
Under review as a conference paper at ICLR 2020

SUMO: UNBIASED ESTIMATION OF LOG MARGINAL
PROBABILITY FOR LATENT VARIABLE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The standard variational lower bounds used to train latent variable models produce
biased estimates of most quantities of interest. We introduce an unbiased estimator
of the log marginal likelihood and its gradients for latent variable models based on
randomized truncation of infinite series. If parameterized by an encoder-decoder
architecture, the parameters of the encoder can be optimized to minimize its vari-
ance of this estimator. We show that models trained using our estimator give better
test-set likelihoods than a standard importance-sampling based approach for the
same average computational cost. This estimator also allows use of latent variable
models for tasks where unbiased estimators, rather than marginal likelihood lower
bounds, are preferred, such as minimizing reverse KL divergences and estimating
score functions.

1 INTRODUCTION

Latent variable models are powerful tools for constructing highly expressive data distributions and
for understanding how high-dimensional observations might possess a simpler representation. La-
tent variable models are often framed as probabilistic graphical models, allowing these relation-
ships to be expressed in terms of conditional independence. Mixture models, probabilistic principal
component analysis (Tipping & Bishop, 1999), hidden Markov models, and latent Dirichlet allo-
cation (Blei et al., 2003) are all examples of powerful latent variable models. More recently there
has been a surge of interest in probabilistic latent variable models that incorporate flexible non-
linear likelihoods via deep neural networks (Kingma & Welling, 2013). These models can blend
the advantages of highly structured probabilistic priors with the empirical successes of deep learn-
ing (Johnson et al., 2016). Moreover, these explicit latent variable models can often yield rela-
tively interpretable representations, in which simple interpolation in the latent space can lead to
semantically-meaningful changes in high-dimensional observations (e.g., Higgins et al. (2017)).

It can be challenging, however, to fit the parameters of a flexible latent variable model, since com-
puting the marginal probability of the data requires integrating out the latent variables in order to
maximize the likelihood with respect to the model parameters. Typical approaches to this prob-
lem include the celebrated expectation maximization algorithm (Dempster et al., 1977), Markov
chain Monte Carlo, and the Laplace approximation. Variational inference generalizes expectation
maximization by forming a lower bound on the aforementioned (log) marginal likelihood, using a
tractable approximation to the unmanageable posterior over latent variables. The maximization of
this lower bound—rather than the true log marginal likelihood—is often relatively straightforward
when using automatic differentiation and Monte Carlo sampling. However, a lower bound may be
ill-suited for tasks such as posterior inference and other situations where there exists an entropy max-
imization objective; for example in entropy-regularized reinforcement learning (Williams & Peng,
1991; Mnih et al., 2016; Norouzi et al., 2016) which requires minimizing the log probability of the
samples under the model.

While there is a long history in Bayesian statistics of estimating the marginal likelihood (e.g., New-
ton & Raftery (1994); Neal (2001)), we often want high-quality estimates of the logarithm of the
marginal likelihood, which is better behaved when the data are high dimensional; it is not as suscep-
tible to underflow and it has gradients that are numerically sensible. However, the log transformation
introduces some challenges: Monte Carlo estimation techniques such as importance sampling do not
straightforwardly give unbiased estimates of this quantity. Nevertheless, there has been significant

1

Under review as a conference paper at ICLR 2020

work to construct estimators of the log marginal likelihood in which it is possible to explicitly trade
off between bias against computational cost (Burda et al., 2016; Bamler et al., 2017; Nowozin,
2018). Unfortunately, while there are asymptotic regimes where the bias of these estimators ap-
proaches zero, it is always possible to optimize the parameters to increase this bias to infinity.

In this work, we construct an unbiased estimator of the log marginal likelihood. Although there
is no theoretical guarantee that this estimator has finite variance, we find that it can work well in
practice. We show that this unbiased estimator can train latent variable models to achieve higher test
log-likelihood than lower bound estimators at the same expected compute cost. More importantly,
this unbiased estimator allows us to apply latent variable models in situations where these models
were previously problematic to optimize with lower bound estimators. Such applications include
latent variable modeling for posterior inference and for reinforcement learning in high-dimensional
action spaces, where an ideal model is one that is highly expressive yet efficient to sample from.

2 PRELIMINARIES

2.1 LATENT VARIABLE MODELS

Latent variable models (LVMs) describe a distribution over data in terms of a mixture over unob-
served quantities. Let pθ(x) be a family of probability density (mass) functions on a data space X ,
indexed by parameters θ. We will generally refer to this as a “density” for consistency, even when
the data should be understood to be discrete; similarly we will use integrals even when the marginal-
ization is over a discrete set. In a latent variable model, pθ(x) is defined via a space of latent
variables Z , a family of mixing measures on this latent space with density denoted pθ(z), and a
conditional distribution pθ(x | z). This conditional distribution is sometimes called an “observation
model” or a conditional likelihood. We will take θ to parameterize both pθ(x | z) and pθ(z) in the
service of determining the marginal pθ(x) via the mixture integral:

pθ(x) :=

∫
Z
pθ(x | z)pθ(z) dz = Ez∼pθ(z) [pθ(x | z)] . (1)

This simple formalism allows for a large range of modeling approaches, in which complexity can
be baked into the latent variables (as in traditional graphical models), into the conditional likelihood
(as in variational autoencoders), or into both (as in structured VAEs). The downside of this mixing
approach is that the integral may be intractable to compute, making it difficult to evaluate pθ(x)—
a quantity often referred to in Bayesian statistics and machine learning as the marginal likelihood
or evidence. Various Monte Carlo techniques have been developed to provide consistent and of-
ten unbiased estimators of pθ(x), but it is usually preferable to work with log pθ(x) and unbiased
estimation of this quantity has, to our knowledge, not been previously studied.

2.2 TRAINING LATENT VARIABLE MODELS

Fitting a parametric distribution to observed data is often framed as the minimization of a differ-
ence between the model distribution and the empirical distribution. The most common difference
measure is the forward Kullback-Leibler (KL) divergence; if pdata(x) is the empirical distribution
and pθ(x) is a parametric family, then minimizing the KL divergence with respect to θ is equivalent
to maximizing the likelihood:

DKL(pdata || pθ) =

∫
X
pdata(x) log

pdata(x)

pθ(x)
dx = −Edata [log pθ(x)] + const . (2)

Thus the optimization problem of finding the MLE parameters θ comes down to maximizing the
expected log probability of the data:

θMLE = arg min
θ

DKL(pdata || pθ) = arg max
θ

Edata [log pθ(x)] . (3)

Since expectations can be estimated in an unbiased manner using Monte Carlo procedures, simple
subsampling of the data enables powerful stochastic optimization techniques, with stochastic gradi-
ent descent in particular forming the basis for learning the parameters of many nonlinear models.

2

Under review as a conference paper at ICLR 2020

However, this requires unbiased estimates of ∇θ log pθ(x), which are not available for latent vari-
able models. Instead, a stochastic lower bound of log pθ(x) is often used and then differentiated for
optimization.

