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ABSTRACT

Inferring causal effects of a treatment, intervention or policy from observational
data is central to many applications. However, state-of-the-art methods for causal
inference seldom consider the possibility that covariates have missing values,
which is ubiquitous in many real-world analyses. Missing data greatly compli-
cate causal inference procedures as they require an adapted unconfoundedness
hypothesis which can be difficult to justify in practice. We circumvent this is-
sue by considering latent confounders whose distribution is learned through vari-
ational autoencoders adapted to missing values. They can be used either as a
pre-processing step prior to causal inference but we also suggest to embed them
in a multiple imputation strategy to take into account the variability due to miss-
ing values. Numerical experiments demonstrate the effectiveness of the proposed
methodology especially for non-linear models compared to competitors.
Keywords: treatment effect estimation, missing values, variational autoencoders,
importance sampling, double robustness, multiple imputation.

1 INTRODUCTION

Many methods have been developed to estimate the causal effect of an intervention, such as the
administration of a treatment, on an outcome such as survival, from observational data, i.e., data
that is potentially confounded by selection bias due to the absence of randomization. Classical ones
include matching (Iacus et al., [2012), inverse propensity weighting (IPW, Horvitz & Thompson,
1952} [Rosenbaum & Rubin |1983)) and doubly robust methods (Robins et al., [1994; |(Chernozhukov
et al., |2018; [Wager & Athey, 2018} |Athey et al., 2019). More recent proposals use deep learning
methods that ensure balance of the population at the level of representation (Johansson et al., 2016
Shalit et al.,|2017)), infer the joint distribution of latent and observed confounders, the treatment and
the outcome (Louizos et al., |2017) or predict the counterfactuals with GANs (Yoon et al., [2018]).
For a detailed review of existing literature on treatment effect estimation we refer to|[Imbens|(2004),
Lunceford & Davidian| (2004) and |Guo et al.|(2019).

However, state-of-the-art methods still suffer from important shortcomings. In particular, they sel-
dom consider the possibility that covariates have missing values, which is ubiquitous in many real-
world situations (Josse & Reiter, [2018]) and has been widely discussed in different contexts (Mayer,
et al.|[2019a; |van Buuren, 2018} [Little & Rubin}2002). Although this question of missing attributes
in the context of treatment effect estimation has been raised early in the development of causal
inference (Rosenbaum & Rubin, [1984), there is still a lack of effective and consistent solutions ad-
dressing this problem, with a few notable exceptions such as [Mattei & Mealli| (2009); [Seaman &
White] (2014); [Kallus et al.| (2018)); [Yang et al.| (2019) which mainly focus on inverse propensity
weighting (IPW) methods. Recently, Mayer et al.| (2019b), in addition to suggesting doubly robust
estimators with missing data, classified the existing approaches into two families: the ones that adapt
the causal inference assumptions to the missing values setting (D’ Agostino Jr & Rubin| [2000; |Blake
et al., 2019) and the ones (Mattei & Mealli, 2009; [Seaman & White, [2014; Kallus et al., [2018)) that
consider the classical machinery and missingness mechanisms assumptions (Little & Rubin, [2002).
While the former are based on the assumption of unconfoundedness with missing values, which can
be difficult to assess in practice, the latter have been developed under strong parametric assump-
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tions about the outcome, treatment and covariates models, in addition to relying on missing values
hypotheses that can also be difficult to meet in practice (Yang et al.l 2019).

To avoid relying on the hypothesis of unconfoundedness with missing values or being in the very
parametric (and linear) framework of multiple imputation (Mattei & Mealli, | 2009; Seaman & White,
2014)) and matrix factorization (Kallus et al., 2018)), we propose a new method for causal inference
with missing data, which we call MissDeepCausal. MissDeepCausal is inspired by the work of
Kallus et al.| (2018)) in the sense that we consider a model with latent confounders, and assume
that we only have access to covariates with missing values that are noisy proxies of the true latent
confounders. However, our approach generalizes and extends the work of [Kallus et al.| (2018) in
different aspects: (i) instead of linear factor analysis models with missing values, we consider non-
linear versions using deep latent variable models (Kingma & Welling, [2014; Rezende et al., [2014);
(i) we rely on the missing at random (MAR) (Rubin| [1976)) assumption for the missing data mecha-
nisms, and not on the stronger missing completely at random (MCAR) one; (iii) we take into account
the posterior distribution of the latent variables given observed data and not only their conditional
expectation. This latter point allows us to define a multiple imputation strategy adapted to the latent
confounders model, and to couple it with doubly robust treatment effect estimation (Chernozhukov
et al.,[2018)).

