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ABSTRACT

Network structures are important to learning good representations of many tasks
in computer vision and machine learning communities. These structures are either
manually designed, or searched by Neural Architecture Search (NAS) in previous
works, which however requires either expert-level efforts, or prohibitive computa-
tional cost. In practice, it is desirable to efficiently and simultaneously learn both
the structures and parameters of a network from arbitrary classes with budgeted
computational cost. We identify it as a new learning paradigm – Boosting Net-
work, where one starts from simple models, delving into complex trained models
progressively. In this paper, by virtue of an iterative sparse regularization path --
Split Linearized Bregman Iteration (SplitLBI), we propose a simple yet effective
boosting network method that can simultaneously grow and train a network by
progressively adding both convolutional filters and layers. Extensive experiments
with VGG and ResNets validate the effectiveness of our proposed algorithms.

1 INTRODUCTION

In recent years, deep convolution neural networks have made remarkable achievements in com-
pute vision and machine learning communities in addressing many important tasks, such as image
classification, and segmentation. Researchers had designed many successful Deep Neural Network
(DNN) architectures, from just have a few convolution layers like LeNet (LeCun et al., 1998) and
AlexNet (Krizhevsky et al., 2012), to have more than 10 layers, e.g., VGG (Simonyan & Zisserman,
2014) and GoogleLeNet (Szegedy et al., 2015), and even have hundreds and thousands of layers like
ResNet (He et al., 2016a). Designing a neural network architecture requires expert-level efforts to
specify the key network hyper-parameters, such as type of layers, number of filters and layers (i.e.,
network width and depth) and so on. Since the capacity of over-parameterized networks largely
depends on the number of total parameters, the number of filters and layers of networks are the key
hyper-parameters that shape the expressive power of neural networks.

In machine learning communities, most researchers resort to AutoML methods, e.g., Neural Ar-
chitecture Search (NAS), in automating architecture engineering. Critically, NAS methods indeed
surpass the manually designed architectures on many tasks, such as image classification and object
detection (Zoph & Le, 2016; Zoph et al., 2018). To search a good architecture, various search strate-
gies have been employed, such as random search, Bayesian optimization, reinforcement learning,
and so on. Most of them require significant amount of computational cost, which is normally orders
of magnitude higher than training a network. Furthermore, some of the found architectures by NAS
have much more parameters than manually designed ones on the same dataset.

As the field of representation learning moves closer towards artificial intelligence, it becomes im-
portant to efficiently and simultaneously learn both the structures and parameters of a network from
arbitrary classes on mobile devices or even Internet of Things (IoT) devices. This requires more
flexible strategies in dynamically handling the network width and depth, according to the scale of
dataset. To this end, this paper studies a new paradigm – Boosting network (BoN), where one starts
from simple models, delving into complex trained models progressively. Specifically, BoN could
simultaneously grow the structures and train the parameters from a simple initialized network on
the data gradually to complex ones. Formally, we demand the following properties of an algorithm
qualified as BoN:
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• It should incorporate both architecture growth (including filters and layers) and parameter
learning simultaneously, in which the width and depth of network can be gradually updated,
and the parameters of network should be updated at the same time;

• It should provide a comparable classifier for prediction tasks, as the state-of-the-art hand-
crafted architectures on the same dataset;

• Its computational requirements, the total parameters of final boosted network, and memory
footprint should remain bounded, ideally in the same order of magnitude as training a
manually engineered architecture on the same dataset.

The first two criteria express the essence of boosting network; the third criterion identifies the key
difference from NAS and other trivial or brute-force solutions, such as randomly searching.

This paper proposes a method for the BoN task based on the Split Linearized Bregman Iteration
(SplitLBI) (Huang et al., 2016; Fu et al., 2019), originally proposed by Huang et al. (2016) to learn
high dimensional sparse linear models and found applications in medical image classification (Sun
et al., 2017), computer vision (Zhao et al., 2018), and training neural networks (Fu et al., 2019).
Particularly, based on differential inclusions of inverse scale spaces (Huang et al., 2018), SplitLBI
has the merit of learning both an over-parameterized model weight set (Over-Par set) as the Stochas-
tic Gradient Descent (SGD), and structural sparsity model weight set (Stru-Spa set) in a coupled
inverse scale space. Essentially, SplitLBI optimizes the Stru-Spa set as sparse approximation of the
Over-Par set, by gradually selecting the important filters and weights from Over-Par set, along the
training epochs.