Though many lower bound estimators are applicable, we focus on an importance-weighted evidence
lower bound (Burda et al., 2016). This lower bound is constructed by introducing a proposal distri-
bution q(x; z) and using it to form an importance sampling estimate of the marginal likelihood:

pθ(x) =

∫
Z
pθ(x | z) pθ(z) dz =

∫
Z
q(z;x)

pθ(x | z) pθ(z)
q(z;x)

dz = Ez∼q
[
pθ(x | z) pθ(z)

q(z;x)

]
. (4)

IfK samples are drawn from q(z;x) then this provides an unbiased estimate of pθ(x) and the biased
“importance-weighted autoencoder” estimator IWAEK(x) of log pθ(x) is given by

IWAEK(x) := log
1

K

K∑
k=1

pθ(x | zk) pθ(zk)

q(zk;x)
, zk

iid∼ q(z;x) . (5)

The special case of K = 1 generates an unbiased estimate of the evidence lower bound (ELBO),
which is often used for performing variational inference by stochastic gradient descent. While the
IWAE lower bound acts as a useful replacement of log pθ(x) in maximum likelihood training, it may
not be suitable for other objectives such as those that involve entropy maximization. We discuss tasks
for which a lower bound estimator would be ill-suited in Section 3.4.

There are two properties of IWAE that will allow us to modify it to produce an unbiased estimator:
First, it is consistent in the sense that as the number of samples K increases, the expectation of
IWAEK(x) converges to log pθ(x). Second, is also monotonically non-decreasing in expectation:

log pθ(x) = lim
K→∞

E[IWAEK(x)] and E[IWAEK+1(x)] ≥ E[IWAEK(x)] . (6)

These properties are sufficient to create an unbiased estimator using the Russian roulette estimator.

2.3 RUSSIAN ROULETTE ESTIMATOR

In order to create an unbiased estimator of the log probability function, we employ the Russian
roulette estimator (Kahn, 1955). This estimator is used to estimate the sum of infinite series, where
evaluating any term in the series almost surely requires only a finite amount of computation. In-
tuitively, the Russian roulette estimator relies on a randomized truncation and upweighting of each
term to account for the possibility of not computing these terms.

To illustrate the idea, let ∆k denote the k-th term of an infinite series. Assume the partial sum of the
series

∑∞
k=1 ∆k converges to some quantity we wish to obtain. We can construct a simple estimator

by always computing the first term then flipping a coin b ∼ Bernoulli(q) to determine whether we
stop or continue evaluating the remaining terms. With probability 1− q, we compute the rest of the
series. By reweighting the remaining future terms by 1/(1−q), we obtain an unbiased estimator:

Ỹ = ∆1 +

(∑∞
k=2 ∆k

1− q

)
1b=0 + (0)1b=1 E[Ỹ] = ∆1 +

∑∞
k=2 ∆k

1− q
(1− q) =

∞∑
k=1

∆k.

To obtain the “Russian roulette” (RR) estimator (Forsythe & Leibler, 1950), we repeatedly apply
this trick to the remaining terms. In effect, we make the number of terms a random variable K,
taking values in 1, 2, . . . to use in the summation (i.e., the number of successful coin flips) from
some distribution with probability mass function p(K) = P(K = K) with support over the positive
integers. With K drawn from p(K), the estimator takes the form:

Ŷ (K) =

K∑
k=1

∆k

P(K ≥ k)
EK∼p(K)[Ŷ (K)] =

∞∑
k=1

∆k . (7)

The equality on the right hand of equation 7 holds so long as (i) P(K ≥ k) > 0, ∀k > 0, and (ii) the
series converges absolutely, i.e.,

∑∞
k=1 |∆k| <∞ (Chen et al., 2019). This condition ensures that

the average of multiple samples will converge to the value of the infinite series by the law of large
numbers. However, the variance of this estimator depends on the choice of p(K) and can potentially
be very large or even infinite (McLeish, 2011; Rhee & Glynn, 2015; Beatson & Adams, 2019).

3

Under review as a conference paper at ICLR 2020

3 SUMO: UNBIASED ESTIMATION OF LOG PROBABILITY FOR LVMS

3.1 RUSSIAN ROULETTE TO TIGHTEN LOWER BOUNDS

We can turn any absolutely convergent series into a telescoping series and apply the Russian roulette
randomization to form an unbiased stochastic estimator. We focus here on the IWAE bound de-
scribed in Section 2.2. Let ∆k(x) = IWAEk+1(x)− IWAEk(x). Then since IWAE converges
absolutely, we apply equation 7 to construct our estimator, which we call SUMO (Stochastically
Unbiased Marginalization Objective):

SUMO(x) = IWAE1(x) +

K∑
k=1

∆k(x)

P(K ≥ k)
where K ∼ p(K) . (8)

The randomized truncation of the series using the Russian roulette estimator means that this is an
unbiased estimator of the log marginal likelihood, regardless of the distribution p(K):

E [SUMO(x)] = log pθ(x) . (9)

Furthermore, we can prove that the gradients of SUMO also have finite expectation (Appendix A.3).
Algorithm 1 shows how we compute a single sample of SUMO, which has the same expected cost
as IWAEK where K = E[K + 1] .

3.2 GRADIENT VARIANCE AND THE CHOICE OF p(K)

To efficiently optimize a limit, one should choose an estimator to minimize the product of the sec-
ond moment of the gradient estimates and the expected compute cost per evaluation. The choice
of p(K) effects both the variance and computation cost of our estimator. Denoting Ĝ := ∇θŶ
and ∆g

k := ∇θ[IWAEk+1(x)− IWAEk(x)], the Russian roulette estimator is optimal across a broad
family of unbiased randomized truncation estimators if and only if the ∆g

k are statistically inde-
pendent, in which case it has second moment E||Ĝ||22 =

∑∞
k=1

E||∆g
k||

2
2/P(K≥k) (Beatson & Adams,

2019). For the following derivation of p(K), we assume independence of ∆g
k and restrict ourselves

to the Russian roulette estimator. While the ∆g
k are not in fact strictly independent with our sampling

procedure (Algorithm 1), and other estimators within the family may perform better, we justify our
choice by showing that E∆i∆j for i 6= j converges to zero much faster than E∆2

k (Appendices A.1
& A.2).

We show that E||∆g
k||22 is O(1/k2) (Appendix A.3). Therefore, the optimal compute-variance prod-

uct (Rhee & Glynn, 2015; Beatson & Adams, 2019) is given by P(K ≥ k) ∝
√

E||∆g
k||22). In our

case, this gives P(K ≥ k) = 1/k, which results in an estimator with infinite expected computation
and no finite bound on variance. In fact, any p(K) which gives rise to provably finite variance
requires a heavier tail than P(K ≥ k) = 1/k and will have infinite expected computation.