In the remainder of this article we first introduce the problem framework and recall existing work
for handling missing values in causal inference in Section [2] We then introduce two variants of
our MissDeepCausal approach in Section (3| Finally we compare MissDeepCausal empirically with
several state-of-the-art method on simulated data in Section 4l

2  SETTING, NOTATIONS AND RELATED WORKS

In this section we start by quickly reviewing the problem of causal inference from observational data
without missing data. We consider the potential outcomes framework (Rubin, |1974} Imbens & Ru-
bin| 2015) where we have a sample of n independent and identically distributed (i.i.d.) observations
(Yi(0),Yi(1),Ws, X;),y ., with W; € {0, 1} a binary treatment, X; = (X1, .. ,Xip)T € RP
a vector of covariates, and (Y;(0), Y;(1)) € R? the outcomes we would have observed had we as-
signed control or treatment to the ¢-th sample, respectively. The observed outcome for unit 7, ¥; € R
is defined as Y; = W,;Y;(1) + (1 — W;)Y;(0). The individual causal effect of the treatment is
7; 2 Y;(1) — Y;(0) and the average treatment effect (ATE) is defined as

T 2 E[Y;(1) - Yi(0)] = E[r;].

The ATE 7, i.e., the link between W and Y, can be estimated by taking into account the confounding
factors X, i.e., the common causes of W and Y. A popular estimator of 7 from observational data
is the so-called doubly robust estimator:

Y — n(Xi) Yi — fio(X5) 1
é

. 15~ -
TDRéEZMl(Xi)—Mo(Xi)JrWz (X)) — (1 =Wi) ==
i=1 i

where fi,, () are regression estimates of the conditional response surfaces ji,,(z) 2 E[Y (w) | X =
z], w € {0,1}, and é(z) is an estimate of the propensity score e(x) = P(W; = 1|X; = z)
(Rosenbaum & Rubin, |1983 Imbens & Rubin, [2015)).

Standard results state that if either (fig, fi1) or € is correctly specified, then 7pp is an unbiased
estimator of 7 (Robins et al., |1994; |(Chernozhukov et al.l 2018; |Wager & Athey, [2018)) under the
following assumptions (Rosenbaum & Rubin, [1983): the ignorability or unconfoundedness assump-
tion that states that all confounding factors are measured, i.e., conditionally on X, the treatment
assignment is independent of the potential outcomes:

{vi(1),Y;(0)} L Wi|X;,  foralli; 2)

and the overlap assumption assuming the existence of some 7 > 0 such that < e(x) < 1 —
n, forallz e X.

We now consider an extension to account for possible missing entries in the covariates. For that
purpose, we denote the missingness pattern of the i-th sample as M; € {0, 1} such that M;; = 0
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if X;; is observed and M;; = 1 otherwise. The matrix of observed covariates can be written as
X*2 X ®(1— M)+ NAG M, with © the elementwise multiplication and 1 the matrix filled
with 1, so that X* takes its value in the half discrete space X* = (RU {NA})’. We model M;
as a random vector, and the possibility to infer causal effects with missing data now depends on
additional assumptions on the joint law of (Y;(0), Y;(1), Wy, X;, M;),_, .. Methods for causal
inference with missing covariates can be classified into two categories. o

Unconfoundedness with missing values. |Rosenbaum & Rubin|(1984) extend the unconfounded-
ness hypothesis (2) to missing values as

{(Yi(1),Yi(0)} LW;|X7,  foralli. 3)

This implies the assumption, illustrated in Figure[I] that if a covariate is not observed, it is not a
confounder. In particular, observations can have different confounders depending on their pattern of
missing data. They define the generalized propensity score as:

Vot € X*, ef(a) EP(W; = 1| X] =a7), @)

which is a balancing score under (3). Consequently, an IPW estimator formed with estimators of e*
can be an unbiased estimator of the ATE with missing values. Nevertheless, this method relies both
on the fact that the covariates X are the appropriate set of confounders, which can be questioned
without missing data (Kallus et al.,[2018), and requires certain expert input and reasoning to verify
that for each observation treatment assignment and/or outcome values depend only on observed
values of the confounders (Blake et al.| |2019; Mayer et al.,[2019b). Note in particular, that it is not
because the missing data in the covariates are completely at random (MCAR), i.e., M 1 X, that
is met. In practice, in addition, a difficulty with this approach is that estimating (4) requires fitting
one model per pattern of missing values, which is unrealistic with classical tools (Miettinen, 1985
D’ Agostino Jr & Rubin, [2000; D’ Agostino Jr et al., [2001; Blake et al., 2019); Mayer et al.|(2019b)
address this problem using random forests adapted to covariates with missing values.

