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ABSTRACT

We investigate multi-task learning approaches which use a shared feature repre-
sentation for all tasks. To better understand the transfer of task information, we
study an architecture with a shared module for all tasks and a separate output mod-
ule for each task. We study the theory of this setting on linear and ReLU-activated
models. Our key observation is that whether or not tasks’ data are well-aligned
can significantly affect the performance of multi-task learning. We show that mis-
alignment between task data can cause negative transfer (or hurt performance)
and provide sufficient conditions for positive transfer. Inspired by the theoreti-
cal insights, we show that aligning tasks’ embedding layers leads to performance
gains for multi-task training and transfer learning on the GLUE benchmark and
sentiment analysis tasks; for example, we obtain a 2.35% GLUE score average im-
provement on 5 GLUE tasks over BERTLARGE using our alignment method. We
also design an SVD-based task re-weighting scheme and show that it improves the
robustness of multi-task training on a multi-label image dataset.

1 INTRODUCTION

Multi-task learning has recently emerged as a powerful paradigm in deep learning to obtain lan-
guage (Devlin et al. (2018); Liu et al. (2019a;b)) and visual representations (Kokkinos (2017)) from
large-scale data. By leveraging supervised data from related tasks, multi-task learning approaches
reduce the expensive cost of curating the massive per-task training data sets needed by deep learning
methods and provide a shared representation which is also more efficient for learning over multiple
tasks. While in some cases, great improvements have been reported compared to single-task learning
(McCann et al. (2018)), practitioners have also observed problematic outcomes, where the perfor-
mances of certain tasks have decreased due to task interference (Alonso and Plank (2016); Bingel
and Søgaard (2017)). Predicting when and for which tasks this occurs is a challenge exacerbated by
the lack of analytic tools. In this work, we investigate key components to determine whether tasks
interfere constructively or destructively from theoretical and empirical perspectives. Based on these
insights, we develop methods to improve the effectiveness and robustness of multi-task training.

There has been a large body of algorithmic and theoretical studies for kernel-based multi-task learn-
ing, but less is known for neural networks. The conceptual message from the earlier work (Bax-
ter (2000); Evgeniou and Pontil (2004); Micchelli and Pontil (2005); Xue et al. (2007)) show that
multi-task learning is effective over “similar” tasks, where the notion of similarity is based on the
single-task models (e.g. decision boundaries are close). The work on structural correspondence
learning (Ando and Zhang (2005); Blitzer et al. (2006)) uses alternating minimization to learn a
shared parameter and separate task parameters. Zhang and Yeung (2014) use a parameter vector for
each task and learn task relationships via l2 regularization, which implicitly controls the capacity of
the model. These results are difficult to apply to neural networks: it is unclear how to reason about
neural networks whose feature space is given by layer-wise embeddings.

To determine whether two tasks interfere constructively or destructively, we investigate an architec-
ture with a shared module for all tasks and a separate output module for each task (Ruder (2017)).
See Figure 1 for an illustration. Whereas previous work has shown that model similarity is a major
component, we find that task data similarity is also important to determine the type of interference.
To illustrate the idea, we consider three tasks with the same number of data samples where task
2 and 3 have the same decision boundary but different data distributions (see Figure 2 for an il-
lustration). We observe that training task 1 with task 2 or task 3 can either improve or hurt task
1’s performance, depending on the amount of contributing data along the decision boundary! This
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Figure 1: An illustration of
the multi-task learning architecture
with a shared lower module B and
k task-specific modules {Ai}ki=1.
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Figure 2: Positive vs. Negative transfer is affected by the data
– not just the model. See lower right-vs-mid. Task 2 and 3
have the same model (dotted lines) but different data distribu-
tions. Notice the difference of data in circled areas.

observation suggests the importance of comparing task data and motivates a more refined study of
multi-task learning in a module-wise setting.

Motivated by the above observation, we study the theory of multi-task learning through the shared
module in linear and ReLU-activated settings. Our theoretical contribution involves three compo-
nents: the capacity of the shared module, task covariance, and the per-task weight of the training
procedure. The capacity plays a fundamental role because, if the shared module’s capacity is too
large, there is no interference between tasks; if it is too small, there can be destructive interference.
Then, we show how to determine interference by proposing a more fine-grained notion called task
covariance which can be used to measure the alignment of task data. By varying task covariances,
we observe both positive and negative transfers from one task to another! We then provide sufficient
conditions which guarantee that one task can transfer positively to another task, provided with suffi-
ciently many data points from the contributor task. Finally, we study how to assign per-task weights
for settings where different tasks share the same data but have different labels.