There are no theoretical guarantees for optimization with an infinite-variance gradient estimator, but
we empirically find that convergence is stable. We plot ||∆k||22 for the toy variational inference task
used to assess signal to noise ratio in Tucker et al. (2018) and Rainforth et al. (2018), and find that
they converge faster than 1

k2 in practice (Appendix A.4). While this indicates the variance is better
than the theoretical bound, an estimator having infinite expected computation cost will always be an
issue as it indicates significant probability of sampling arbitrarily large K. We therefore modify the

Algorithm 1 Computing SUMO, an unbiased estimator of log p(x).

Input: x, m ≥ 1, encoder q(z;x), decoder p(x, z), p(K), reverse cdf(·) = P(K ≥ ·)
1: Sample K ∼ p(K)
2: Sample {zk}K+m

k=1
iid∼ q(z;x)

3: logwk ← log p(x, zk)− log q(zk;x)
4: ks← [1, . . . ,K +m]
5: cum iwae← log_cumsum_exp(logwk)− log(ks[:k+1])
6: inv weights = 1/reverse cdf(ks)

return cum iwae[m-1] + sum(inv weights * (cum iwae[m:] - cum iwae[m-1:-1]))

4

Under review as a conference paper at ICLR 2020

tail of the sampling distribution such that the estimator has finite expected computation:

P(K ≥ k) =

{
1/k if k < α
1/α · (1− 0.1)k−α if k ≥ α (10)

We typically choose α = 80, which gives an expected computation cost of approximately 5 terms.

3.2.1 TRADING VARIANCE AND COMPUTE

One way to potentially improve the RR estimator is to construct it so that some minimum number
of terms (denoted here as m) are always computed. This puts a lower bound on the computational
cost, but can potentially lower variance, providing a design space for trading off estimator quality
against computational cost. This corresponds to a choice of RR estimator in which P(K = K) = 0
for K ≤ m. This computes the sum out to m terms (effectively computing IWAEm) and then esti-
mates the remaining difference with Russian roulette:

SUMO(x) = IWAEm(x) +

K∑
k=m

∆k(x)

P(K ≥ k)
, K ∼ p(K) (11)

In practice, instead of tuning parameters of p(K), we setm to achieve a given expected computation
cost per estimator evaluation for fair comparison with IWAE and related estimators.

3.3 TRAINING q(z;x) TO REDUCE VARIANCE

The SUMO estimator does not require amortized variational inference, but the use of an “encoder”
to produce the approximate posterior q(z;x) has been shown to be a highly effective way to perform
rapid feedforward inference in neural latent variable models. We use φ to denote the parameters of
the encoder qφ(z;x). However, the gradients of SUMO with respect to φ are in expectation zero
precisely because SUMO is an unbiased estimator of log pθ(x), regardless of our choice of qφ(z;x).
Nevertheless, we would expect the choice of qφ(z;x) significantly impacts the variance of our esti-
mator. As such, we optimize qφ(z;x) to reduce the variance of the SUMO estimator. We can obtain
unbiased gradients in the following way (Ruiz et al., 2016; Tucker et al., 2017):

∇φVar[SUMO] = ∇φE[SUMO2]−(((((((
∇φ(E[SUMO])2 = E[∇φSUMO2] . (12)

Notably, the expectation of this estimator depends on the variance of SUMO, which we have not
been able to bound. In practice, we observe gradients which are bounded but sometimes very large.
We apply gradient clipping to the encoder to clip gradients which are excessively large in magnitude.
This helps stabilize the training progress but does introduce bias into the encoder gradients. Fortu-
nately, the encoder itself is merely a tool for variance reduction, and biased gradient with respect to
the encoder can still significantly help optimization.

3.4 APPLICATIONS OF UNBIASED LOG PROBABILITY

Here we list some applications where an unbiased log probability is useful. Using SUMO to replace
existing lower bound estimates allows latent variable models to be used for new applications where
a lower bound is inappropriate. As latent variable models can be both expressive and efficient to
sample from, they are frequently useful in applications where the data are high-dimensional and
samples from the model are needed.

Minimizing log pθ(x). Some machine learning objectives include terms that seek to increase the
entropy of the learned model. The “reverse KL” objective—often used for training models to per-
form approximate posterior inferences—minimizes Ex∼pθ(x)[log pθ(x)− log π(x)] where π(x) is a
target density that may only be known up a normalization constant. Local updates of this form are
the basis of the expectation propagation procedure (Minka, 2001). This objective has also been used
for distilling autoregressive models that are inefficient at sampling (Oord et al., 2018). Moreover, re-
verse KL is connected to the use of entropy-regularized objectives (Williams & Peng, 1991; Ziebart,
2010; Mnih et al., 2016; Norouzi et al., 2016) in decision-making problems, where the goal is to
encourage the decision maker toward exploration and prevent it from settling into a local minimum.

5

Under review as a conference paper at ICLR 2020

Unbiased score function ∇θ log pθ(x). The score function is the gradient of the log-likelihood
with respect to the parameters and has uses in estimating the Fisher information matrix and per-
forming stochastic gradient Langevin dynamics (Welling & Teh, 2011), among other applications.
Of particular note, the REINFORCE gradient estimator—which is generally applicable for optimiz-
ing objectives of the form minθ Ex∼pθ(x)[R(x)]—is estimated using the score function. This can be
replaced with the gradient of SUMO which itself is an estimator of the score function∇θ log pθ(x).

∇θEx∼pθ(x)[R(x)] = Ex∼p(x)[R(x)∇θ log pθ(x)]

= Ex∼pθ(x)[R(x)∇θE[SUMO(x)]]

= Ex∼pθ(x)[E[R(x)∇θSUMO(x)]]

(13)

where the inner expectation is over the stochasticity of the SUMO estimator. Such estimators are
often used in for reward maximization in reinforcement learning where pθ(x) is a stochastic policy.

4 RELATED WORK

There is a long history in Bayesian statistics of marginal likelihood estimation in the service of
model selection. The harmonic mean estimator (Newton & Raftery, 1994), for example, has a
long (and notorious) history as a consistent estimator of the marginal likelihood that may have
infinite variance (Murray & Salakhutdinov, 2009). The Chib estimator (Chib, 1995), the Laplace
approximation, and nested sampling (Skilling, 2006) are alternative proposals that can often have
better properties (Murray & Salakhutdinov, 2009). Annealed importance sampling (Neal, 2001)
probably represents the gold standard for marginal likelihood estimation.

Russian roulette also has a long history. It dates back to unpublished work from von Neumann and
Ulam, who used it to debias Monte Carlo methods for matrix inversion (Forsythe & Leibler, 1950)
and particle transport problems (Kahn, 1955). It has gained popularity in statistical physics (Spanier
& Gelbard, 1969; Kuti, 1982; Wagner, 1987), for unbiased ray tracing in graphics and render-
ing (Arvo & Kirk, 1990), and for a number of estimation problems in the statistics community (Wei
& Murray, 2017; Girolami et al., 2013; Rychlik, 1990; 1995; Jacob & Thiery, 2015; Jacob et al.,
2017). It has also been independently rediscovered many times (Fearnhead et al., 2008; McLeish,
2011; Rhee & Glynn, 2012; Tallec & Ollivier, 2017).

