+1) = x(k) − γ(k)∇xE(x(k)), x(0) = x̃. (1)

With appropriately set step sizes {γ(k)}Kk=0 this procedure asymptotically converges to a local
minimum of energy E(x) (Nesterov, 2013). Since asymptotic convergence may be not enough for
practical applications, we truncate the optimization procedure (1) at K steps and treat x(K) as a
result of the retrieval. While vanilla gradient descent (1) is sufficient to implement retrieval, in our
experiments we employ a number of extensions, such as the use of Nesterov momentum and projected
gradients, which are thoroughly described in Appendix B.

Relying on the generic optimization procedure allows us to translate the problem of designing update
dynamics with desirable properties to constructing an appropriate energy function, which in general
is equally difficult. In the next section we discuss how to tackle this difficulty.

3 META-LEARNING GRADIENT-BASED WRITING RULES

As discussed in previous sections, our ambition is to be able to use any scalar-output neural network
as an energy function for associate retrieval. We assume a parametric model E(x;θ) differentiable in
both x and θ, and bounded from below as a function of x. These are mild assumptions that are often
met in the existing neural architectures with an appropriate choice of activation functions, e.g. tanh.

The writing rule then compresses input patterns X = {x1,x2, . . . ,xN} into parameters θ such that
each of the stored patterns becomes a local minimum of E(x;θ) or, equivalently, creates a basin of
attraction for gradient descent in the pattern space.

This property can be practically quantified by the reconstruction error, e.g. mean squared error,
between the stored pattern x and the pattern read(x̃;θ) retrieved from a distorted version of x:

L(X,θ) =
1

N

N∑
i=1

E
[
||xi − read(x̃i;θ)||22

]
. (2)

Here we assume a known, potentially stochastic distortion model ·̃ such as randomly erasing certain
number of dimensions, salt and pepper noise etc. While one can consider loss (2) as a function of
network parameters θ and call minimization of this loss with a conventional optimization method a
writing rule — it will require many optimization steps to obtain a satisfactory solution and thus does
not fall into our definition of fast writing rules (Santoro et al., 2016).

Hence, we explore a different approach to designing a fast writing rule inspired by recently proposed
gradient-based meta-learning techniques (Finn et al., 2017) which we call meta-learning energy-based
memory models (EBMM). Namely we perform many write and read optimization procedures with a
small number of iterations for several sets of write and read observations, and backpropagate into the
initial parameters of θ — to learn a good starting location for fast optimization. As usual, we assume
that we have access to the underlying data distribution pd(X) over datasets of interest X from which
we can sample sufficiently many training datasets, even if the actual dataset our memory model will
be used to store (at test time) is not available at the training time (Santoro et al., 2016).

3

Under review as a conference paper at ICLR 2020

The straightforward application of gradient-based meta-learning to the loss (2) is problematic,
because we generally cannot evaluate or differentiate through the expectation over stochasticity of
the distortion model in a way that is reliable enough for adaptation, because as the dimensionality of
the pattern space grows the number of possible (and representative) distortions grows exponentially.

Instead, we define a different writing loss W , minimizing which serves as a proxy for ensuring
that input patters are local minima for the energy E(x;θ), but does not require costly retrieval of
exponential number of distorted queries.

W(x,θ) = E(x;θ) + α||∇xE(x;θ)||22 + β||θ − θ̄||22. (3)

As one can see, the writing loss (3) consists of three terms. The first term is simply the energy value
which we would like to be small for stored patterns relative to non-stored patterns. The condition for
x to be a local minimum of E(x;θ) is two-fold: first, the gradient at x is zero, which is captured by
the second term of the writing loss, and, second, the hessian is positive-definite. The latter condition
is difficult to express in a form that admits efficient optimization and we found that meta-learning
using just first two terms in the writing loss is sufficient. Finally, the third term limits deviation from
initial or prior parameters θ̄ which we found helpful from optimization perspective.