Equipped with SplitLBI, our key idea of BoN comes from progressively growing networks by check-
ing the parameters within Over-Par and Stru-Spa set. Essentially along the training epochs, if enough
parameters in Over-Par set have been selected in Stru-Spa set, it would be more advisable to increase
the capacity of Over-Par Set by adding new parameters.

Formally, to boosting a network, we introduce a Growing and Training Network Algorithm (GT-Net
Alg), consisting of two parts of growing both filters and layers, i.e., Growing and Training filters
algorithm (GT-filters Alg), and Growing and Training layers algorithm (GT-layers Alg). Given an
initial network, the GT-filters Alg can effectively grow the filters of each layer, and train the network
parameters at the same time. Furthermore, the GT-layers Alg firstly employs GT-filters Alg to com-
pute the filter configuration for the layers of each block, and then periodically check whether to add
new layer to the block along the training procedure. We conduct extensive experiments on several
benchmark datasets, including MNIST, Cifar-10, and Cifar-100. It shows that our GT-Net Alg can
achieve comparable or even better performance than the competitors, with much less computational
cost, and smaller size of found network. This indicates the effectiveness of our proposed algorithms.
Up to our knowledge, this is the first time that a BoN type algorithm of all the three aspects above is
addressed in literature.

2 RELATED WORK

To explore a good deep learning structure, recent research focuses on employing Network Architec-
ture Search (NAS) (Elsken et al., 2018; Zoph & Le, 2016; Zoph et al., 2018) by using reinforcement
learning to search the network structures, such as number of filters, filter size, layer depth, and so on.
Despite promising performance achieved, the computational cost of NAS algorithms themselves are
prohibitive expensive, e.g., 800 GPUs concurrently at any time training the algorithms in Zoph & Le
(2016). Several approached improved NAS by accelerating it, including weight sharing/inheritance
methods , or decreasing the searching space to a specific setting (Elsken et al., 2017; Pham et al.,
2018; Cai et al., 2018c; Bender et al., 2018). But they still require significant amount of com-
putational cost. In contrast, Our BoN aims at growing a network and making a balance between
computational cost, the model size and performance of the network.

Network pruning algorithms (Han et al., 2015; Abbasi-Asl & Yu, 2017; Molchanov et al., 2017)
introduce additional computational cost in fine-tuning/updating the networks. In addition, some
works study the manually designed compact and lightweight small DNNs (e.g. ShuffleNet (Ma
et al., 2018), MobileNet (Howard et al., 2017), and SqueezeNet (Iandola et al., 2017)), which may
still be tailored only for some specific tasks rather than boosting a network in this work.
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(a) Illustration of GT-filters Algorithm (b) Illustration of GT-layers Algorithm

Figure 1: Illustration of GT-Net Algorithm. The red squares indicate the newly added filters of each
layer in (a), and newly added layers of each block in (b), respectively.

Several recent works also consider adding layers to networks. Network Morphism (Chen et al.,
2015; Wei et al., 2016; 2017; Cai et al., 2018a;b) aims at accelerating the deep networks by adding
layers to a shallower net while preserving the parameters of the shallower net. One recent arxiv
paper – Autogrow (Wen et al., 2019) also explores adding new layers in an automatic way. But none
of these works can dynamically add filters to an existing layer as our GT-filters Alg. Additionally,
these methods still requires significant computational cost and training resources.

3 METHODOLOGY

3.1 BACKGROUND: SPLIT LINEARIZED BREGMAN ITERATIONS (SPLITLBI)

Our whole algorithm is built upon the SplitLBI algorithm. The basic spirit of this algorithm
(Huang et al., 2018) lies in two coupled spaces: weight parameter W (Over-Par set) to explore
over-parameterized models by gradient descent and structural sparsity parameter Γ (Stru-Spa set) to
explore important subnetwork architectures by inverse scale space where those important parameters
become nonzero faster than others. The SplitLBI algorithm can be described as following,

W t+1 = W t − κα∇WL
(
W t,Γt

)
(1)

Zt+1 = Zt − α∇ΓL
(
W t,Γt

)
(2)

Γt+1 = κ · Prox
(
Zt+1

)
(3)

whereZ0 = Γ0 = 0; andL (W t,Γt) = Ltask (W t,Γt)+ 1
2ν ‖W

t − Γt‖22 indicates the loss function
at t, with task specific loss Ltask (W t,Γt) (e.g., cross-entropy loss). W is initialized as He et al.
(2015); Γ is learned to approximate W here. Here Prox is the proximal mapping function with
the following form: Prox (Z) = min

(
0, 1− 1

‖Z‖1,2

)
Z where ‖Z‖1,2 is a group Lasso (`1 − `2)

norm for convolutional filters or simply the Lasso (`1) norm for weights). The hyper-parameters of
SplitLBI are α is the learning rate; κ and ν are controlling the sparsity of learned model.