The use of Russian roulette estimation in deep learning and generative modeling applications has
been gaining traction in recent years. It has been used to solve short-term bias in optimization
problems (Tallec & Ollivier, 2017; Beatson & Adams, 2019). Wei & Murray (2017) estimates the
reciprocal normalization constant of an unnormalized density. Han et al. (2018) uses a similar ran-
dom truncation approach to estimate the distribution of eigenvalues in a symmetric matrix. Along
similar motivations with our work, Chen et al. (2019) uses this estimator to construct an unbiased
estimator of the change of variables equation in the context of normalizing flows (Rezende & Mo-
hamed, 2015), and Xu et al. (2019) uses it to construct unbiased log probability for a nonparameteric
distribution in the context of variational autoencoders (Kingma & Welling, 2013).

Though we extend latent variable models to applications that require unbiased estimates of log
probability and benefit from efficient sampling, an interesting family of models already fulfill these
requirements. Normalizing flows (Rezende & Mohamed, 2015; Dinh et al., 2017) offer exact log
probability and certain models have been proven to be universal density estimators (Huang et al.,
2018). However, these models often require restrictive architectural choices with no dimensionality-
reduction capabilities, and make use of many more parameters to scale up than alternative generative
models (Kingma & Dhariwal, 2018). Discrete variable versions of these models are still in their
infancy and must use biased gradients (Tran et al., 2019; Hoogeboom et al., 2019), whereas latent
variable models extend naturally to discrete observations.

5 DENSITY MODELING EXPERIMENTS

We first compare the performance of SUMO when used as a replacement to IWAE with the same
expected cost on density modeling tasks. We make use of two benchmark datasets: dynamically
binarized MNIST (LeCun et al., 1998) and binarized OMNIGLOT (Lake et al., 2015).

6

Under review as a conference paper at ICLR 2020

Table 1: Test negative log-likelihood of the trained model, estimated using IWAE(k=5000). For
SUMO, k refers to the expected number of computed terms.

MNIST OMNIGLOT

Training Objective k=5 k=15 k=50 k=5 k=15 k=50

IWAE (Burda et al., 2016) 85.54 — 84.78 106.12 — 104.67

IWAE (Our impl.) 85.28±0.01 84.89±0.03 84.50±0.02 104.96±0.04 104.53±0.05 103.99±0.12
SUMO 85.09±0.01 84.71±0.02 84.40±0.03 104.85±0.04 104.29±0.12 103.79±0.14

Target log probability Training w/ IWAE (k=15) Training w/ SUMO (k=15) Model samples

Figure 1: We trained latent variable models for posterior inference, which requires minimizing log
probability under the model. Training with IWAE leads to optimizing for the bias while leaving the
true model in an unstable state, whereas training with SUMO—though noisy—leads to convergence.

We use the same neural network architecture as IWAE (Burda et al., 2016). The prior p(z) is a 50-
dimensional standard Gaussian distribution. The conditional distributions p(xi|z) are independent
Bernoulli, with the decoder parameterized by two hidden layers, each with 200 tanh units. The
approximate posterior q(z;x) is also a 50-dimensional Gaussian distribution with diagonal covari-
ance, whose mean and variance are both parameterized by two hidden layers with 200 tanh units.
We reimplemented and tuned IWAE, obtaining strong baseline results which are better than those
previously reported. We use the same hyperparameters to train with the SUMO estimator. We find
clipping very large gradients can help performance, as large gradients may be infrequently sam-
pled. This may introduce a small amount of bias into the gradients while reducing variance, but can
nevertheless help achieve faster convergence and should still result in a less-biased estimator.

The averaged test log-likelihoods and standard deviations over 3 runs are summarized in Table 1. To
be consistent with existing literature, we evaluate our model using IWAE with 5000 samples. In all
the cases, SUMO achieves slightly better performance than IWAE with the same expected cost. We
also bold the results that are statistically significant according to an unpaired t-test with significance
level 0.05. However, we do see diminishing returns as we increase k, suggesting that as we increase
compute, the variance of our estimator may impact performance more than the bias of IWAE.

6 LATENT VARIABLES FOR ENTROPY MAXIMIZATION

We move on to our first task for which a lower bound estimate of log probability would not suf-
fice. The reverse KL objective is useful when we have access to a (possibly unnormalized) target
distribution but no efficient sampling algorithm.

min
θ
DKL(pθ(x)||p∗(x)) = min

θ
Ex∼pθ(x)[log pθ(x)− log p∗(x)] (14)

A major problem with fitting latent variables models to this objective is the presence of an entropy
maximization term, effectively a minimization of log pθ(x). Estimating this log marginal probability
with a lower bound estimator could result in the optimizing θ to maximize the bias of the estimator
instead of the true objective. Our experiments demonstrate that this causes IWAE to often fail to
optimize the objective.

Modified IWAE for entropy maximization. The bias of the IWAE estimator can be interpreted
as the KL between an importance-weighted approximate posterior qIW (z;x) implicitly defined by

7

Under review as a conference paper at ICLR 2020

the encoder and the true posterior p(z|x) (Domke & Sheldon, 2018). Both the encoder and decoder
parameters can therefore affect this bias. In practice, we find that the encoder optimization proceeds
at a faster timescale than the decoder optimization: i.e., the encoder can match q(z;x) to the de-
coder’s p(x|z) more quickly than the latter can match an objective. For this reason, we train the
encoder to reduce bias and use a minimax training objective

max
q(z;x)

min
p(x,z)

Ex∼p(x)[IWAEK(x)− log p∗(x)] (15)

Though this is still a lower bound with unbounded bias, it makes for a stronger baseline than opti-
mizing q(z;x) in the same direction as p(x, z). We find that this approach can work well in practice
when k is set sufficiently high.

0 2000 4000 6000 8000 10000
Training Iteration

4

2

0

2

4

6

Es
tim

at
e

of
 K

L(
p

||p
*) IWAE (k = 15)

IWAE (k = 75)
IWAE (k = 150)

IWAE (k = 1500)
SUMO(k 15)
SUMO(k 150)

Figure 2: Training with reverse KL requires min-
imizing log p(x). SUMO estimates are unbiased
and trains well, but minimizing the lower bound
IWAE with small k leads to estimates of −∞.

We choose a “funnel” target distribution (Fig-
ure 1) similar to the distribution used as a
benchmark for inference in Neal et al. (2003),
where p∗ has support in R2 and is defined
p∗(x1, x2) = N (x1; 0, 1.352)N (x2; 0, e2x1)
We use neural networks with one hidden layer
of 200 hidden units and tanh activations for
both the encoder and decoder networks. We
use 20 latent variables, with p(z), pθ(x|z), and
qφ(z;x) all being Gaussian distributed.