We use truncated gradient descent on the writing loss (3) to implement the writing rule:

write(X) = θ(T), θ(t+1) = θ(t) − η(t) 1

N

N∑
i=1

∇θW(xi,θ
(t)), θ(0) = θ̄ (4)

To ensure that gradient updates (4) are useful for minimization of the reconstruction error (2) we
train the combination of retrieval and writing rules end-to-end, meta-learning initial parameters θ̄,
learning rate schedules r = ({γ(k)}Kk=1, {η(t)}Tt=1) and meta-parameters τ = (α, β) to perform well
on random sets of patterns from the data distribution pd(X):

minimize EX∼pd(X) [L(X,write(X))] for θ̄, r, τ . (5)

Crucially, the proposed EBMM implements both read(x,θ) and write(X) operations via truncated
gradient descent which can be itself differentiated through in order to set up a tractable meta-learning
problem. While truncated gradient descent is not guaranteed to converge, reading and writing
rules are trained jointly to minimize the reconstruction error (2) and thus ensure that they converge
sufficiently fast. This property turns this potential drawback of the method to its advantage over
provably convergent, but slow models. It also relaxes the necessity of stored patterns to create too
well-behaved basins of attraction because if, for example, a stored pattern creates a nuisance attractor
in the dangerous proximity of the main one, the gradient descent (1) might successfully pass it with
appropriately learned step sizes γ.

4 EXPERIMENTS

In this section we experimentally evaluate EBMM on a number of real-world image datasets.
The performance of EBMM is compared to a set of relevant baselines: Long-Short Term Mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997), the classical Hopfield network (Hopfield, 1982),
Memory-Augmented Neural Networks (MANN) (Santoro et al., 2016) (which are a variant of the
Differentiable Neural Computer (Graves et al., 2016)), Memory Networks (Weston et al., 2014),
Differentiable Plasticity model of Miconi et al. (2018) (a generalization of the Fast-weights RNN (Ba
et al., 2016)) and Dynamic Kanerva Machine (Wu et al., 2018). Some baselines failed to learn. In the
Appendix A.2 we provide an additional experiment on the random binary strings with a larger set of
represented models.

The experimental procedure is the following: we write a fixed-sized batch of images into a memory
model, then corrupt a random block of the written image to form a query and let the model retrieve
the originally stored image. By varying the memory size and repeating this procedure, we perform
distortion/rate analysis, i.e. we measure how well a memory model can retrieve a remembered pattern
for a given memory size.

We define memory size as a number of float32 numbers used to represent a modifiable part of
the model. In the case of EBMM it is the subset of all network weights that are modified by the

4

Under review as a conference paper at ICLR 2020

2K 4K 6K 8K 10K 12K 14K 16K
Memory size

0

5

10

15

20

25

H
a
m

m
in

g
 e

rr
o
r MANN

Memory network

EBMM conv

EBMM FC

(a) Omniglot.

2K 4K 6K 8K 10K 12K 14K 16K
Memory size

5

10

15

20

25

30

S
q
u
a
re

 e
rr

o
r

(b) CIFAR.

Figure 2: Distortion (reconstruction error) vs rate (memory size) analysis on batches of 64 images.

gradient descent (4), for other models it is size of the state, e.g. the number of slots × the slot size for
a Memory Network. To ensure fair comparison, all models use the same encoder (and decoder, when
applicable) networks, which architectures are described in Appendix C. In all experiments EBMM
used K = 5 read iterations and T = 5 write iterations.

4.1 OMNIGLOT CHARACTERS

We begin with experiments on the Omniglot dataset (Lake et al., 2015) which is now a standard
evaluation of fast adaptation models. For simplicity of comparison with other models, we downscaled
the images to 32× 32 size and binarized them using a 0.5 threshold. We use Hamming distance as
the evaluation metric. For training and evaluation we apply a 16× 16 randomly positioned binary
distortions (see figure 3 for example).

We explored two versions of EBMM for this experiment that use parts of fully-connected (FC, see
Appendix C.2) and convolutional (conv, Appendix C.3) layers in a 3-block ResNet (He et al., 2016)
as writable memory.

Figure 2a contains the distortion-rate analysis of different models which in this case is the Hamming
distance as a function of memory size. We can see that there are two modes in the model behaviour.
For small memory sizes, learning a lossless storage becomes a hard problem and all models have
to find an efficient compression strategy, where most of the difference between models can be
observed. However, after a certain critical memory size it becomes possible to rely just on the
autoencoding which in the case of a relatively simple dataset such as Omniglot can be efficiently
tackled by the ResNet architecture we are using. Hence, even Memory Networks that do not employ
any compression mechanisms beyond using distributed representations can retrieve original images
almost perfectly. In this experiment MANN has been able to learn the most efficient compression
strategy, but could not make use of larger memory. EBMM performed well both in the high and
low compression regimes with convolutional memory being more efficient over the fully-connected
memory. Further, in CIFAR and ImageNet experiments we only use the convolutional version of
EBMM.