Our theory leads to the design of two algorithms with practical interest. First, we propose to align the
covariances of the task embedding layers and present empirical evaluations on well-known bench-
marks and tasks. On 5 tasks from the General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al. (2018b)) trained with the BERTLARGE model by Devlin et al. (2018), our method
improves the result of BERTLARGE by a 2.35% average GLUE score, which is the standard metric
for the benchmark. Further, we show that our method is applicable to transfer learning settings; we
observe up to 2.5% higher accuracy by transferring between six sentiment analysis tasks using the
LSTM model of Lei et al. (2018). Second, we propose an SVD-based task re-weighting scheme to
improve multi-task training for settings where different tasks have the same data but different la-
bels. On the ChestX-ray14 image classification dataset, we compare our method to the unweighted
scheme and observe an improvement of 5.6 AUC score in total. In conclusion, these evaluations
confirm that our theoretical insights are applicable to a broad range of settings and applications.

2 THREE COMPONENTS OF MULTI-TASK LEARNING

We study multi-task learning (MTL) approaches which use a shared module for all tasks and a
separate output module for each task on linear and ReLU-activated models. We ask: What are the
key components to determine whether or not MTL is better than single-task learning (STL)? In
response, our work identifies three components: model capacity, task covariance, and optimization
scheme. After setting up the model, we briefly describe the role of model capacity. We then quantify
task data similarity using the notion of task covariance, which comprises the bulk of the section. We
finish by showing the implications of our results for choosing optimization schemes.

2.1 MODELING SETUP

We are given k tasks. Letmi denote the number of data samples of task i. For task i, letXi ∈ Rmi×d

denote its covariates and let yi ∈ Rmi denote its labels, where d is the dimension of the data. We
have assumed that all the tasks have the same input dimension d. This is not a restrictive assumption
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and is typically satisfied, e.g. for word embeddings on BERT. We consider an MTL model with a
shared module B ∈ Rd×r and a separate output module Ai ∈ Rr for task i, where r denotes the
output dimension of B. See Figure 1 for the illustration. We define the objective of finding an MTL
model as minimizing the following equation over B and the Ai’s:

f(A1, A2, . . . , Ak;B) =

k∑
i=1

L (g(XiB)Ai, yi) , (1)

where L is a loss function such as the squared loss. The activation function g : R→ R is applied on
every entry of XiB. In equation 1, all data samples contribute equally. Because of the differences
between tasks such as data size, it is natural to re-weight tasks during training:

f(A1, A2, . . . , Ak;B) =

k∑
i=1

αi · L(g(XiB)Ai, yi), (2)

This setup is an abstraction of the hard parameter sharing architecture (Ruder (2017)). The shared
module B provides a universal representation (e.g., an LSTM for encoding sentences) for all tasks.
Each task-specific module Ai is optimized for its output. We focus on two models as follows.

The single-task linear model. The labels y of each task follow a linear model with parameter θ ∈ Rd:
y = Xθ + ε. Every entry of ε follows the normal distribution N (0, σ2) with variance σ2. The
function g(XB) = XB. This is a well-studied setting for linear regression (Hastie et al. (2005)).

The single-task ReLU model. Denote by ReLU(x) = max(x, 0) for any x ∈ R. We will also
consider a non-linear model where Xθ goes through the ReLU activation function with a ∈ R and
θ ∈ Rd: y = a ·ReLU(Xθ)+ε, which applies the ReLU activation on Xθ entrywise. The encoding
function g(XB) then maps to ReLU(XB).

Positive vs. negative transfer. For a source task and a target task, we say the source task transfers
positively to the target task, if training both through equation 1 improves over just training the target
task (measured on its validation set). Negative transfer is the converse of positive transfer.

Problem statement. Our goal is to analyze the three components to determine positive vs. negative
transfer between tasks: model capacity (r), task covariances ({X>i Xi}ki=1) and the per-task weights
({αi}ki=1). We focus on regression tasks under the squared loss but we also provide synthetic exper-
iments on classification tasks to validate our theory.

Notations. For a matrixX , its column span is the set of all linear combinations of the column vectors
of X . Let X† denote its psuedoinverse. Given x, y ∈ Rd, cos(x, y) is equal to x>y/(‖x‖ · ‖y‖).

2.2 MODEL CAPACITY

We begin by revisiting the role of model capacity, i.e. the output dimension ofB (denoted by r). We
show that as a rule of thumb, r should be smaller than the sum of capacities of the STL modules.

Example. Suppose we have k linear regression tasks using the squared loss, equation 1 becomes:

f(A1, A2, . . . , Ak;B) =

k∑
i=1

‖XiBAi − yi‖2F . (3)

The optimal solution of equation 1 for each single-task is θi = (X>i Xi)
†X>i yi ∈ Rd. Hence the

capacity of 1 suffices for each single-task model. In the following, we show that if r ≥ k, then there
is no transfer between any two tasks.
Proposition 1. Let r ≥ k. There exists an optimum B? and {A?i }ki=1 of equation 3 where B?A?i =
θi, for all i = 1, 2, . . . , k.