Figure 2 shows the learning curves when using
IWAE and SUMO. Unless k is set very large,
IWAE will at some point start optimizing the
bias instead of the actual objective. The reverse
KL is a non-negative quantity, so any estimate
significantly below zero can be attributed to the
unbounded bias. On the other hand, SUMO
correctly optimizes for the objective even with a small expected cost. Increasing the expected cost
k for SUMO reduces variance. For the same expected cost, SUMO can optimize the true objective
but IWAE cannot. We also found that if k is set sufficiently large, then IWAE can work when we
train using the minimax objective in equation 15, suggesting that a sufficiently debiased estimator
can also work in practice. However, this requires much more compute and likely does not scale
compared to SUMO. We also visualize the contours of the resulting models in Figure 1. For IWAE,
we visualize the model a few iterations before it reaches numerical instability.

7 LATENT VARIABLE POLICIES FOR COMBINATORIAL OPTIMIZATION

Let us now consider the problem of finding the maximum of a non-differentiable function, a special
case of reinforcement learning without an interacting environment. Variational optimization (Staines
& Barber, 2012) can be used to reformulate this as the optimization of a parametric distribution,

max
x

R(x) ≥ max
θ

Ex∼pθ(x)[R(x)], (16)

which is now a differentiable function with respect to the parameters θ, whose gradients can be
estimated using the REINFORCE gradient estimator and the SUMO estimator (equation 13).

For concreteness, we focus on the problem of quadratic pseudo-Boolean optimization (QPBO)
where the objective is to maximize

R(x) =
∑
i=1

wi(xi) +
∑
i<j

wij(xi, xj) (17)

where {xi}di=1 ∈ {0, 1} are binary variables. Without further assumptions, QPBO is NP-
hard (Boros & Hammer, 2002). As there exist complex dependencies between the binary variables
and optimization of equation 16 requires sampling from the policy distribution pθ(x), a model that
is both expressive and allows efficient sampling would be ideal. For this reason, we motivate the
use of latent variable models with independent conditional distributions, which we trained using the
SUMO objective. Our baselines are an autoregressive policy, which captures dependencies but for

8

Under review as a conference paper at ICLR 2020

10 1 100 101 102 103

Training Time (sec)
0

500

1000

1500

2000

2500

3000

3500

Ex
pe

ct
ed

 R
ew

ar
d

LVM (SUMO)
Autoregressive
Independent

QPBO w/ 500 variables

10 1 100 101 102 103

Training Time (sec)
0

1000

2000

3000

4000

5000

6000

Ex
pe

ct
ed

 R
ew

ar
d

LVM (SUMO)
Autoregressive
Independent

QPBO w/ 1000 variables

10 1 100 101 102 103 104

Training Time (sec)
0

10000

20000

30000

40000

50000

Ex
pe

ct
ed

 R
ew

ar
d

LVM (SUMO)
Autoregressive
Independent

QPBO w/ 10000 variables

Figure 3: Solving combinatorial optimization with latent variable policies allow faster exploration
than autoregressive policy models, while being more expressive than an independent policy.

which sampling must be performed sequentially, and an independent policy, which is easy to sample
from but captures no dependencies.

pLVM(x) :=

∫ d∏
i=1

pθ(xi|z)p(z)dz pAutoreg(x) :=

d∏
i=1

p(xi|x≤i) pIndep(x) :=

d∏
i=1

p(xi)

We construct one problem instance for each d ∈ {500, 1000, 10000}. For each instance, we ran-
domly sampled the weights wi and wij uniformly from the interval [−1, 1]. Figure 3 shows the
performance of each policy model in solving problems of different sizes, where training time (note
the log scale) includes model sampling and updating, but not the computation of the reward function.
Including the reward computation would simply increase each method by a constant amount of time,
but would not allow us to compare across problem instances due to the quadratic nature of our test
problem. All methods were trained with exactly 10000 iterations. We use the same architecture as in
the entropy maximization experiment, except with Bernoulli conditional distributions. The indepen-
dent policy uses the same decoder architecture as the latent variable policy but always uses a fixed
random z, whereas the autoregressive policy uses the a masked autoencoder architecture (Germain
et al., 2015) with around the same number of parameters. For the masked autoencoder, evaluation
of log probability only requires a single forward pass, but sampling requires d forward passes.

We note that even with only d = 500 variables, the search space is intractably large for exact op-
timization. We find that at convergence, the independent policy performs worse than the latent
variable and autoregressive policies. While more complex models may have a better grasp of the
current “frontier” of reward distributions, the simple independent model must prematurely reduce its
entropy in order to obey strong dependencies between variables. This reduction in entropy reduces
the final reward due to insufficient exploration. This behavior is indicated by the dips in expected
reward during optimization. On the other extreme, the autoregressive policy is slow to update, with
each iteration taking more than 3 seconds on the d = 10000 problem instance and is roughly 100×
slower than the other models. In contrast, the latent variable and independent policies spend simi-
lar amounts of time solving all problem instances, and are parallelizable. While the use of SUMO
with k = 15 makes our latent variable policy slower than the independent policy, the performance
gap is roughly 0.5× to 2× the size of the problem instance, suggesting that models that capture
dependencies can obtain non-trivial improvement in expected reward.

8 CONCLUSION

We introduced SUMO, a new unbiased estimator of the log probability for latent variable mod-
els, and demonstrated tasks for which this unbiased estimator performs better than standard lower
bounds. In practice, the high variance of our estimator necessitates gradient clipping during opti-
mization, which re-introduces a small amount of bias. However, even this clipped estimator provides
lower-bias estimates than existing estimators at the same compute cost, and works well when mini-
mizing log probability. We plan to investigate new families of gradient-based optimizers which can
handle heavy-tailed stochastic gradients. It may be fruitful to investigate the use of convex combi-
nation of consistent estimators within the SUMO approach, as any convex combination is unbiased.

9

Under review as a conference paper at ICLR 2020

REFERENCES

James Arvo and David Kirk. Particle transport and image synthesis. ACM SIGGRAPH Computer
Graphics, 24(4):63–66, 1990.

Robert Bamler, Cheng Zhang, Manfred Opper, and Stephan Mandt. Perturbative black box varia-
tional inference. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, pp. 5079–5088. Cur-
ran Associates, Inc., 2017.

Alex Beatson and Ryan P. Adams. Efficient optimization of loops and limits with randomized
telescoping sums. In International Conference on Machine Learning, 2019.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3(Jan):993–1022, 2003.

Endre Boros and Peter L Hammer. Pseudo-Boolean optimization. Discrete Applied Mathematics,
123(1-3):155–225, 2002.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. 2016.

Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. arXiv preprint arXiv:1906.02735, 2019.

Siddhartha Chib. Marginal likelihood from the Gibbs output. Journal of the American Statistical
Association, 90(432):1313–1321, 1995.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017.