We visualize the process of associative retrieval on figure 3. The model successfully detected distorted
parts of images and clearly managed to retrieve the original pixel intensities. We also show energy
levels of the distorted query image, the recalled images through 5 read iterations, and the original
image. In most cases we found the energy of the retrieved images to match to energy of the originals,
however, an error would occur when they sometimes do not match (see the green example).

4.2 REAL IMAGES FROM CIFAR-10

We conducted a similiar study on the CIFAR dataset. Here we used the same network architecture as
in the Omniglot experiment. The only difference in the experimental setup is that we used squared
error as an evaluation metric since the data is continuous RGB images.

Figure 2b contains the corresponding distortion-rate analysis. EBMM clearly dominates in the
comparison. One important reason for that is the ability of the model to detect the distorted part of

5

Under review as a conference paper at ICLR 2020

Query Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Original

Query Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Original
130
120
110
100

90
80
70
60
50

E
n
e
rg

y

Figure 3: Visualization of gradient descent iterations during retrieval of Omniglot characters (largest
model). 4 random images are shown from the batch of 64.

Query Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Original

Query Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Original
280
260
240
220
200
180
160

E
n
e
rg

y

MemNet

Figure 4: Visualization of gradient descent iterations during retrieval of CIFAR images. The last
column contains reconstructions from Memory networks (both models use 10k memory).

the image so it can avoid paying the reconstruction loss for the rest of the image. Moreover, unlike
Omniglot where images can be almost perfectly reconstructed by an autoencoder with a large enough
code, CIFAR images have much more variety and larger channel depth. This makes an efficient joint
storage of a batch as important as an ability to provide a good decoding of the stored original.

Gradient descent iterations shown in figure 4 demonstrate the successful application of the model
to natural images. Due to the higher complexity of the dataset, the reconstructions are imperfect,
however the original patterns are clearly recognizable. Interestingly, the learned optimization schedule
starts with one big gradient step providing a coarse guess that is then gradually refined.

4.3 IMAGENET 64X64

We further investigate the ability of EBMM to handle complex visual datasets by applying the model
to 64× 64 ImageNet. Similarly to the CIFAR, experiment we construct queries by corrupting quarter
of the image by 32 × 32 random masks. The model is based on a 4-block version of the CIFAR

6

Under review as a conference paper at ICLR 2020

4K 7K 9K 12K 14K 16K 18K
Memory size

30

40

50

60

70

80

90

S
q
u
a
re

 e
rr

o
r

MANN

Memory network

Energy memory (conv)

(a) Distortion-rate analysis on ImageNet.

Query Original EBMM MemNet DNC

(b) Retrieval of 64x64 ImageNet images (all models have
≈18K memory).

150 100 50 0 50
0

50

100

150

200

250
Memories

Non-memories

Distorted memories

CIFAR images

Figure 6: Energy distributions of different classes of patterns under an Omniglot model. Memories
are the patterns written into memory, non-memories are other randomly sampled images and distorted
memories are the written patterns distorted as during the retrieval. CIFAR images were produced by
binarizing the original RGB images and serve as out-of-distribution samples.

network. While the network itself is rather modest compared to existing ImageNet classifiers, the
sequential training regime resembling large-state recurrent networks prevents us from using anything
significantly bigger than a CIFAR model. Due to prohibitively expensive computations required by
experimenting at this scale, we also had to decrease the batch size to 32.

The distortion-rate analysis (Figure 5a) shows the behaviour similar to the CIFAR experiment. EBMM
is paying less reconstruction error than other models and MANN is demonstrating better performance
than Memory Networks for smaller memory sizes, however, the asymptotic behaviour of these two
models will likely match.

The qualitative results are shown on the Figure 5b. Despite the arguably more difficult images,
EBMM is able to capture the general shape and color information, although not in high detail. We
believe this can be mitigated by using larger models which would require more work either on
hardware or software front. Additionally, using techniques such as perceptual losses (Johnson et al.,
2016) instead of naive pixel-wise reconstruction errors can improve visual quality with the existing
architectures, but we leave these ideas for future work.

4.4 ANALYSIS OF ENERGY LEVELS

We were also interested whether energy values provided by EBMM are interpretative and can be used
besides for associative retrieval. We took an Omniglot model and inspected energy levels of different
types of patterns. It appears that, despite not explicitly trained to, EBMM in many cases could
discriminate between in-memory and out-of-memory patterns, see Figure 6. Moreover, distorted

7

Under review as a conference paper at ICLR 2020

patterns had even higher energy than simply unknown patterns. Out-of-distribution patterns, here
modelled as binarized CIFAR images, can be seen as clear outliers.