To illustrate the idea, as long as B? contains θi for all i in its column span, then we can find A?i such
that B?A?i = θi, which is an optimal solution for equation 3 with minimum error. But this means no
transfer among any two tasks. This can hurt generalization if a task has limited data, in which case
its STL solution overfits to the training data, whereas the MTL solution can leverage other tasks’
data to improve generalization. We leave the proof of Proposition 1 to Appendix B.1.

Algorithmic consequence. The implication is that limiting the shared module’s capacity is neces-
sary to enforce information transfer. In practice, if the shared module is too small, then it interferes
with task transfer. But if it is too large, then no transfer occurs. The ideal capacity depends on task
data similarity (e.g. smaller for similar tasks), which leads to the question of how to quantify them.
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Figure 3: Positive vs. Negative transfer by varying the source task’s # samples and covariance. See
the example below for the definition of two different kinds of task covariances.

2.3 TASK COVARIANCE

To show how to quantify task data similarity, we illustrate with two regression tasks under the linear
model without noise: y1 = X1θ1 and y2 = X2θ2. By Section 2.2, it is necessary to limit the
capacity of the shared module to enforce information transfer. Therefore, we consider the case of
r = 1. Hence, the shared module B is now a d-dimensional vector, and A1, A2 are both scalars.

A natural requirement of task similarity is for the STL models to be similar, i.e. |cos(θ1, θ2)| to be
large. To see this, the optimal STL model for task 1 is (X>1 X1)−1X>1 y1 = θ1. Hence if |cos(θ1, θ2)|
is 1, then tasks 1 and 2 can share a model B ∈ Rd which is either θ1 or −θ1. The scalar A1 and A2

can then transform B to be equal to θ1 and θ2.

Is this requirement sufficient? Recall that in equation 3, the task data X1 and X2 are both multiplied
by B. If they are poorly “aligned” geometrically, the performance could suffer. How do we formal-
ize the geometry between task alignment? In the following, we show that the covariance matrices of
X1 and X2, which we define to be X>1 X1 and X>2 X2, captures the geometry. We fix |cos(θ1, θ2)|
to be close to 1 to examine the effects of task covariances.1 Concretely, equation 3 reduces to:

max
B∈Rd

h(B) = 〈 X1B

‖X1B‖
, y1〉2 + 〈 X2B

‖X2B‖
, y2〉2, (4)

where we apply the first-order optimality condition onA1 andA2 and simplify the equation. Specif-
ically, we focus on a scenario where task 1 is the source and task 2 is the target. Our goal is to
determine when task 1 transfers to task 2 positively or negatively in MTL.2 This boils down to study
the cosine value between the optimum of equation 4 and θ2.

Example. In Figure 3, we show that by varying task covariances, we can observe both positive and
negative trasnfers. The conceptual message is the same as Figure 2; we describe the data generation
process in more detail. We use 4 tasks and measure the type of transfer from the other tasks to task
1. This leads to three lines (equation 4 with task 1 as the target task and 2/3/4 as source tasks) on
the Figure, where the x-axis is the number of data samples from the source task and the y-axis is the
target task’s differences of MSE measured on its validation set between MTL minus STL.

Data generation. We have |cos(θ1, θ2)| ≈ 1 (say 0.96). For i ∈ {1, 2, 3, 4}, let Ri ⊆ Rmi×d denote
a random Gaussian matrix drawn fromN (0, 1). Let S1 ⊆ {1, 2, . . . , d} be a set of d/10 coordinates
and S2 ⊆ S{

1 be a set of d/10 coordinates in the complement of S1. For i = 1, 2, let Di be a
diagonal matrix whose entries are equal to a large value κ (e.g. κ = 100) for coordinates in Si and 1
otherwise. Let Qi ⊆ Rd×d denote an orthonormal matrix, i.e. Q>i Qi is equal to the identity matrix.

Then, we define the 4 tasks as follows. (i) Task 1: X1 = R1Q1D1 and y1 = X1θ1. (ii) Task
2: X2 = R2Q1D1 and y2 = X2θ2. (iii) Task 3: X3 = R3Q1D2 and y3 = X3θ2. (iv) Task 4:
X4 = R4Q2D1 and y4 = X4θ2. Intuitively, task 1 and 2 have the same covariance but the signals
of tasks 1 and 3/4 lie in different subspaces.

Analysis. Unless the source task has lots of samples to estimate θ2, which is much more than the
samples needed to estimate only the coordinates of S1, the effect of transferring to task 1 is small. In
addition, we observe similar results for classification tasks and for ReLU-activated regression tasks.