Justin Domke and Daniel R Sheldon. Importance weighting and variational inference. In Advances
in Neural Information Processing Systems, pp. 4470–4479, 2018.

Paul Fearnhead, Omiros Papaspiliopoulos, and Gareth O Roberts. Particle filters for partially ob-
served diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70
(4):755–777, 2008.

George E Forsythe and Richard A Leibler. Matrix inversion by a Monte Carlo method. Mathematics
of Computation, 4(31):127–129, 1950.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pp. 881–889, 2015.

Mark Girolami, Anne-Marie Lyne, Heiko Strathmann, Daniel Simpson, and Yves Atchade. Playing
Russian roulette with intractable likelihoods. Technical report, Citeseer, 2013.

Insu Han, Haim Avron, and Jinwoo Shin. Stochastic Chebyshev gradient descent for spectral opti-
mization. In Advances in Neural Information Processing Systems, pp. 7386–7396, 2018.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Machine Learning, 2017.

Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg, and Max Welling. Integer discrete flows
and lossless compression. arXiv preprint arXiv:1905.07376, 2019.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, 2018.

Pierre E Jacob and Alexandre H Thiery. On nonnegative unbiased estimators. The Annals of Statis-
tics, 43(2):769–784, 2015.

10

Under review as a conference paper at ICLR 2020

Pierre E Jacob, John O’Leary, and Yves F Atchadé. Unbiased Markov chain Monte Carlo with
couplings. arXiv preprint arXiv:1708.03625, 2017.

Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta. Com-
posing graphical models with neural networks for structured representations and fast inference.
In Advances in Neural Information Processing Systems, pp. 2946–2954, 2016.

Herman Kahn. Use of different Monte Carlo sampling techniques. 1955.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems, pp. 10215–10224, 2018.

Julius Kuti. Stochastic method for the numerical study of lattice fermions. Physical Review Letters,
49(3):183, 1982.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Don McLeish. A general method for debiasing a Monte Carlo estimator. Monte Carlo Methods and
Applications, 17(4):301–315, 2011.

Thomas P Minka. Expectation propagation for approximate Bayesian inference. In Proceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 362–369. Morgan
Kaufmann Publishers Inc., 2001.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Iain Murray and Ruslan Salakhutdinov. Evaluating probabilities under high-dimensional latent vari-
able models. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Advances in Neural
Information Processing Systems 21, pp. 1137–1144. 2009.

Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.

Radford M Neal et al. Slice sampling. The Annals of Statistics, 31(3):705–767, 2003.

Michael A Newton and Adrian E Raftery. Approximate Bayesian inference with the weighted like-
lihood bootstrap. Journal of the Royal Statistical Society: Series B (Methodological), 56(1):3–26,
1994.

Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. Reward augmented maximum likelihood for neural structured prediction. In Advances In
Neural Information Processing Systems, pp. 1723–1731, 2016.

Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted autoencoders
and jackknife variational inference. In International Conference on Learning Representations,
2018.

Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis C Cobo, Florian Stimberg, et al.
Parallel Wavenet: Fast high-fidelity speech synthesis. In International Conference on Machine
Learning, 2018.

Tom Rainforth, Adam R Kosiorek, Tuan Anh Le, Chris J Maddison, Maximilian Igl, Frank Wood,
and Yee Whye Teh. Tighter variational bounds are not necessarily better. In International Con-
ference on Machine Learning, 2018.

11

Under review as a conference paper at ICLR 2020

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In
International Conference on Learning Representations, 2018.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, 2015.

Chang-han Rhee and Peter W Glynn. A new approach to unbiased estimation for SDEs. In Pro-
ceedings of the Winter Simulation Conference, pp. 17. Winter Simulation Conference, 2012.

Chang-han Rhee and Peter W Glynn. Unbiased estimation with square root convergence for SDE
models. Operations Research, 63(5):1026–1043, 2015.

Francisco JR Ruiz, Michalis K Titsias, and David M Blei. Overdispersed black-box variational in-
ference. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
2016.

Tomasz Rychlik. Unbiased nonparametric estimation of the derivative of the mean. Statistics &
probability letters, 10(4):329–333, 1990.

Tomasz Rychlik. A class of unbiased kernel estimates of a probability density function. Applica-
tiones Mathematicae, 22(4):485–497, 1995.

John Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1(4):833–
859, 2006.

Jerome Spanier and Ely M Gelbard. Monte Carlo Principles and Neutron Transport Problems.
Addison-Wesley Publishing Company, 1969.

Joe Staines and David Barber. Variational optimization. arXiv preprint arXiv:1212.4507, 2012.

Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. arXiv
preprint arXiv:1705.08209, 2017.

Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, and Ben Poole. Discrete flows:
Invertible generative models of discrete data. arXiv preprint arXiv:1905.10347, 2019.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar:
Low-variance, unbiased gradient estimates for discrete latent variable models. In Advances in
Neural Information Processing Systems, pp. 2627–2636, 2017.

George Tucker, Dieterich Lawson, Shixiang Gu, and Chris J Maddison. Doubly reparameterized
gradient estimators for Monte Carlo objectives. In International Conference on Learning Repre-
sentations, 2018.

Wolfgang Wagner. Unbiased Monte Carlo evaluation of certain functional integrals. Journal of
Computational Physics, 71(1):21–33, 1987.

Colin Wei and Iain Murray. Markov chain truncation for doubly-intractable inference. 54:776–784,
20–22 Apr 2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th International Conference on Machine Learning, pp. 681–688, 2011.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

Kai Xu, Akash Srivastava, and Charles Sutton. Variational Russian roulette for deep Bayesian
nonparametrics. In International Conference on Machine Learning, pp. 6963–6972, 2019.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. PhD thesis, figshare, 2010.

12

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 CONVERGENCE OF IWAEk+1 − IWAEk

Let wi = p(x|zi)p(zi)
q(zi|x) and we define Yk := 1

k

∑k
i=1 wi as the sample mean and we have E[Yk] =

E[w] = µ.
IWAEk = log Yk = log [µ+ (Yk − µ)]

= logµ−
∞∑
t=1

(−1)t

tµt
(Yk − µ)t

(18)

We follow the notations in Nowozin (2018). We use the central moments γt := E[(Yk − µ)t] and
µt := E[(w − µ)t] for t ≥ 2.

E∆2
k = E(IWAEk+1 − IWAEk)2 (19)

= E

[
logµ−

∞∑
t=1

(−1)t

tµt
(Yk+1 − µ)t − logµ+

∞∑
t=1

(−1)t

tµt
(Yk − µ)t

]2

(20)

= E

[∞∑
t=1

(−1)t

tµt
[
(Yk − µ)t − (Yk+1 − µ)t

]]2

(21)

Expanding Eq. 21 to order two gives

E∆2
k = E

[
− 1

µ
(Yk − µ− Yk+1 + µ) +

1

2µ2

[
(Yk − µ)2 − (Yk+1 − u)2

]]2

+ o(k−2) (22)

=
1

µ2
E
[
Yk+1 − Yk +

1

2µ
(Yk + Yk+1 − 2µ)(Yk − Yk+1)

]2

+ o(k−2) (23)

=
1

µ2
E
[
2(Yk+1 − Yk) +

1

2µ
(Yk + Yk+1)(Yk − Yk+1)

]2

+ o(k−2) (24)

Since we use cumulative sum to compute Yk and Yk+1, we obtain Yk+1 = kYk+wk+1

k+1 .