5 RELATED WORK

Deep neural networks are capable of both compression (Parkhi et al., 2015; Kraska et al., 2018),
and memorizing training patterns (Zhang et al., 2016). Taken together, these properties make
deep networks an attractive candidate for memory models, with both exact recall and compressive
capabilities. However, there exists a natural trade-off between the speed of writing and the realizable
capacity of a model (Ba et al., 2016). Approaches similar to ours in their use of gradient descent
dynamics, but lacking fast writing, have been proposed by Hinton et al. (2006a) and recently revisited
by Du & Mordatch (2019) together with another stochastic deep energy model (Krotov & Hopfield,
2016). In general it is difficult to derive a writing rule for a given dynamics equation or an energy
model which we attempt to address in this work.

The idea of meta-learning (Thrun & Pratt, 2012; Hochreiter et al., 2001) has found many successful
applications in few-shot supervised (Santoro et al., 2016; Vinyals et al., 2016) and unsupervised
learning (Bartunov & Vetrov, 2016; Reed et al., 2017). Our model is particularly influenced by works
of Andrychowicz et al. (2016) and Finn et al. (2017), that experiment with meta-learning efficient
optimization schedules and, perhaps, can be seen as an ultimate instance of this principle since we
implement both learning and inference procedures as optimization.

Perhaps the most prominent existing application of meta-learning for associative retrieval is found
in the Kanerva Machine (Wu et al., 2018), which combines a variational auto-encoder with a latent
linear model to serve as an addressable memory. The Kanerva machine benefits from a high-level
representation extracted by the auto-encoder. However, the simple linear model can only represent
convex combinations of memory slots and is thus less expressive than distributed storage realizable
in weights of a deep network.

We described literature on associative and energy-based memory in section 1, but other types of
memory should be mentioned in connection with our work. Many recurrent architectures aim at
maintaining efficient compressive memory (Graves et al., 2016; Rae et al., 2018). Models such
as (Ba et al., 2016; Miconi et al., 2018) enable associative recall by combining standard RNNs with
structures similar to Hopfield network. And, recently Munkhdalai et al. (2019) explored the idea of
using arbitrary feed-forward network as a key-value storage.

Finally, the idea of learning a surrogate model to define a gradient field useful for a problem of
interest has a number of incarnations. Putzky & Welling (2017) jointly learn an energy model
and an optimizer to perform denoising or impainting of images. Marino et al. (2018) use gradient
descent on an energy defined by variational lower bound for improving variational approximations.
And, Belanger et al. (2017) formulate a generic framework for energy-based prediction driven by
gradient descent dynamics.

6 CONCLUSION

We introduced a novel method for learning deep associative memory systems. Our method benefits
from the recent progress in deep learning so that we can use a very large class of neural networks
both for learning representations and for storing patterns in network weights. At the same time, we
are not bound by slow gradient learning thanks to meta-learning of fast writing rules. We showed
that our method is applicable in a variety of domains from non-compressible (binary strings) to
highly compressible (natural images) and that the resulting memory system is uses available capacity
efficiently. We believe that more elaborate architecture search could lead to stronger results on par
with state-of-the-art generative models.

The existing limitation of EBMM is the batch writing assumption, which is in principle is possible
to relax. This would enable embedding of the model in reinforcement learning agents or into other
tasks requiring online-updating memory. It would be also interesting to explore a stochastic variant of
EBMM that could return different associations in the presence of uncertainty caused by compression.
Finally, many general principles of learning attractor models with desired properties are yet to be
discovered and we believe that our results provide a good motivation for this line of research.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Emile Aarts and Jan Korst. Simulated annealing and boltzmann machines. 1988.

Daniel J Amit and Daniel J Amit. Modeling brain function: The world of attractor neural networks.
Cambridge university press, 1992.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv preprint
arXiv:1810.09502, 2018.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances in Neural Information Processing Systems, pp.
4331–4339, 2016.

Sergey Bartunov and Dmitry P Vetrov. Fast adaptation in generative models with generative matching
networks. arXiv preprint arXiv:1612.02192, 2016.

David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured prediction
energy networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 429–439. JMLR. org, 2017.

Emmanuel Candes and Terence Tao. Near optimal signal recovery from random projections: Universal
encoding strategies? arXiv preprint math/0410542, 2004.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. arXiv
preprint arXiv:1903.08689, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. arXiv preprint arXiv:1703.03400, 2017.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471,
2016.

Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wierstra. Towards
conceptual compression. In Advances In Neural Information Processing Systems, pp. 3549–3557,
2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Simon Osindero, Max Welling, and Yee-Whye Teh. Unsupervised discovery of
nonlinear structure using contrastive backpropagation. Cognitive science, 30(4):725–731, 2006a.

Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In Neural networks:
Tricks of the trade, pp. 599–619. Springer, 2012.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

9

Under review as a conference paper at ICLR 2020

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European conference on computer vision, pp. 694–711. Springer, 2016.

Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In Proceedings of the 2018 International Conference on Management of Data, pp.
489–504. ACM, 2018.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. In Advances
in Neural Information Processing Systems, pp. 1172–1180, 2016.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 2017.

Joseph Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. arXiv preprint
arXiv:1807.09356, 2018.

Thomas Miconi, Jeff Clune, and Kenneth O Stanley. Differentiable plasticity: training plastic neural
networks with backpropagation. arXiv preprint arXiv:1804.02464, 2018.

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned neural
memory. ArXiv, abs/1907.09720, 2019.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Yurii E Nesterov. A method for solving the convex programming problem with convergence rate o
(1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face recognition. In BMVC,
volume 1, pp. 6, 2015.

Patrick Putzky and Max Welling. Recurrent inference machines for solving inverse problems. arXiv
preprint arXiv:1706.04008, 2017.

Jack W Rae, Sergey Bartunov, and Timothy P Lillicrap. Meta-learning neural bloom filters. 2018.

Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, SM Eslami, Danilo Rezende, Oriol
Vinyals, and Nando de Freitas. Few-shot autoregressive density estimation: Towards learning to
learn distributions. arXiv preprint arXiv:1710.10304, 2017.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann machines. In
Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.
693–700, 2010.

10

Under review as a conference paper at ICLR 2020

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850, 2016.

Amos J Storkey and Romain Valabregue. The basins of attraction of a new hopfield learning rule.
Neural Networks, 12(6):869–876, 1999.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and
Michele Covell. Full resolution image compression with recurrent neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306–5314, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630–3638, 2016.

Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv, 1992.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

David J Willshaw, O Peter Buneman, and Hugh Christopher Longuet-Higgins. Non-holographic
associative memory. Nature, 222(5197):960, 1969.

Yan Wu, Gregory Wayne, Karol Gregor, and Timothy Lillicrap. Learning attractor dynamics for
generative memory. In Advances in Neural Information Processing Systems, pp. 9401–9410, 2018.

KiJung Yoon, Michael A Buice, Caswell Barry, Robin Hayman, Neil Burgess, and Ila R Fiete. Specific
evidence of low-dimensional continuous attractor dynamics in grid cells. Nature neuroscience, 16
(8):1077, 2013.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

11

Under review as a conference paper at ICLR 2020

Table 1: Number of error bits in retrieved binary patterns.

METHOD
PATTERNS 16 32 48 64 96

HOPFIELD NETWORK, HEBB RULE 0.4 5.0 9.8 13.0 16.5
HOPFIELD NETWORK, STORKEY RULE 0.0 0.9 6.3 11.3 17.1
HOPFIELD NETWORK, PSEUDO-INVERSE RULE 0.0 0.0 0.3 4.3 22.5
DIFFERENTIABLE PLASTICITY (MICONI ET AL., 2018) 3.0 13.2 20.8 26.3 34.9
MANN (SANTORO ET AL., 2016) 0.1 0.2 1.8 4.25 9.6
LSTM (HOCHREITER & SCHMIDHUBER, 1997) 30 58 63 64 64
MEMORY NETWORKS (WESTON ET AL., 2014) 0.0 0.0 0.0 0.0 10.5
EBMM RNN 0.0 0.0 0.1 0.5 4.2

A ADDITIONAL EXPERIMENTAL DETAILS

We train all models using AdamW optimizer (Loshchilov & Hutter, 2017) with learning rate 5×10−5

and weight decay 10−6, all other parameters set to Adam defaults. We also apply gradient clipping
by global norm at 0.05. All models were allowed to train for 2 × 106 gradient updates or 1 week
whichever ended first. All baseline models always made more updates than EBMM.

One instance of each model has been trained. Error bars showed on the figures correspond to 5- and
95-percentiles computed on a 1000 of random batches.

In all experiments we used initialization scheme proposed by He et al. (2015).