Figure 1: Unconfoundedness with missing values. X,,;s denotes the unobserved values of X. The
formalism of [Pearl| (1995)) and [Richardson & Robins| (2013) is used.

Missingness mechanisms assumptions. Multiple imputation is one the most powerful approaches
to estimate parameters and their variance from an incomplete data (Little & Rubin, 2002; [van Bu-
uren, [2018)). |Seaman & White| (2014) show that when assuming (i) identifiability of the ATE in
the complete case, (ii) missing at random (MAR) values given W and Y, (iii) correct specification
of the propensity score with logistic regression and of the Gaussian distribution of covariates, then
multiple imputation gives a consistent estimate for the ATE estimated with IPW. An extension to
doubly robust estimation has been proposed by Mayer et al.| (2019b).

Instead of assuming that confounders are observed directly, Kallus et al.| (2018) consider a more
general model where observed covariates X are noisy and/or incomplete proxies of the true latent
confounders Z. More specifically, they assume a low-rank model for the covariates and estimate the
latent variables from the incomplete confounders using matrix completion methods (Hastie et al.,
2015} |Josse et al.L 2016). Then, under the linear regression model

E:ZZ-TOé—FTWi—f—Ei, (5

with random latent variables Z, missing values completely at random (MCAR) in X, unconfound-
edness given Z, and some additional assumptions, they prove that regressing ¥ on Z and W leads
to a consistent ATE estimator. Both techniques, multiple imputation and matrix factorization, rely
on parametric (and linear) frameworks.
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3 MiISSDEEPCAUSAL

To avoid relying on the hypothesis of unconfoundedness with missing values or being in the
very parametric (and linear) framework of multiple imputation and matrix factorization, we propose
MissDeepCausal, an approach based on deep latent variable models where the latent variables are
assumed to be the confounders as represented in Figure
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Figure 2: Graphical representation of the model underlying MissDeepCausal. Z represents the
unobserved latent confounders of the treatment W and the effect Y. X represents a proxy for the
confounders, and M a missing data mechanism; X™* represents the observed incomplete covariates,
while X,,;s stands for the missing data.

More precisely, we consider an estimator 7 = f(Z) of the causal effect 7 if the confounders Z
were observed'| e.g., the doubly robust estimator . Since we do not have access to the latent
confounders, but only to the X*, we cannot compute f(Z) directly. However, suppose that we
know the distribution P(Z|X*); then we can compute the surrogate estimator

9(X*) = E[f(Z)|X™] (6)

instead of f(Z). This estimator can be obtained by an approach described in Section which is
reminiscent of multiple imputation (Rubin, [1987)). Another strategy, described in Section [3.3] is to
consider latent variables estimation as a pre-processing step prior to causal inference by computing

hX*) £ f(E[Z]X)); (7)

this can be seen as a non-linear extension of |[Kallus et al.| (2018)). Both estimators require sampling
from the posterior distribution P(Z|X*). Consequently, we first describe in Sectionhow to learn
the joint distribution of (Z, X') from X* using a variational autoencoder (VAE) with missing data,
before turning to the details of each strategy.

3.1 DEEP LATENT VARIABLE MODELS WITH MISSING VALUES

To estimate and sample from P(Z | X*), we use the missing data importance weight autoencoder
bound (MIWAE) approach of [Mattei & Frellsen (2019), which is summarized in the appendix [A]
They use a simple variational family where they impute the missing entries with a constant and show
that using this class of distributions, it maximizes a lower bound of the observed log-likelihood.
Note that their approach requires the classical missing at random (MAR) (Rubin, [1976) assumption
to ignore the missing values mechanism when maximizing the observed likelihood for the VAE
inference.