1In Appendix B.2.1 we fix task covariances to examine the effects of model cosine similarity.
2Determining the type of transfer from task 2 to task 1 can be done similarly.
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Algorithm 1 Covariance alignment for multi-task training

Require: Task embedding layers X1 ∈ Rm1×d, X2 ∈ Rm2×d, . . . , Xk ∈ Rmk×d, shared module B
Parameter: Alignment matrices R1, R2, . . . , Rk ∈ Rd×d and output modules A1, A2 . . . , Ak

1: Let Zi = XiRi, for 1 ≤ i ≤ k
2: Let the input to the shared module B be Zi instead of Xi

3: Fix B, minimize jointly over R1, R2, . . . , Rk and the output layers A1, A2, . . . , Ak

Theory. Next we rigorously quantify how many data points is needed to guarantee positive transfer
from task 1 to task 2. This is motivated by the folklore that when one task has a lot of data but
a related task has limited data, then the task with more data can often transfer positively to the
related task. Recall that m1 is the number of data points of task 1. The interesting question is what
parameter dependence is needed on m1 to guarantee positive transfer. In the following, we show
that the condition numbers of the tasks’ covariance matrices provide an upper bound on m1.
Theorem 2 (informal). For i = 1, 2, let yi = Xiθi + εi denote two linear regression tasks with
parameters θi ∈ Rd and mi number of samples. Suppose that each row of the source task X1 is
drawn independently from a distribution with covariance Σ1 ⊆ Rd×d and bounded l2-norm. Assume
that c = κ(X2)sin(θ1, θ2) ≤ 1/3. Denote by (B?, A?1, A

?
2) the optimal MTL solution. With high

probability, when m1 is at least on the order of (κ2(Σ1) · κ4(X2) · ‖y2‖2)/c4, we have that

‖B?A?2 − θ2‖/‖θ2‖ ≤ 6c+
1

1− 3c

‖ε2‖
‖X2θ2‖

.

Recall that for a matrix X , κ(X) denotes its condition number. Theorem 2 quantifies the trend in
Figure 3, where the improvements for task 2 reaches the plateau when m1 becomes large enough.

The ReLU model. We show a similar result for the ReLU model, which requires resolving the chal-
lenge of analyzing the ReLU function. We use a geometric characterization for the ReLU function
under distributional input assumptions by Du et al. (2017). We leave the formal statement, the proof
of Theorem 2 and its extension to the ReLU setting to Appendix B.2.2 and B.2.3.3

Algorithmic consequence. An implication of our theory is a covariance alignment method to im-
prove multi-task training. For the i-th task, we add an alignment matrixRi before its inputXi passes
through the shared module B. Algorithm 1 shows the procedure.

We also propose a metric called covariance similarity score to measure the similarity between two
tasks, which extends our theoretical insights for practical use. Given two matrices X1 ∈ Rm1×d and
X2 ∈ Rm2×d, we measure their similarity in three steps: (a) The covariance matrix is X>1 X1. (b)
Find the best rank-r1 approximation to be U1,r1D1,r1U

>
1,r1 , where r1 is chosen to contain 99% of

the singular values. (c) Apply step (a),(b) to X2, compute the inner product:

Covariance similarity score :=
‖(U1,r1D

1/2
1,r1

)>U2,r2D
1/2
2,r2
‖
F

‖U1,r1D
1/2
1,r1
‖
F
· ‖U2,r2D

1/2
2,r2
‖
F

. (5)

The nice property of the score is that it is invariant to rotations of the columns of X1 and X2.

2.4 OPTIMIZATION SCHEME

Lastly, we consider the effect of re-weighting the tasks (or their losses in equation 2). When does re-
weighting the tasks help? In this part, we show a use case for improving the robustness of multi-task
training in the presence of label noise. The settings involving label noise can arise when some tasks
only have weakly-supervised labels, which have been studied before in the literature (e.g. Mintz
et al. (2009); Pentina and Lampert (2017)). We start by describing a motivating example.

Consider two tasks where task 1 is y1 = Xθ and task 2 is y2 = Xθ + ε2. When we train the two
tasks together, the error ε2 will add noise to the trained model. However, by up weighting task 1, we
reduce the noise from task 2 and get better performance.

To rigorously study the effect of task weights, we consider a setting where all the tasks have the
same data but different labels. This setting arises for example in multi-label image datasets.

3The estimation error of θ2 is upper bounded by task 2’s signal-to-noise ratio ‖ε2‖/‖X2θ2‖. This depen-
dence is necessary because the linear component A?

2 fits the projection of y2 to X2B
?. So even if B? is equal

to θ2, there could still be an estimation error out of A?
2, which cannot be estimated from task 1’s data.
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We study the linear model to show how the re-weighted scheme can change the optimal solution.
Proposition 3. Let the capacity of the shared module be r ≤ k. Given k linear regression tasks
with the same covariates but different labels {(X, yi)}ki=1 where X ⊆ Rm×d has rank d, let X =
UDV > denote its SVD. The column span of the optimal B? ⊆ Rd×r for the re-weighted loss is
equal to the column span of (X>X)−1V DQr, where QrQ>r is the best rank-r approximation to∑k
i=1 αiU

>yiy
>
i U .