A.1 FAILURE MODES OF BASELINE MODELS

Image retrieval appeared to be difficult for a number of baselines.

LSTM failed to train due to quadratic growth of the hidden-to-hidden weight matrix with increase of
the hidden state size. Even moderately large hidden states were prohibitive for training on a modern
GPU.

Differential plasticity additionally struggled to train when using a deep representation instead of
the raw image data. We hypothesize that it was challenging for the encoder-decoder pair to train
simultaneously with the recurrent memory, because in the binary experiment, while not performing
the best, the model managed to learn a memorization strategy.

Finally, the Kanerva machine could not handle the relatively strong noise we used in this task. By
design, Kanerva machine is agnostic to the noise model and is trained simply to maximize the data
likelihood, without meta-learning a particular de-noising scheme. In the presence of the strong noise
it failed to train on sequences longer than 4 images.

A.2 EXPERIMENTS WITH RANDOM BINARY PATTERNS

Besides highly-structured patterns such as Omniglot or ImageNet images we also conducted experi-
ments on random binary patterns – the classical setting in which associative memory models have
been evaluated. While such random patterns are not compressible in expectation due to lack of any
internal structure, by this experiment we examine the efficiency of a learned coding scheme, i.e. how
well can each of the models store binary information in the floating point format.

We generate random 128-dimensional patterns, each dimension of which takes values of −1 or +1
with equal probability, corrupt half of the bits and use this as a query for associative retrieval. We
compare EBMM employing a simple fully recurrent network (an RNN using the same input at each
iteration, see Appendix C.1) as an energy model, against a classical Hopfield network (Hopfield,
1982) using different writing rules (Storkey & Valabregue, 1999) and a recently proposed differential
plasticity model (Miconi et al., 2018). It is worth noting the differentiable plasticity model is a
generalized variant of Fast Weights (Ba et al., 2016), where the plasticity of each activation is
modulated separately. We also consider an LSTM (Hochreiter & Schmidhuber, 1997), Memory

12

Under review as a conference paper at ICLR 2020

network (Weston et al., 2014) and a Memory-Augmented Neural Network (MANN) used by Santoro
et al. (2016) which is a variant of the DNC (Graves et al., 2016).

Since the Hopfield network has limited capacity that is strongly tied to input dimensionality and
that cannot be increased without adding more inputs, we use its memory size as a reference and
constrain all other baseline models to use the same amount of memory. For this task it equals to
128 ∗ (128 − 1)/2 + 128 to parametrize a symmetric matrix and a frequency vector. We measure
Hamming distance between the original and the retrieved pattern for each system, varying the number
of stored patterns. We found it difficult to train the recurrent baselines on this task, so we let all
models to clamp non-distorted bits to their true values at retrieval which significantly stabilized
training.

As we can see from the results shown in Table 1, EBMM learned a highly efficient associative
memory. Only the EBMM and the memory network could achieve near-zero error when storing 64
vectors and even though EBMM could not handle 96 vectors with this number of parameters, it was
the most accurate memory model.

B READING IN EBMM

B.1 PROJECTED GRADIENT DESCENT

We described the basic reading procedure in section 2, however, there is a number of extensions we
found useful in practice.

Since in all experiments we work with data constrained to the [0, 1] interval, one has to ensure that
the read data also satisfies this constraint. One strategy that is often used in literature is to model the
output as an argument to sigmoid function (logits). This may not work well for values close to the
interval boundaries due to vanishing gradient, so instead we adopted a projected gradient descent, i.e.

x(k+1) = proj(x(k) − γ(k)∇xE(x(k))),

where the proj function clips data to the [0, 1] interval.

Quite interestingly, this formulation allows more flexible behavior of the energy function. If a stored
pattern x has one of the dimensions exactly on the feasible interval boundary, e.g. xj = 0, then
∇xj

E(x) does not necessarily have to be zero, since xj will not be able to go beyond zero. We
provide more information on the properties of storied patterns in further appendices.

B.2 NESTEROV MOMENTUM

Another extension we found useful is to employ Nesterov momentum (Nesterov, 1983) into the
optimization scheme and we use it in all our experiments.

x̂(k) = project(x(k) + ψ(k)v(k−1)), v(k) = ψ(k)v(k−1) − γ(k)∇E(x̂(k))

x(k) = project(v(k)).

B.3 STEP SIZES

To encourage learning converging attractor dynamics we constrained step sizes γ to be a non-
increasing sequence:

γ(k) = γ(k−1)σ(η(k)), k > 1

Then the actual parameters to meta-learn is the initial step size γ(1) and the logits η. We apply a
similar parametrization to the momentum learning rates ψ.