One can see that Eq. (1) is essentially an gradient descent step over the primal parameter Wt.
However in Eq. (2-3), SplitLBI lifts the original network parameters W , to a coupled parameter set,
(W,Γ), where a sparse proximal gradient descent (or Linearized Bregman Iteration, Mirror Descent)
runs over the dual parameter Γ which enforces structural sparsity on network models. Along the
training path, Γ set is to learn a sparse approximation of parameter set W ; and the important filters
and parameters will gradually become non-zeros in Γ.

3.2 GROWING AND TRAINING FILTERS ALGORITHM (GT-FILTERS ALG)

Built upon the SplitLBI, we further propose a GT-filters Algorithm of learning to expand the conv
filters and train network parameters simultaneously. Specifically, starting from very few filters of
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each conv layer, GT-filter algorithm requires not only efficiently optimizing the parameters of fil-
ters, but also adding more filters if the existing filters do not have enough capacity to model the
distribution of training data.

Remarkably, our boosting network is very different from previous tasks, including AutoML (Wong
et al., 2018), or life-long learning (Wang et al., 2017; Thrun & Mitchell, 1995; Pentina & Lampert,
2015; Li & Hoiem, 2016), knowledge distill (Hinton et al., 2014). In general, these existing works
do not allow additional expanding or fine-tuning algorithms which are very computational expensive
in practice. In our GT-filters Alg, we define a projection of the conv filters to grow and train filters,
as the W t onto the support set of Γt,

W̃ t = Projsupp(Γt)

(
W t
)
. (4)

The basic idea is to monitor the gap between W t and its projection W̃ t along the training iterations:
when the gap becomes small, we are going to expand the network by adding new filters.

Fundamentally, the expressive power of recent deep convolutional neural networks largely attributes
to the model over-parameterization. As in Eq. (1), the parameter set Γ sparsely approximate the
weight set W . Thus intuitively, we can employ Eq. (4) to indicate whether the network is over-
parameterized: if the set of W̃ t is much smaller than that of W t, that means the model is well
over-parameterized and of enough capacity for the task at current iteration step; otherwise, if we
have,

|W̃ t|/|W t| > τ, (5)

then it would be more advisable to enlarge the model capacity by adding filters. Here
∣∣∣W̃ t

∣∣∣ indicates

the number of filters of W̃ t. More specifically, as shown in Fig. 1(a), GT-filters Alg dynamically
expand the filters from an initial small network into a reasonable large one. Starting from a small
number of filters (e.g. 2) of conv layer, more and more filters tend to be with non-zero values as the
algorithm iterates. Every J epochs, we can compute the ratio of Eq. (5): if this ratio passes a pre-set
threshold τ , we add the same number of new filters as existing filters1 into W ; otherwise, we will
not grow any filter in this epoch. Then we continue optimizing all the weights from training data;
this process is repeated until the loss does not change much or maximum epochs is reached.

Remarks. We highlight several insights of our GT-filter Alg (1) As a trivial case, our GT-filters
Alg can be directly utilized to boost neurons in fully connected layer. (2) GT-filter Alg can be
implemented in parallel to boost each individual layer simultaneously.

3.3 GROWING AND TRAINING LAYERS ALGORITHM (GT-LAYERS ALG )

The GT-filters Alg is designed to dynamically add and train filters in one conv layer, rather than
adding new conv layer of the whole network. To overcome this limitation, we further propose the
GT-layers Alg, which can learn to boost layers of one network. We assume the network (e.g, VGG,
or ResNet) is composed of several blocks (e.g. VGG block or Residual blocks) with necessary
transition layers (e.g., pooling layer) between two blocks; each block has many conv layer of the
same size of conv filters. The number of total blocks is fixed in the network; and only layers are
boosted in GT-layers Alg.