In the MIWAE approach, the variational distribution @ (Z|X™) (defined in Appendix |A) plays a
central role but is not necessarily a good surrogate for the posterior distribution Py(Z]X™*). To
sample from the true posterior distribution, we resort to importance sampling techniques using the
variational distribution ()., for proposal. More precisely, we can define, for any measurable function
S,

B)X) = [ (2210002 = s [ (2P BHE 710z

' # is also a function of TV and Y but we keep these arguments implicit.
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This quantity can be estimated using self-normalized importance sampling with:

*| z(1) 0
N i 2 PCIZOp(Z0)
PR 0 (ZO]X*)

L
~ Zwls(Z(l)), where w; = (8

Equation [§]is used in our second strategy described in Section [3.3] while for our first strategy (de-
scribed in Section we sample L samples Z(1) ..., Z(F) according to Q.,(Z|X*), compute the
weights as in (8)) and re-sample B << L with probability proportional to the weights.

3.2 MisSDEEPCAUSAL WITH MULTIPLE IMPUTATION (MDC-MI)

MDC-MI uses the importance sampling strategy presented in Section[3.1] to compute an approxima-
tion of @) by Monte-Carlo as follows. First, we draw B i.i.d. samples (Z(J))1<]<B € R"*4 from
the posterior distribution P(Z|X™*). On each sample, we evaluate the function f and aggregate the
results: §(X*) = & Zle f(Z9). This approach can be viewed as a multiple imputation method,
which consists in generating different imputed data sets by drawing the missing values from their
posterior distribution given observed values, then estimating the parameters of interest on each im-
puted data set and aggregating the results according to Rubin’s rules (Rubinl [1987) to obtain a final
estimate for the quantity of interest. Here we consider the samples Z(7) of the latent variables and
apply the doubly robust estimator from (1)) on each table Z(7):

A(J) () (3 (7 (F)
N ~(j i A Y; — I 7
E (J) Z(J) ((Jj)(Zz(j)) + ”r EJ)L ) _ (1 _ ”71) A(O) ( (zj) )’ (9)
(Zz ) 1—el (Z’L )

and get the final estimate for the causal effect by computing the mean of the estimators i.e. 7 =
% Zle #(1). The doubly robust estimator from l) is asymptotically normal (under some mild

assumptions) (Wager & Athey, 2018)) which is required for the aggregation in multiple imputation
procedures (Rubin, [1987).

Note that this multiple imputation strategy additionally allows to reflect the variability due to the
missing values in the variance estimation of the estimator 7.

3.3 MiISSDEEPCAUSAL WITH LATENT VARIABLES ESTIMATION AS A PRE-PROCESSING STEP
(MDC-PROCESS)

We also propose MDC-process as a non-linear extension of Kallus et al| (2018)), where we esti-
mate h(X™*) defined in . For that purpose, we first approximate the expectation of the posterior
distribution

Z(z*) 2 B[Z|X* = 2*] (10)

to get estimates for the latent confounders. In a second step, we use them under the regression model
and accordingly regress the observed outcome Y on the estimated latent factors A (2*) and the
treatment assignment W to obtain an estimation of the treatment effect. This strategy is a heuristic
extension of [Kallus et al.| (2018) to a non-linear case in the sense that the latent variables encode
non-linear relationship between covariates.

An alternative, still heuristic, approach is to use the estimated latent confounders from (10} as inputs
for standard techniques to estimate the average treatment effect. More precisely, for the doubly
robust estimator (), we replace the estimates for the propensity score with estimates for

and similarly for the conditional response surfaces.

However, note that this latter strategy would require Z (z*) from li to be a confounder instead of
Z as it is assumed (see Figure[2)).
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4 SIMULATION STUDY

4.1 METHODS

We compare our methods to the following methods to handle missing values (the following
acronyms are identical to the method labels used in Figures 3H5b):

e MICE: the multiple imputation approach as suggested in Mattei & Mealli| (2009) and Sea-
man & White| (2014)). We use the implementation in the R (R Core Team), 2018)) package
mice (van Buuren & Groothuis-Oudshoorn, 2011) that imputes using predictive mean
matching and logistic regression models, and use 10 imputations.

e MF: the matrix factorization approach of Kallus et al.| (2018) using the matrix completion
softImpute (Hastie & Mazumder, 2015) based on nuclear norm penalty. We produce
results using the implementation of [Kallus et al. (2018 with cross-validation for the se-
lection of the dimensionality of the latent space.