We can also extend Proposition 3 to show that all local minima of equation 3 are global minima
in the linear setting. We leave the proof to Appendix B.3. Based on Proposition 3, we provide a
rigorous proof of the previous example. Suppose that X is full rank, (X>X)†X[α1y1, α1y2]) =
[α1θ, α2θ + α2(X>X)−1Xε2]. Hence, when we increase α1, cos(B?, θ) increases closer to 1.

Algorithm 2 An SVD-based task re-
weighting scheme

Input: k tasks: (X, yi) ∈ (Rm×d,Rm); a rank
parameter r ∈ {1, 2, . . . , k}

Output: A weight vector: {α1, α2, . . . , αk}
1: Let θi = X>yi.
2: Ur, Dr, Vr = SVDr(θ1, θ2, . . . , θk), i.e. the

best rank-r approximation to the θi’s.
3: Let αi = ‖θ>i Ur‖, for i = 1, 2, . . . , k.

Algorithmic consequence. A natural question then
is how do we identify a re-weighted scheme in the
presence of label noise. Below, we describe an algo-
rithm based on the idea of SVD. Inspired by Propo-
sition 3, we compute the per-task weights by com-
puting the SVD over X>yi, for 1 ≤ i ≤ k. The in-
tuition is that if the label vector of a task yi is noisy,
then the entropy of yi is small. Therefore, we would
like to design a procedure that removes the noise.
The SVD procedure does this, where the weight of a
task is calculated by its projection into the principal
r directions. See Algorithm 2 for the description.

3 EXPERIMENTS

We describe connections between our theoretical results and practical problems of interest. We show
three claims on real world datasets. (i) The shared MTL module is best performing when its capacity
is smaller than the total capacities of the single-task models. (ii) Our proposed covariance alignment
method improves multi-task training on a variety of settings including the GLUE benchmarks and
six sentiment analysis tasks. Our method can be naturally extended to transfer learning settings and
we validate this as well. (iii) Our SVD-based re-weighed scheme is more robust than the standard
un-weighted scheme on multi-label image classification tasks in the presence of label noise.

3.1 EXPERIMENTAL SETUP

Datasets and models. We describe the datasets and models we use in the experiments.

GLUE: GLUE is a natural language understanding dataset including question answering, sentiment
analysis, text similarity and textual entailment problems. We choose BERTLARGE as our model,
which is a 24 layer network from Devlin et al. (2018).

Sentiment Analysis: This dataset includes six tasks: movie review sentiment (MR), sentence sub-
jectivity (SUBJ), customer reviews polarity (CR), question type (TREC), opinion polarity (MPQA),
and the Stanford sentiment treebank (SST) tasks. For each task, the goal is to categorize sentiment
opinions expressed in the text. We use an embedding layer followed by an LSTM layer proposed
by Lei et al. (2018).4. For the word embeddings, we use GloVe. 5

ChestX-ray14: This dataset contains 112,120 frontal-view X-ray images and each image has up to
14 diseases. This is a 14-task multi-label image classification problem. We use the CheXNet model
from Rajpurkar et al. (2017), which is a 121-layer convolutional neural network on all tasks.

For all models, we share the main module across all tasks (BERTLARGE for GLUE, LSTM for
sentiment analysis, CheXNet for ChestX-ray14) and assign a separate regression or classification
layer on top of the shared module for each tasks.

Comparison methods. For the experiment on multi-task training, we compare Algorithm 1 by
training with our method and training without it. Specifically, we apply the alignment proce-
dure on the task embedding layers. See Figure 4 for an illustration, where Ei denotes the em-
bedding of task i, Ri denotes its alignment module and Zi = EiRi is the rotated embedding.

4We also tested with multi-layer perceptron and CNN. The results are similar (cf. Appendix C.5).
5http://nlp.stanford.edu/data/wordvecs/glove.6B.zip
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Figure 4: Illustration of the covariance
alignment module on task embeddings.

For the experiment on transfer learning, we first train
an STL model on the source task by tuning its model
capacity (e.g. the output dimension of the LSTM
layer). Then, we fine-tune the STL model on the tar-
get task for 5-10 epochs. To apply Algorithm 1, we
add an alignment module during the fine-tuning step
to align the target task.

For the experiment on re-weighted schemes, we first
compute the per-task weights as described in Algo-
rithm 2. Then, we re-weight the loss function as in
equation 2. We compare the performance of training
with the re-weighted loss vs. with the un-weighted loss.

Metric. We measure performance on the GLUE benchmark using a standard metric called the
GLUE score, which contains accuracy and correlation scores for each task. For the sentiment analy-
sis tasks, we measure the accuracy of predicting the sentiment opinion. For the image classification
task, we measure the area under the curve (AUC) score. We run five different random seeds to report
the average results. The result of an MTL experiment is averaged over the results of all the tasks.