The GT-layers Alg has two key steps: (1) learning the filter configuration of each conv of each
block; and (2) boosting layers of each block. Specifically, in Step (1): given an initial network of B
blocks; and each block has only one conv layer (for plain net) or one BasicBlock (for ResNet) in He
et al. (2016a) which has 2 conv layers; we apply GT-filters Alg to boost filters of each conv layer
of each block one by one. GT-filters Alg will find the final number of filters of each conv layer as
Mi (i = 1, · · ·B). In Step (2): we initialize a network which has each block of one conv layer (for
plain net) or one BasicBlock (for ResNet) in He et al. (2016a) which has 2 conv layers, each layer or
layers of BasicBlock consisting of Mi (i = 1, · · ·B) filters. We train the network from the scratch
by boosting the layers from bottom blocks to up blocks of networks.

1Z, and Γ will add corresponding dimensions, initialized as zeros; and the newly added parameters of W
are randomly initialized as He et al. (2015).
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Along the training path, if the Eq. (5) is established, and this ratio passes the threshold τ for the block
b, we denote the training accuracy as Accbefore; and further add another conv layer or BasicBlock
of Mb filters in each layer to this block, and each filter will be initialized as He et al. (2015), with
zeros initialization for the corresponding dimension in Z and Γ; We continue the training process
for J epochs, and denote the training accuracy as Accafter. If

|Accafter −Accbefore| < ε, (6)

this indicates that block b has enough capacity, and we will not add layers or filters for block b. We
continue the training process until model converged or maximum budget (epochs) is reached.

Remarks. We have several reasonable simplification in GT-layers Alg. (1) The filters of each conv
layer in the same block should be the same, since it is a standard practice in the most state-of-the-art
manually designed structures, e.g., VGG and ResNet family. (2) We still utilize Eq. (5) as the metric
to control the capacity of networks. Critically, by introducing the sparse set Γ, the learned model
is still over-parameterized in general, and yet with controllable total parameters. Thus the boosted
network can enjoy the best of two worlds. (3) We have to boost layers from bottom to up blocks of
the networks, since we rely on Eq. (6) to judge whether to stop boosting layers for each block.

4 EXPERIMENTS

Dataset and Implementation. We conduct the experiments to evaluate our algorithms on MNIST,
and CIFAR10/100 datasets. Unless otherwise specified, the hyper-parameters of Split LBI are κ =
1, ν = 100, α = 0.01, with batch size 128. To validate GT-filter Alg the initial network used has 20
filters for each conv layer, and 100 neuron in each FC layer by default. For GT-layers Alg, the initial
VGG-like network has one input conv layer, and 5 blocks, with 1 conv layer of 20 filters; and the
initial ResNet-like network for GT-layers Alg, has one input conv layer, and 4 blocks, each block
has 1 BasicBlock in He et al. (2016a), and each BasicBlock with 2 conv layers of 20 filters in each
layer. We set the hyper-parameters as J = 40, ε = 0.3, and τ = 0.4 by default. After finishing
adding filters/layers, we decrease the learning rate by 1/10, continue training 70 epochs; and then
further decrease the learning rate by 1/10 again, and go on training 30 epochs.

4.1 EXPERIMENTS ON GROWING FILTERS BY GT-FILTERS ALGORITHM

Boosting Shallow Networks. We explore the performance that GT-filters Algorithm boosts shallow
networks to much wider ones on MNIST and CIFAR10/100 datasets. Given a network of initially
a small number of filters (denoted as Lower Bound Network), our GT-filters Alg will add and train
filters to produce a network of large number of filters (denoted as Upper Bound Network). Here, we
introduce two competitors: (1) Lower Bound Network (LB-Net): directly training by SplitLBI from
the scratch, the network of the initial number of filters used in our GT-filters Alg; (2) Upper Bound
Network (UB-Net): directly training by SplitLBI from the scratch, the network of the maximum
number of filters added in our GT-filters Alg. Essentially, LB-Net and UB-Net serves as the lower
and upper bound performance for the network learned by our GT-filter Algorithm. The UB-Net
and our Boosted-Net have the exactly same structures. All models are trained by SplitLBI in 1000
epochs. We report the network structure and results in Tab. 1. Our GT-filters Alg boosts the filters of
the network, denoted as Boosted-Net, which performs almost the same as UB-Net and much better
than LB-Net of all cases in Tab. 1, this indicates that our GT-filters Alg indeed successfully boosts
the filters of networks. To the best of our knowledge, this is the first algorithm for BoN that can
simultaneously learn the network structures and parameters from training data.