B.4 STEP-WISE RECONSTRUCTION LOSS

As it is often found helpful in literature (Belanger et al., 2017; Antoniou et al., 2018) we apply
the reconstruction loss (2) not just to the final iterate of the gradient descent, but to all iterates

13

Under review as a conference paper at ICLR 2020

simultaneously:

LK(X,θ) =

K∑
k=1

1

N

N∑
i=1

E
[
||xi − x

(k)
i ||22

]
.

C ARCHITECTURE DETAILS

Below we provide pseudocode for computational graphs of models used in the experiments. All
modules containing memory parameters are specifically named as memory.

C.1 GATED RNN

We used a fairly standard recurrent architecture only equipped with an update gate as in (Chung et al.,
2014). We unroll the RNN for 5 steps and compute the energy value from the last hidden state.

hidden_size = 1024
input_size = 128
128 * (128 - 1) / 2 + 128 parameters in total
dynamic_size = (input_size - 1) // 2

state = repeat_batch(zeros(hidden_size))
memory = Linear(input_size, dynamic_size)

gate = Sequential([
Linear(input_size + hidden_size, hidden_size),
sigmoid

])

static = Linear(input_size + hidden_size, hidden_size - dynamic_size)

for hop in xrange(5):
z = concat(x, state)

dynamic_part = memory(x)
static_part = static(z)
c = tanh(concat(dynamic_part, static_part))
u = gate(z)
state = u * c + (1 - u) * state

energy = Linear(1)(state)

C.2 RESNET, FULLY-CONNECTED MEMORY

channels = 32
hidden_size = 512
representation_size = 512
static_size = representation_size - dynamic_size

state = repeat_batch(zeros(hidden_size))

encoder = Sequential([
ResBlock(channels * 1, kernel=[3, 3], stride=2, downscale=False),
ResBlock(channels * 2, kernel=[3, 3], stride=2, downscale=False),
ResBlock(channels * 3, kernel=[3, 3], stride=2, downscale=False),
flatten,
Linear(256),
LayerNorm()

])

14

Under review as a conference paper at ICLR 2020

gate = Sequential([
Linear(hidden_size),
sigmoid

])

hidden = Sequential([
Linear(hidden_size),
tanh

])

x = encoder(x)

memory = Linear(input_size, dynamic_size)

dynamic_part = memory(x)
static_part = Linear(static_size)(x)
x = tanh(concat(dynamic_part, static_part))

for hop in xrange(3):
z = concat(x, state)
c = hidden(z)
c = LayerNorm()(c)
u = gate(z)
state = u * c + (1 - u) * c

h = tanh(Linear(1024)()(state))
energy = Linear(1)(h)

The encoder module is also shared with all baseline models together with its transposed version as
a decoder.

C.3 RESNET, CONVOLUTIONAL MEMORY

channels = 32
x = ResBlock(channels * 1, kernel=[3, 3], stride=2, downscale=True)(x)
x = ResBlock(channels * 2, kernel=[3, 3], stride=2, downscale=True)(x)

def resblock_bottleneck(x, channels, bottleneck_channels, downscale=False):
static_size = channels - dynamic_size

z = x

x = Conv2D(bottleneck_channels, [1, 1])(x)
x = LayerNorm()(x)
x = tanh(x)

if downscale:
memory_part = Conv2D(dynamic_size, kernel=[3, 3], stride=2, downscale=True)(x)
static_part = Conv2D(static_size, kernel=[3, 3], stride=2, downscale=True)(x)

else:
memory_part = Conv2D(dynamic_size, kernel=[3, 3], stride=1, downscale=False)(x)
static_part = Conv2D(static_size, kernel=[3, 3], stride=1, downscale=False)(x)
x = concat([static_part, memory_part], -1)
x = LayerNorm)(x)
x = tanh(x)

z = Conv2D(channels, kernel=[1, 1])(z)
if downscale:

15

Under review as a conference paper at ICLR 2020

z = avg_pool(z, [3, 3] + [1], stride=2)
x += z

return x

x = resblock_bottleneck(x, channels * 4, channels * 2, False)
x = resblock_bottleneck(x, channels * 4, channels * 2, True)

recurrent = Sequential([
Conv2D(hidden_size, kernel=[3, 3], stride=1),
LayerNorm(),
tanh