e MIA: the method proposed by [Mayer et al.| (2019b) which targets (@) and the generalized
response surface analogue. It is based on estimation using random forests where missing
values are encoded with missing incorporated in attributes such that the splitting rules in
the random forests exploit the missingness pattern (Twala et al.| 2008; [Josse et al., 2019).
We use the implementation provided by the authorsﬂ

We test our method MissDeepCausal either by using the doubly robust estimator MDC-process from
Sectionor MDC-mi Section(denoted respectively by MDC . process and MDC . miﬂ Using
notations of the appendix |A] we use L = 10000 for the importance sampling weights. In addition,
for MDC-mi, we sample B = 200 observations from the estimated posterior distribution of (Z]|X™*)
for the multiple imputation MissDeepCausal.

4.2 SETTINGS

Under the latent confounding assumption (corresponding to the graphical model in Figure [2)), we
generate covariates according to two models:

e LRMF: The covariates are generated from a low-rank matrix factorization model as in
Kallus et al.| (2018).

e DLVM: The covariates are generated from a deep latent variable model as in as in |[Kingma
& Welling|(2014). Z; ~ Ny4(0, 1), covariates X; are sampled from N, (11(z), X(z)), where
(112, 2(z)) = (Vtanh(UZ +a) + b,exp(n” (UZ + a) 4+ 6)1,) with U, V, a, b, 6, drawn
from Standard Gaussian distributions and Uniform distributions.

Missing values are generated completely at random (MCAR), i.e., P(M;; = 1) = p, V4, Vj, with
p € {0.1, 0.3}. and we consider the following problem dimensions: (n, p, d) = (5000, 10, 3)
and (n, p, d) = (10000, 10, 3). Results are reported using 20 simulations for each setting; note
that in the following we only report results for the case (n, p, d) = (10000, 10, 3). Throughout all
experiments the true ATE 7 is fixed at 1. The code to reproduce the experiments is available upon
request.

4.3 RESULTS

4.3.1 REGRESSION ADJUSTMENT

First, we assess the quality of our heuristic described in Section [3.3|concerning the non-linear exten-
sion of Kallus et al.| (2018). For this we define treatment and outcome models with a logistic-linear
model as follows: logit(e(Z;.)) = o' Z;. and Y; ~ N((8TZ; + 7W;,0?). An estimation of 7
is obtained by regressing the observed outcomes Y; on the estimations of the latent factors Z (for
lin.MDC.process, 1in.MF) and on the mean imputed data X, (for 1in.mean).

Zhttps://github.com/udellgroup/causal_mf_code
*https://github.com/imkemayer/causal-inference-missing
*We extend the publicly available code of Mattei & Frellsen|(2019) to implement our method.
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Figure [3] shows that as expected our proposed method, 1in.MDC.process actually outperforms
all other methods when the covariates are generated according to a DLVM model. The bias observed
is small with respect to the one exhibited for completely observed covariates X. Additionally we
observe that if the data is generated under the LRMF model, then our method performs as well as
the initial proposal of [Kallus et al.|(2018)) (results for this are not reported here).
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3 < & @ 2 S & g 2 s & @
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(a) 0% of missing values (b) 10% of missing values (c) 30% of missing values

Figure 3: Estimated ATE via regression adjustment; covariates generated from a DLVM, (logistic-
)linear model specification for (e, pig, 1£1); results with Z_t rue results are obtained using the true
confounders Z.

4.3.2 DOUBLY ROBUST ESTIMATION

Now we turn to the more flexible framework which does not assume linear relationships (equation[5)
between the outcome and the confounders. We generate the treatment and outcome using logistic-
linear models and non-linear models based on non-linear transformations of the latent variables Z.
We consider the doubly robust estimator with the (imputed) covariates X for MICE and MIA
and with the estimation of the latent variables Z for MF and MissDeepCausal.

To estimate the regression surfaces and the propensity score required for the doubly robust estimator
(equation [I)), we use either a logistic-linear model or (generalized) random forests (Athey et al,
2019), indicated respectively by the prefixes 1oglin and grf in all figures. For the latter, we use
the implementation of the R package grf (Tibshirani et al.,|[2018]).