Boosting Deep Networks. We further explore our GT-filters Alg boosting deep neural networks
with more filters on CIFAR10 dataset. We employ the VGG and ResNet families as the backbone,
since they are most typical models of plain net and skip-connection net. Our algorithm is compared
against several naive ways in gradually boosting the filters in Tab. 2. (1) Random-layers-adding-
filters (Random): After training very J epochs, we randomly select half number of all layers, double
the filters of these selected layers, initialize the newly added filters, and continue to training by
SGD. Repeat these steps until meet stopping condition (2) Ordering-layers-adding-filters (Order):
We equally divide all layers in bottom and upper layer groups. After training every J epochs, we
double the filters of each layer in each group in turn and go on training by SGD. Repeat these steps
until meeting the stopping condition.
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number@size Accuracy(%)

Dataset LB-Net UB-Net LB-Net UB-Net GT-filters Alg
MNIST [2@3*3] [8@3*3] 96.11 98.61 98.61

CIFAR10
[2@3*3] [8@3*3] 46.11 63.45 63.21

8@5*5-[2@3*3] 8@5*5-[172@3*3] 51.95 80.90 79.76
8@5*5-8@3*3-[2@3*3] 8@5*5-8@3*3-[190@3*3] 57.21 80.69 80.31

CIFAR100
8@5*5-[2@3*3] 8@5*5-[154@3*3] 22.37 52.99 52.36

8@5*5-8@3*3-[2@3*3] 8@5*5-8@3*3-[180@3*3] 23.00 53.19 52.87

Table 1: Results of boosting filters (GT-filters) of a particular one layer network on MNIST, Cifar-10,
and Cifar-100. [-] indicates the corresponding layer boosted.

Method Boosted-Net of each method. Params Acc(%)
Random 256, [128], [128, 64], [128, 128, 256], [512, 128, 256], [256, 128, 256], [2048, 1024] 6.92 M 91.45

Order 256, [256], [256, 256], [256, 256, 256], [256, 128, 128], [128, 128, 128], [1024, 1024] 6.22 M 91.40
GT-filters Alg 40, [80], [160, 160], [160, 80, 80], [80, 40, 20], [20, 20, 20], [100, 100] 0.90M 91.82

Table 2: Results of boosting filters (GT-filters) of VGG16 networks. [-] indicated the convolution
filters of corresponding layer, the last [-] indicates the number of linear units.

We set J = 30 for, and τ = 0.5 for our GT-filters Alg. For competitors, we adopt the stopping
growing filters policy that, aftter growing filters and training J epochs by referring to Eq. (6), the
increased validation is less than 1%. The maximum training epochs is set as 300.

Figure 2 shows the growing and training process. In general, the training process of Random-
layers-adding-filters, Ordering-layers-adding-filters and our GT-Filters Alg are very close to each
other. At the first time of growing filters, the performance of networks sharply decreased as along as
adding filters, partly due to the fact that the initialization of networks after adding filters are far from
any optima. The results are given in Table 2. The two baselines and our GT-Layer Alg achieved
nearly the same accuracy, with orders of magnitude higher model size than ours. Interestingly, our
GT-filters Alg found a sparse network with small number of filters in each layer and with only 1/7
parameters comparing to the two baselines. This experiment suggests that our GT-Layers Alg indeed
could boost filters for deep networks.
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Figure 2: Different growing filters strategies: GT-filters Alg, Random, Order. Left subfigure is the
training process, and right is corresponding testing accuracy. After growing finished, there will be a
learning rate decay and go on training for some epochs.