=⇒ E∆2
k =

1

µ2
E

[
2
wk+1 − 1

k + 1
+
(wk+1 + 2k+1

k+1

∑k
i=1 wk

2kµ

)(wk+1 − 1

k + 1

)]2

+ o(k−2) (25)

We note that wk+1−1
k+1 = O(1

k) and
wk+1+ 2k+1

k+1

∑k
i=1 wk

2kµ = O(1). Therefore ∆k isO(1
k), and E∆2

k =

O(1
k2).

A.2 CONVERGENCE OF ∆k∆j

From the previous proof, we have

∆k = 2µ
wk+1 − 1

k + 1
+
(wk+1 + 2k+1

k+1

∑k
i=1 wk

2k

)(wk+1 − 1

k + 1

)
Without loss of generality, suppose j ≥ k + 1,

E∆k∆j = E

[(∞∑
t=1

(−1)t

tµt
[
(Yk − µ)t − (Yk+1 − µ)t

])(∞∑
t=1

(−1)t

tµt
[
(Yj − µ)t − (Yj+1 − µ)t

])]
(26)

For clarity, let Ck = Yk − µ be the zero-mean random variable. Nowozin (2018) gives the relations

E[C2
k] = γ2 =

µ2

k
(27)

E[C3
k] = γ3 =

µ3

k2
(28)

E[C4
k] = γ4 =

3µ2
2

k2
+
µ4 − 3µ2

2

k3
(29)

13

Under review as a conference paper at ICLR 2020

E∆k∆j = E

[(∞∑
t=1

(−1)t

tµt
(Ctk − Ctk+1)

)(∞∑
t=1

(−1)t

tµt
(Ctj − Ctj+1)

)]
(30)

Expanding both the sums inside the brackets to order two:

E∆k∆j ≈ E
1

µ2
(Ck+1 − Ck)(Cj+1 − Cj) (1)

− E
1

2µ3
(C2

k+1 − C2
k)(Cj+1 − Cj) (2)

− E
1

2µ3
(Ck+1 − Ck)(C2

j+1 − C2
j) (3)

+ E
1

4µ4
(C2

k+1 − C2
k)(C2

j+1 − C2
j) (4)

We will proceed by bounding each of the terms (1), (2), (3), (4). First, we decompose Cj . Let
Bk,j := 1

j

∑j
i=k+1(wi − µ).

Cj =
1

j

(
kCk +

j∑
i=k+1

(wi − µ)

)
=
k

j
Ck +

1

j

j∑
i=k+1

(wi − µ) =
k

j
Ck +Bk,j (31)

We know that Bk,j is independent of Ck and E[Bk,j] = 0, implying E[CkBk,j] = 0. Note C2
j =

k2

j2C
2
k + 2kjCkBk,j +B2

k,j .

Now we show that (1) is zero:

E[
1

µ2
(Ck+1 − Ck)(Cj+1 − Cj)] =

1

µ2
E
[
Ck+1

k + 1

j + 1
+ Ck+1Bj+1,k+1

− k + 1

j
C2
k+1 −Bj,k+1Ck+1 − Ck

k

j + 1

− CkBj+1,k +
k

j
C2
k + CkBj,k

]
=

1

µ2
E[− k + 1

j(j + 1)
C2
k+1 + C2

k

k

j(j + 1)
]

=
1

µ2
[− k + 1

j(j + 1)

µ2

k + 1
+
µ2

k

k

j(j + 1)
] = 0

We now investigate (2):

E[− 1

2µ3
(C2

k+1 − C2
k)(Cj+1 − Cj)] =

1

2µ3
E
[
C3
k

k

j + 1
+ C2

kBj+1,k − C3
k

k

j
− C2

kBj,k

+ C3
k+1

k + 1

j + 1
+ C2

k+1Bj,k +
k

j
C2
k + CkBj+1,k

]
=

1

µ2
E[− k + 1

j(j + 1)
C2
k+1 + C2

k

k

j(j + 1)
]

=
1

2µ3
[− µ3

kj(j + 1)
+

µ3

(k + 1)j(j + 1)
] = − µ3

2µ3
[

1

k(k + 1)j(j + 1)
]

We now show that (3) is zero:

E[
1

2µ3
(Ck+1 − Ck)(C2

j − C2
j+1)] =

1

2µ3
E[Ck+1C

2
j − Ck+1C

2
j+1 − CkC2

j + CkC
2
j+1)]

=
1

2µ3
[
µ3

j2
− µ3

(j + 1)2
− µ3

j2
− µ3

(j + 1)2
]

= 0

14

Under review as a conference paper at ICLR 2020

Finally, we investigate (4):

E[
1

4µ4
(C2

k+1 − C2
k)(C2

j+1 − C2
j)]

Using the relation in equation 29, we have

E[C2
kC

2
j] = E[C2

k(
k2

j2
C2
k +

2k

j
CkBj,k +B2

j,k)] (32)

=
k2

j2
γ4 + γ2

(j − k)µ2

j2
(33)

=
(2k + j − 3)µ2

2 + µ4

j2k
(34)

E[
1

4µ4
(C2

k+1 − C2
k)(C2

j+1 − C2
j)] =

(2k + j − 3)µ2
2 + µ4

j2k
− (2k + j − 2)µ2

2 + µ4

(j + 1)2k

− (2k + j − 1)µ2
2 + µ4

j2(k + 1)
+

(2k + j)µ2
2 + µ4

(j + 1)2(k + 1)

=
(j2 − 5j − 3)µ2

2

j2(j + 1)2k(k + 1)
− µ4

(j + 1)2k(k + 1)

=
j2(µ2

2 − µ4)− (5j + 3)µ2
2

j2(j + 1)2k(k + 1)

=O(j−2k−2)

In summary, E∆k∆j is O(k−2j−2).

A.3 CONVERGENCE OF ∇
(

IWAEk+1 − IWAEk
)

The IWAE log likelihood estimate is:

Lk = log
(1

k

k∑
i=1

pθ(x, zi)

qψ(zi|x)

)
The gradient of this with respect to λ, where λ is either θ or ψ, is

dLk
dλ

=
1∑k

i=1
pθ(x,zi)
qψ(zi|x)

k∑
i=1

d

dλ

pθ(x, zi)

qψ(zi|x)

We abbreviate wi := pθ(x,zi)
qψ(zi|x) , and νi = dwi

dλ . In both λ = ψ and λ = θ cases, it suffices to treat
the wi and νi as i.i.d. random variables with finite variance and expectation. They are i.i.d. due
to i.i.d. sampling of the zi from q, and the conditions on the moments are ensured for reasonable
neural network architectures with bounded weights (enforcing a Lipschitz constraint), and are also
required for the basic IWAE estimator to have finite variance and expectation.