Figure [ illustrates that even when the latent variables are generated from matrix factorization, our
approaches based on the VAE with missing values lead to estimates that are almost unbiased, given
that the estimation of the propensity score and response surfaces is adapted to the considered models.
The small bias observed for the matrix factorization pre-processing approach from Kallus et al.
(2018) is not in contradiction with their theory since we use the doubly robust estimators and not
the regression model. In addition, they require a (much) larger number of proxy covariates w.r.t. the
number of latent confounders.

Figure[5|shows that as expected, due to the flexibility of MissDeepCausal, the suggested approaches
better handle highly non-linear relationships between the latent confounders and the observed (in-
complete) covariates. It turns out that the multiple imputation strategy is particularly appropriate
when the relationships between the outcome, the treatment and the confounders are highly non-
linear.

5 CONCLUSION

In this work we have investigated the problem of treatment effect estimation with incomplete co-
variates. This problem of missing values is highly relevant for modern causal inference as it is
exacerbated with high dimensional data. Yet most causal inference techniques do not address this
issue; and complete case analysis, in addition to leading to potentially inconsistent causal effects es-
timators, is not an option anymore. We have proposed MissDeepCausal which borrows the strength
of deep latent variable models to retrieve the latent confounders from incomplete covariates encod-
ing complex non-linear relationships. We use a modular approach in the style of Bayesian propensity

’In Figure all 1loglin estimations yield values around 6 and are therefore omitted for better readability.
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Figure 4: Estimated ATE for 10% of missing values; covariates are generated according to LRMF;
Z_true results are obtained using the true confounders Z E|
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Figure 5: Estimated ATE for 10% of missing values; covariates are generated according to DLVM;
Z_true results are obtained using the true confounders Z.

based methods for treatment effect estimation (Zigler} 2016)), where the latent variables are used as
inputs for doubly robust estimators. We suggest a multiple imputation strategy that allows to fully
exploit the posterior distribution of the latent variables. Numerical results are very encouraging in-
sofar as we obtain best relative performance in terms of bias whether the underlying model is well
or badly specified compared to current state of the art. Open challenges include heterogeneous treat-
ment effect estimation with missing values as well as the ambitious task of handling missing not at
random type data.
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A APPENDIX

A.1 DEEP LATENT VARIABLE MODELS WITH MISSING VALUES

Deep latent variable models can be defined as follows. Let (X, Z;),,, be ni.i.d. random variables
such that -
Z; ~ P(Z;)
{ Xi ~ Py(Xi|Zi) = @ (Xilfo(Z2)).
The prior distribution of the latent variables or codes Z; € R? is often isotropic Gaussian Z; ~
N (04,1;). The function fy : R? — H is a (deep) neural network called the decoder and Q(-|n)ner
is a parametric observation model, which we take to be multivariate Gaussian. The inference of deep

latent variable models can be achieved by maximizing evidence lower bounds of the likelihood, such
as the variational autoencoder bounds.

With missing values, the appropriate quantity to target for inference on 6, when the missing values
mechanism can be ignored (Rubin, {1976} [Little & Rubin, |2002), is the observed log-likelihood.
Using Rubin|(1976))’s notations, we define X; = (Xi,obs, X mis) the partition of the data in realized
observed and missing values given a specific realization of the pattern, it can be written as:

0(0) 2> " logpy (Xions) = » _ log / Po (Xiobs|Z:) p(Z:)dZ:.
i=1 i=1
The corresponding evidence lower bound (ELBO) is:

L(0,7) 2> Eq, [In Pp (Xiobs| Z:)] — KL(Q~ (Zi| Xiobs) | Po (),

=1

with K L for the Kullback-Leibler divergence and the variational distribution

Q~ (Z]| Xobs) £y (Z|9’Y(Xob5)) )

with W(-) the (parametric) variational distribution over R%. The function g, : X — K, called the
encoder, is parametrized by a (deep) neural network whose weights are stored in v € T'.

To take into account missing values in deep latent variable models, Mattei & Frellsen| (2019) suggest
the missing data importance weight autoencoder bound (MIWAE) approach. They use a simple
variational family where they impute the missing entries with a constant and show that using this
class of distributions, it maximizes a lower bound of the observed log-likelihood. Specifically, they

replace () with
Qv (Z|Xobs) = ¥ (Z]gy (¢ (Xobs))

where ¢ is an imputation function chosen beforehand that transforms X, into a complete input
vector ¢ (Xpps) € X.
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