Ablation study of GT-filters Alg. We conduct the ablation study and validate the efficacy of differ-
ent hyper-parameters of J and τ in Tab. 3 and Tab. 4, trained on CIFAR10 dataset. Our model is
compared against VGG-16 network trained by 350 epochs. We found the higher J value, the larger
boosted network with better performance. Besides, all of our boosted networks are in a low level of
parameter number, from 1/30 to 1/7 comparing to VGG-16 network, but with high performance.
Especially, when J = 50, our final boosted networks have comparable to VGG-16. We argue that
these results are reasonable, since the Γ set may not be well trained with smaller J , e.g., J = 20,
and Eq. (5) may not be met. In Tab. 4, we set J = 40, our boosted models using τ = 0.3, 0.4
and 0.5 achieved high performance as well as low level of parameter number. Our hyper-parameter
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Epoch J Boosted-Net by GT-filter Alg. Params Accuracy(%)
20 20, [20], [20, 20], [20, 20, 20], [20, 20, 20], [20, 20, 20] 0.06M 83.10
30 40, [80], [160,160], [160, 80, 80], [80, 40, 20], [20, 20, 20] 0.90M 91.80
40 40, [80], [160,160], [160,160,160], [80,80,40], [40, 40, 40] 1.33M 91.40
50 80, [160], [320, 320], [320, 320, 320], [160, 80, 40],[40, 40, 40] 4.93M 92.80

VGG-16 64, [64], [128, 128], [256, 256, 256], [512, 512, 512], [512, 512, 512] 33.65M 92.64

Table 3: Varying Epoch J in boosting VGG family network on CIFAR10 dataset by GT-filters Alg.
(τ = 0.5). [20,20] indicates a block of two conv layer; each has 20 filters. Each network has an
input conv layer.

τ Found Filters of Each Layer Params Accuracy(%)
0.3 80, [160], [320, 320], [320, 320, 320], [160, 80, 80], [40, 80, 80] 5.04M 92.55
0.4 80, [160], [160, 320], [320, 320, 320], [160, 80, 80], [40, 40, 40] 4.28M 92.70
0.5 40, [80], [160, 160], [160, 160, 160], [80, 80, 40], [40, 40, 40] 1.33M 91.40

VGG-16 64, [64], [128, 128], [256, 256, 256], [512, 512, 512], [512, 512, 512] 33.65M 92.64

Table 4: Varying threshold τ in boosting VGG family network on CIFAR10 dataset by GT-filters
Alg (J = 40). [160, 160] indicates a block of two conv layer; each has 160 filters. Each network
has an input conv layer.

τ = 0.5 can result in the boosted network that have slightly inferior performace, and yet much less
parameters than VGG-16. We highlight that our boosted results are not sensitive to different values
of τ . Overall, this experiment suggests the efficacy of our GT-filters Alg in boosting filters.

Growing filters in ResNet-18. It is interesting to investigate whether we can boost a ResNet net-
work. Here we start with ResNet18, given the same number of layers and structure as the Standard
ResNet-18 (S-ResNet-18). We conduct the experiments on CIFAR10/100 datasets. Our GT-filters
Alg generates the Boosted ResNet-18 (Boosted-Net). In addition, we also introduce the Total FLOPs
Budge ResNet-18 (TFB-ResNet-18) which is trained standard ResNet-18 by the same total FLOat-
ing Point operations (FLOPs) as our B-ResNet-18. To train TFB-ResNet-18, we set α = 0.05, 0.01,
and 0.001 after every 1/3 total FLOPs. The results are shown in Tab. 5. We find that on CIFAR10,
our B-ResNet-18 has much less parameters, about 1/5 comparing to S-ResNet-18, but achieve com-
parable performance to S-ResNet-18 and even higher than TFB-ResNet-18. On CIFAR100, our
boosted network performed a little worse than S-ResNet-18 but we performed much better than
TFB-ResNet18 and we use less than 2/3 number of parameters comparing to S-ResNet-18. The
most important is that total FLOPs we used in boosting are not enough for training a ResNet18
network, which demonstrates the effectiveness of our algorithms.

4.2 EXTENDING TO GROWING LAYERS BY GT-LAYERS ALGORITHM

Section 4.1 explores our GT-filers Alg and shows that our method achieved good results in boosting
filter for fixed deep networks. In this section, we study our GT-layers Alg in boosting both filters and
layers for a shallow ‘seed’ network on CIFAR10 and CIFAR100 datasets. Here we use the initial
plain net, and initial residual net referring to VGG net and ResNet, individually. The structures
are: (1) (ResNet) the same architecture as ResNet in He et al. (2016b); it has 4 blocks, and each

Model Params Total FLOPs Accuracy(%)