3.2 EXPERIMENTAL RESULTS

We present use cases of our methods on open-source datasets. We expected to see improvements via
our methods in multi-task and other settings, and indeed we saw such gains across a variety of tasks.

Improving multi-task training. We apply Algorithm 1 on five tasks (CoLA, MRPC, QNLI, RTE,
SST-2) from the GLUE benchmark using a state-of-the-art language model BERTLARGE. We com-
pare the average performance over all five tasks and find that our method outperforms BERTLARGE
by 2.35% average GLUE score for the five tasks. For the particular setting of training two tasks, our
method outperforms BERTLARGE on 7 of the 10 task pairs. See Figure 5a for the results.

Improving transfer learning. While our study has focused on multi-task learning, transfer learning
is a naturally related goal – and we find that our method is useful in this case as well. We validate
this by training an LSTM on the sentiment analysis tasks. Figure 5b shows the result with SST being
the source task and the rest being the target task. We see that Algorithm 1 improves the accuracy on
four tasks by up to 2.5%.

Re-weighting training for the same task data. We evaluate Algorithm 2 on the ChestX-ray14
dataset. This setting satisfies the assumption of Algorithm 2, which requires different tasks to have
the same input data. Across all 14 tasks, we find that our method improves training the unweighted
loss by 0.4% AUC score, which is 5.6% score for all tasks.

3.3 ABLATION STUDIES

Model capacity. We verify our hypothesis that the capacity of the MTL model should not exceed
the total capacities of the STL model. We show this on an LSTM module with the sentiment analysis
tasks. Recall that the capacity of the LSTM module is its output dimension. First, we train an MTL
model with all tasks and vary the shared module’s capacity to find the optimal setting (from 5 to
500). Then, we train an STL model for each task and find the optimal setting similarly. In Figure
6, we find that the performance of MTL peaks when the shared module has capacity 100. This is
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Figure 5: Performance improvements of Algorithm 1 by aligning task embeddings.
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Figure 6: Comparing the model capacity be-
tween MTL and STL.

Task STL MTL

Cap. Acc. Cap. Acc.

SST 200 82.3

100

90.8
MR 200 76.4 96.0
CR 5 73.2 78.7

SUBJ 200 91.5 89.5
MPQA 500 86.7 87.0
TREC 100 85.7 78.7

Overall 1205 82.6 100 85.1

Figure 7: Covariance similarity score vs.
performance improvements from alignment.
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much smaller than the total capacities of all the STL models. The result confirms our intuition that
by constraining the shared module’s capacity in MTL, tasks interfere with each other.

Task covariance. We apply our metric of task covariance similarity score from Section 2.3 to
provide an in-depth study of the covariance alignment method. The hypothesis is that: (a) aligning
the covariances helps, which we have shown in Figure 5a; (b) the similarity score between two tasks
increases after applying the alignment. We verify the hypothesis on the sentiment analysis tasks. We
use the single-task model’s embedding before the LSTM layer to compute the covariance.

First, we measure the similarity score using equation 5 between all six single-task models. Then,
for each task pair, we train an MTL model using Algorithm 1. We measure the similarity score on
the trained MTL model. Our results confirm the hypothesis (Figure 7): (a) we observe increased
accuracy on 13 of 15 task pairs by up to 4.1%; (b) the similarity score increases for all 15 task pairs.

Optimization scheme. We verify the robustness of Algorithm 2. After selecting two tasks from
the ChestX-ray14 dataset, we test our method by assigning random labels to 20% of the data on
one task. On 20 randomly selected pairs, our method improves over the unweighted scheme by an
average 2.4% AUC score. See Appendix C.5 for more details on the setup.

4 RELATED WORK

There has been a large body of recent work on using the multi-task learning approach to train deep
neural networks. Liu et al. (2019a); McCann et al. (2018) and subsequent follow-up work get state-
of-the-art results on the GLUE benchmark, which inspired our study of an abstraction of the MTL
model. Recent work of Zamir et al. (2018); Standley et al. (2019) answer which visual tasks to train
together via a heuristic which involves intensive computation.

Of particular relevance to this work are those that study the theory of multi-task learning. The earlier
works of Baxter (2000); Ben-David and Schuller (2003) are among the first to formally study the
importance of task relatedness for learning multiple tasks. See also the follow-up work of Maurer
(2006) which studies generalization bounds of MTL. A closely related line of work to structural
learning is subspace selection, i.e. how to select a common subspace for multiple tasks. Examples
from this line work include Obozinski et al. (2010); Wang et al. (2015); Fernando et al. (2013).
Evgeniou and Pontil (2004); Micchelli and Pontil (2005) study a formulation that extends support
vector machine to the multi-task setting. See also Argyriou et al. (2008); Pentina and Ben-David
(2015) that provide more refined optimization methods and further study. The work of Ben-David
et al. (2010) provides theories to measure the differences between source and target tasks for transfer
learning in a different model setup. Recent work of Zhang et al. (2019) shows adversarially robust
methods for domain adaptation.