Consider the differences between two gradients: we label ∆g as follows:

∆g
k :=

dLk+1

dλ
− dLk

dλ
We have:

∆g
k =

1∑k+1
i=1 wi

νk+1 +
(1∑k+1

i=1 wi
− 1∑k

i=1 wi

) k∑
i=1

νi

=
1∑k+1

i=1 wi
νk+1 +

wk+1(∑k+1
i=1 wi

)(∑k
i=1 wi

) k∑
i=1

νi

15

Under review as a conference paper at ICLR 2020

100 101 102 103

K
85.0

85.5

86.0

86.5

87.0

87.5

88.0

Ev
id

en
ce

 e
st

im
at

e
of

 lo
gp

(x
) SUMO

IWAE

100 101 102 103

K
85.0

85.5

86.0

86.5

87.0

87.5

88.0

Ev
id

en
ce

 e
st

im
at

e
of

 lo
gp

(x
) SUMO_geometric

IWAE

100 101 102 103

K

82

84

86

88

90

Ev
id

en
ce

 e
st

im
at

e
of

 lo
gp

(x
) SUMO poisson

IWAE

Figure 4: A comparison of SUMO with different distributions and IWAE estimations of test negative
log-likelihood on a trained model with IWAE1 objective on MNIST. The expected cost is K + 5 for
each evaluation. The results are averaged over 100 runs (mean in bold and std shaded).

We again let Yk denote the kth sample mean 1
k

∑
i wi. Then:

∆g
k =

1

kYk
νk+1 +

wk+1

(k + 1)YkYk+1
ν̄k

The sample means Yk and µ̄k have finite expectation and variance. The variance vanishes as k →∞
(but the expectation does not change).

E||∆g
k||

2
2 =

1

k2
E||νk+1

Yk
+

k

k + 1

wk+1ν̄k
YkYk+1

||22

Let
νk+1

Yk
+

k

k + 1

wk+1ν̄k
YkYk+1

:= φk

=⇒ E||∆g
k||

2
2 =

1

k2
||Eφk||22 +

1

k2
Var(φk)

The second term vanishes at a rate strictly faster than 1
k2 : the variance of φk goes to zero as k →∞.

But the first term does not: φk is a biased estimator of φ∞ so Eφk does change with k, but it does
not necessarily go to zero:

Eφ∞ = E
[ν

Ew
+

k

k + 1

wEν
(Ew)2

]
=

Eν
Ew

Thus, E||∆g
k||22 is at most O(1

k2).

A.4 EMPIRICAL CONFIRMATION ON THE CONVERGENCE OF E∆2
k AND E||∆g

k||22

We measure the ∆2
k and ||∆g

k||22 on a toy example to verify the convergence rates empirically. We
reimplement the toy Gaussian example from Rainforth et al. (2018); Tucker et al. (2018). The
generative model is pθ(x, z) = N (z|θ, I)N (x|z, I). The encoder is qφ(z|x) = N (z|Ax + b, 2

3I).
Alongside ||∆k||22, we plot several reference convergence rates such as O(1/kc), c > 1, and O(ck),
c < 1, as a visual guide. The results are shown in Figure 5. Following the setup in Rainforth et al.
(2018), we sample a group of model parameters close to the optimal values which are perturbed by
Gaussian noise from N (0, 0.012). The gradient ∆g

k is taken w.r.t. the model parameter θ.

A.5 EXPERIMENTAL SETUP

All the models are trained using a batch size of 100 and an Amsgrad optimizer (Reddi et al., 2018)
with parameters lr = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−4. The learning rate is reduced
by factor 0.8 with a patience of 50 epochs. We use gradient norm scaling in both the inference
and generative networks. We train SUMO using the same architecture and hyperparameters as
IWAE except the gradient clipping norm. We set the gradient norm to 5000 for encoder and {20, 40,
60} for decoder in SUMO. For IWAE, the gradient norm is fixed to 10 in all the experiments. We
report the performance of models with early stopping if no improvements have been observed for
300 epochs on the validation set.

16

Under review as a conference paper at ICLR 2020

100 101 102

k

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

2
k

(1/k2)
(1/k3)
(1/k4)

0.999k

0.99k

0.9k

(a) Mean of estimated of E∆2
k with increasing k over

ten random trials with 1000 samples per trial. X and
Y axis are on log scale. Empirically the convergence
rate of ∆2

k is between O(1/k2) and O(1/k3).

100 101 102

k

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

|| g
k||22

(1/k2)
(1/k3)
(1/k4)

0.999k

0.99k

0.9k

(b) Mean of estimated E||∆g
k||

2
2 with increasing k

over ten trials with 1000 samples per trial. Empiri-
cally the convergence is faster than theoretical analy-
sis O(1/k2).

Figure 5: Empricial validation of the convergence rate of the norms of ∆ and ∆g .

A.5.1 REVERSE KL AND COMBINATORIAL OPTIMIZATION

These two tasks use the same encoder and decoder architecture: one hidden layer with tanh non-
linearities and 200 hidden units. We set the latent state to be of size 20. The prior is a standard
Gaussian with diagonal covariance, while the encoder distribution is a Gaussian with parameterized
diagonal covariance. For reverse KL, we used independent Gaussian conditional likelihoods for
p(x|z), while for combinatorial optimization we used independent Bernoulli conditional distribu-
tions. We found it helps stablize training for both IWAE and SUMO to remove momentum and used
RMSprop with learning rate 0.00005 and epsilon 1e-3 for fitting reverse KL. We used Adam with
learning rate 0.001 and epsilon 1e-3, plus standard hyperparameters for the combinatorial optimiza-
tion problems. SUMO used an expected compute of 15 terms, with m = 5 and the tail-modified
telescoping Zeta distribution.

17

	Introduction
	Preliminaries
	Latent variable models
	Training latent variable models
	Russian roulette estimator

	SUMO: Unbiased estimation of log probability for LVMs
	Russian roulette to tighten lower bounds
	Gradient variance and the choice of p(K)
	Trading variance and compute

	Training the encoder to reduce variance
	Applications of unbiased log probability

	Related Work
	Density Modeling Experiments
	Latent variables for entropy maximization
	Latent variable policies for combinatorial optimization
	Conclusion
	Appendix
	Convergence of IWAEk+1 - IWAEk
	Convergence of k j
	Convergence of (to1.5.IWAEk+1 - IWAEk)to1.5.
	Empirical Confirmation on the Convergence of Ek2 and E ||gk||22
	Experimental Setup
	Reverse KL and Combinatorial Optimization