CIFAR10
Boosted-Net 2.30M 560.93G 93.41
S-ResNet-18 11.74M 4091.50G 93.02

TFB-ResNet-18 11.74M 561.12G 91.2

CIFAR100
Boosted-Net 7.38M 825.07G 73.46
S-ResNet-18 11.74M 2338.00G 75.5

TFB-ResNet-18 11.74M 829.99G 67.0

Table 5: Under the same budget of computational cost (total FLOPSs), our growing filter strategy for
boosting network achieves better accuracy and smaller complexity than standard training networks,
comparable accuracy to those with much more cost.
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Dataset Method Net Type Layers #Param Acc(%)

CIFAR10
Autogrow

Basic4ResNet 178 136.51M 95.49
Plain4Net 138 105.06M 94.20

Ours
ResNet(τ=0.4,J=40,ε=0.3) 26 15.33M 95.11
PlainNet(τ=0.4,J=30,ε=0.2) 19 7.70M 94.65

CIFAR100
Autogrow

Basic4ResNet 202 109.38M 79.47
Plain4Net 124 92.59M 73.91

Ours
ResNet(τ=0.4,J=30,ε=0.3) 24 31.33M 75.70
PlainNet(τ=0.5,J=30,ε=0.3) 18 29.833M 75.66

Table 6: Comparison of Autogrow and our algorithm in found nets and performance, where ours
achieves comparable accuracies with much smaller model complexity.

ε Found Net Layers Accuracy(%)
ResNet18 [2, 2, 2, 2] 18 93.02
ResNet34 [3, 4, 6, 3] 34 94.10

0.1 [5, 2, 4, 3] 30 94.60
0.2 [3, 2, 4, 2] 24 94.80
0.3 [5, 3, 2, 2] 26 95.10

Table 7: Comparison between the standard ResNets and our boosting algorithm at different thresh-
olds (ε) with J = 40 and τ = 0.4 on CIFAR10 dataset. The boosted networks have stable perfor-
mance with varying thresholds ε and improve the standard ResNet34 with less number of layers.

block has several BasicBlocks and 2 convolutional layers in each BasicBlock. We initialize each
convolutional layer with 20 filters. (2) (PlainNet) a VGG-like plain net; it has 5 blocks divided by
pooling layers, and each block has several conv layers with 20 filters in each conv layer.

We also compare two types of DNNs of Autogrow (Wen et al., 2019): (1) (Basic4ResNet) a variant
of ResNet with basic residual blocks 3 used for ImageNet in He et al. (2016b); (2) (Plain4Net) a
VggNet-like plain net by removing shortcuts in Basic4ResNet.

Table 6 compared the growing results of Autogrow and our boosting results using GT-layers Alg.
Note that Autogrow can grow layers from a seed network, but their approach does not explore
the filter configuration of each block, and their resulting networks in general are very deep with
a large number of parameters and their growing process is not efficient. On CIFAR10 dataset,
the Boosted-Net by our GT-layers Alg performs as good as Plain4Net and Basic4Net models by
Autogrow. However, our boosted networks are much shallower than the found nets of Autogrow.
For example, on CIFAR10, our GT-layers Alg found a 19 layer VGG-like network with 7.70M
parameters, Autogrow found a 138 layer network with approximate 105.06M parameters, nearly 14
times of ours. On CIAFR100, by using plain net, our algorithm not only boosts much shallower
networks and small number of parameters, but also performs much better than the models found by
Autogrow. In general, our GT-Layer Alg could not only efficiently boost networks from shallow to
properly deep, but also achieve very good performance.

We also conduct ablation study of the hyper-parameter ε. We compare the results of different ε, and
the results of standard ResNet18 and ResNet34 trained for 350 and 300 epochs, respectively. Table
7 shows the boosting results of different ε and standard models. As expected, smaller ε will find a
deeper network. The accuracy of boosted models using different ε is not so much difference from
each other. This indicates that our GT-Layer Alg is not sensitive to small ε. Besides, All of our
found networks performed equally or better comparing to standard networks. This suggest that our
algorithm could have very good performance in boosting layers.

5 CONCLUSION

In this paper, we study the novel task of boosting network and propose an approach that simultane-
ously growing and training filters and layers: GT-filters Alg and GT-layers Alg. With experiments
on VGG and ResNets, these algorithms could efficiently boost fixed networks from a small number
of filters in each layer and boost shallow seed networks, respectively, with comparable accuracies to
big models but remarkably economic representations.
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