])

update_gate = Sequential([
Conv2D(hidden_size, kernel=[1, 1], stride=1),
LayerNorm(),
sigmoid

])

hidden_size = 128
hidden_state = repeat_batch(zeros(4, 4, hidden_size))

for hop in xrange(3):
z = concat([x, hidden_state], -1)
candidate = recurrent(z)
u = update_gate(z)
hidden_state = u * candidate + (1. - u) * hidden_state

x = Linear(1024)(x)
x = tanh(x)
energy = Linear(1)

C.4 RESNET, IMAGENET

This network is effectively a slightly larger version of the ResNet with convolutional memory
described above.

channels = 64
dynamic_size = 8

x = ResBlock(channels * 1, kernel=[3, 3], stride=2, downscale=True)(x)
x = ResBlock(channels * 2, kernel=[3, 3], stride=2, downscale=True)(x)

x = resblock_bottleneck(x, channels * 4, channels * 2, True)
x = resblock_bottleneck(x, channels * 4, channels * 2, True)

recurrent = Sequential([
Conv2D(hidden_size, kernel=[3, 3], stride=1),
LayerNorm(),
tanh

])

update_gate = Sequential([
Conv2D(hidden_size, kernel=[1, 1], stride=1),
LayerNorm(),
sigmoid

])

hidden_size = 256

16

Under review as a conference paper at ICLR 2020

hidden_state = repeat_batch(zeros(4, 4, hidden_size))

for hop in xrange(3):
z = concat([x, hidden_state], -1)
candidate = recurrent(z)
u = update_gate(z)
hidden_state = u * candidate + (1. - u) * hidden_state

x = Linear(1024)(x)
x = tanh(x)
energy = Linear(1)

C.5 THE ROLE OF SKIP-CONNECTIONS IN ENERGY MODELS

Gradient-based meta-learning and EBMM in particular rely on the expressiveness of not just the
forward pass of a network, but also the backward pass that is used to compute a gradient. This may
require special considerations about the network architecture.

One may notice that all energy models considered above have an element of recurrency of some
sort. While the recurrency itself is not crucial for good performance, skip-connections, of which
recurrency is a special case, are.

We can illustrate this by considering an energy function of the following form:

E(x) = o(h(x)), h(x) = f(x) + g(f(x)).

Here we can think of h as a representation from which the energy is computed. We allow the
representation to be first computed as f(x) and then to be refined by adding g(f(x)).

During retrieval, we use gradient of the energy with respect to x which can be computed as

d

dx
E(x) =

do

dh

dh

dx
=
do

dh
(
df

dx
+
dg

df

df

dx
).

One can see, that with a skip-connection the model is able to refine the gradient together with the
energy value.

A simple way of incorporating such skip-connections is via recurrent computation. We allow the
model to use a gating mechanism that can modulate the refinement and prevent from unneces-
sary updates. We found that usually a small number of recurrent steps (3-5) is enough for good
performance.

D EXPLANATIONS ON THE WRITING LOSS

Our setting deviates from the standard gradient-based meta-learning as described in (Finn et al., 2017).
In particular, we are not using the same loss function (naturally defined by the energy function) in
adaptation and inference phases. As we explain in section 3, writing loss (3) besides just the energy
term also contains the gradient term and the prior term.

Even though we found it sufficient to use just the energy value as the writing loss, perhaps not
surprisingly, minimizing the gradient norm appeared to help optimization especially in the early
training (see figure 7) and lead to better final results.

We use an individual learning rate per each writable layer and each of the three loss terms, initialized
at 10−4 and learned together with other parameters. We used softplus function to ensure that all
learning rates remain non-negative.

17

Under review as a conference paper at ICLR 2020

0 1 2 3 4 5

Iterations (105)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ss

With grad loss

Without grad loss

Figure 7: Effect of including the ||∇xE(x)||2 term in the writing loss (3) on Omniglot.

18

	Introduction
	Retrieval in energy-based models
	Meta-learning gradient-based writing rules
	Experiments
	Omniglot characters
	Real images from CIFAR-10
	ImageNet 64x64
	Analysis of energy levels

	Related work
	Conclusion
	Additional experimental details
	Failure modes of baseline models
	Experiments with random binary patterns

	Reading in EBMM
	Projected gradient descent
	Nesterov momentum
	Step sizes
	Step-wise reconstruction loss

	Architecture details
	Gated RNN
	ResNet, fully-connected memory
	ResNet, convolutional memory
	ResNet, ImageNet
	The role of skip-connections in energy models

	Explanations on the writing loss