5 CONCLUSIONS AND FUTURE WORK

In this work, we studied the theory of multi-task learning in linear and ReLU-activated settings.
We verified our theory and its practical implications through extensive synthetic and real world
experiments. Our work opens up many interesting future questions. First, could we provide a better
generalization theory to guide data selection for multi-task learning? Second, a limitation of our
SVD-based optimization scheduler is that it only applies to settings with the same data. Could we
extend the method for heterogeneous task data? More broadly, we hope our work inspires further
studies to better understand multi-task learning in neural networks and to guide its practice.
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A FURTHER RELATED WORK

We discuss several lines of studies related to this work. For complete references, we refer the
interested readers to the survey of Ruder (2017) and the surveys on domain adaptation and transfer
learning by Pan and Yang (2009); Kouw (2018) for references.

Hard parameter sharing vs soft parameter sharing. The architecture that we study in this work
is also known as the hard parameter sharing architecture. There is another kind of architecture
called soft parameter sharing. The idea is that each task has its own parameters and modules. The
relationships between these parameters are regularized in order to encourage the parameters to be
similar. Other architectures that have been studied before include the work of Misra et al. (2016),
where the authors explore trainable architectures for convolutional neural networks.

Domain adaptation. Another closely related line of work is on domain adaptation. The acute
reader may notice the similarity between our study in Section 2.3 and domain adaptation. The cru-
cial difference here is that we are minimizing the multi-task learning objective, whereas in domain
adaptation the objective is typically to minimize the objective on the target task. See Ben-David
et al. (2010); Zhang et al. (2019) and the references therein for other related work.

Other related work. Guo et al. (2019) use ideas from the multi-armed bandit literature to develop a
method for weighting each task. Compared to their method, our SVD-based method is conceptually
simpler and requires much less computation. The very recent work of Li and Vasconcelos (2019)
show empirical results using a similar idea of covariance normalization on imaging tasks for cross-
domain transfer. Shui et al. (2019) consider multi-task learning from the perspective of adversarial
robustness. Mahmud and Ray (2008) consider using Kolmogorov complexity measure the effective-
ness of transfer learning for decision tree methods. See also Mintz et al. (2009); Misra et al. (2016);
Pentina et al. (2015); Pentina and Lampert (2017) for other related work.

B MISSING DETAILS OF SECTION 2

We fill in the missing details left from Section 2. In Section B.1, we provide rigorous arguments
regarding the capacity of the shared module. In Section B.2, we fill in the details left from Section
2.3, including the proof of Theorem 2 and its extension to the ReLU model. In Section B.3, we
provide the proof of Proposition 3 on the task re-weighting schemes. We first describe the notations.

Notations. We define the notations to be used later on. We denote f(x) . g(x) if there exists an
absolute constant C such that f(x) ≤ Cg(x). The big-O notation f(x) = O(g(x)) means that
f(x) . g(x).

Suppose A ∈ Rm×n, then λmax(A) denotes its largest singular value and λmin(A) denotes its
min{m,n}-th largest singular value. Alternatively, we have λmin(A) = minx:‖x‖=1 ‖Ax‖. Let
κ(A) = λmax(A)/λmin(A) denote the condition number of A. Let Id denotes the identity matrix.
Let U† denote the Moore-Penrose pseudo-inverse of the matrix U . Let ‖ · ‖ denote the Euclidean
norm for vectors and spectral norm for matrices. Let ‖ · ‖F denote the Frobenius norm of a matrix.
Let 〈A,B,=〉Tr(A>B) denote the inner product of two matrices.

The sine function is define as sin(x, y) =
√

1− cos(x, y)2, where we assume that sin(x, y) ≥ 0
which is without loss of generality for our study.

B.1 EXPLAINING THE PHENOMENON ON MODEL CAPACITY

We describe the full detail to show that our model setup captures the phenomenon that the shared
module should be smaller than the sum of capacities of the single-task models. Before proceeding,
we state the following Proposition which shows that the quality of the subspace B in equation 1
determines the performance of multi-task learning. It is not hard to see that Proposition 1 follows
from this proposition.

Proposition 4. In the optimum of f(·) (equation 1), each Ai selects the vector v within the column
span of gB(Xi) to minimize L(v, yi). As a corollary, in the linear setting, the optimal B can be
achieved at a rotation matrixB? ⊆ Rd×r by maximizing

∑k
i=1〈B(B>X>i XiB)†B>, X>i yiy

>
i Xi〉.
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Proof. Recall the MTL objective in the linear setting from equation 3 as follows:

min f(A1, A2, . . . , Ak;B) =

k∑
i=1

(XiBAi − yi)2
,

Note that the linear layer Ai can pick any combination within the subspace of B. Therefore, we
could assume without loss of generality that B is a rotation matrix. i.e. B>B = Id. After fixing B,
since objective f(·) is linear in Ai for all i, by the local optimality condition, we obtain that

Ai = (B>X>i XiB)†B>X>i yi

Replacing the solution of Ai to f(·), we obtain an objective over B.

h(B) =

k∑
i=1

‖XiB(B>X>i XiB)†B>X>i yi − yi‖2F .

Next, note that

‖XiB(B>X>i XiB)†B>X>i yi‖2F = Tr(y>i XiB(B>X>i XiB)†B>X>i yi)

= 〈B(B>X>i XiB)B>, X>i yiy
>
i Xi〉,

where we used the fact that A†AA† = A† for A = B>X>i XiB in the first equation. Lastly, it is not
hard to see that the conclusion follows from above.

The above result on linear regression suggests the intuition that optimizing an MTL model reduces
to optimizing over the span of B. The intuition can be easily extended to linear classification tasks
as well as mixtures of regression and classification tasks.

To extend our result to the ReLU setting, simply note that we if the shared module’s capacity is
larger than the total capacities of the STL models, then we can put all the STL model parameters
into the shared module. This is an optimal solution to the MTL problem where there is no transfer
between any two tasks through the shared module.

B.2 MISSING DETAILS OF SECTION 2.3

B.2.1 THE EFFECT OF COSINE SIMILARITY

We consider the effect of varying the cosine similarity between single task models in multi-task
learning. We first describe the following proposition to solve the multi-task learning objective when
the covariances of the task data are the same. The idea is similar to the work of Ando and Zhang
(2005) and we adapt it here for our study.
Proposition 5. Consider the re-weighted loss of equation 2 with the encoding function being linear,
where the weights are {αi}ki=1. Suppose the task features of every task have the same covariance:
X>i Xi = Σ for all 1 ≤ i ≤ k. Let Σ = V DV > be the singular vector decomposition (SVD) of Σ.
Then the optimum of f(·) in equation 3 is achieved at:

B? = V D−1/2C?,

where C?C?> is the best rank-r approximation subspace of
∑k
i=1 αiU

>
i yiy

>
i Ui andXi = UiDV

>

is the SVD of Xi, for each 1 ≤ i ≤ k.

As a corollary, denote by λ1 ≥ λ2 ≥ · · · ≥ λk as the singular values of
D−1V >

∑k
i=1 αiX

>
i yiy

>
i Xi. Then the difference between an MTL model with hidden dimension r

and the all the single task models is bounded by
∑k
i=r+1 λ

2
i .

Proof. Note that B? is obtained by maximizing

k∑
i=1

〈B(B>X>i XiB)−1B>, αiX
>
i yiy

>
i Xi〉
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Let C = DV >B. Clearly, there is a one to one mapping between B and C. And we have B =
V D−1C. Hence the above is equivalent to maximizing over C ⊆ Rd×r with

k∑
i=1

〈C(C>C)−1C>, D−1V >

(
k∑
i=1

αiX
>
i yiy

>
i Xi

)
V D−1〉

=〈C(C>C)−1C>,

k∑
i=1

αiU
>
i yiy

>
i Ui〉.

Note that C(C>C)−1C> is a projection matrix onto a subspace of dimension r. Hence
the maximum (denote by C?) is attained at the best rank-r approximation subspace of∑k
i=1 αiU

>
i yiy

>
i Ui.

To illustrate the above proposition, consider a simple setting where Xi is identity for every 1 ≤
i ≤ k, and yi = ei, i.e. the i-th basis vector. Note that the optimal solution for the i-th task is
(X>i Xi)

−1X>i yi = yi. Hence the optimal solutions are orthogonal to each other for all the tasks,
with λi = 1 for all 1 ≤ i ≤ k. And the minimum STL error is zero for all tasks.

Consider the MTL model with hidden dimension r. By Proposition 5, the minimum MTL error is
achieved by the best rank-r approximation subspace to

∑k
i=1X

>
i yiy

>
i Xi =

∑k
i=1 yiy

>
i . Denote

the optimum as B?r . The MTL error is:

k∑
i=1

‖yi‖2 − 〈
k∑
i=1

yiy
>
i , B

?
rB

?
r
>〉 = k − r.

Different data covariance. Next we provide upper bounds on the quality of MTL solutions for
different data covariance, which depend on the relatedness of all the tasks. The following pro-
cedure gives the precise statement. Consider k regression tasks with data {(Xi, yi)}ki=1. Let
θi = (X>i Xi)

†X>i yi denote the optimal solution of each regression task. LetW ⊆ Rd×k denote the
matrix where the i-th column is equal to θi. Consider the following procedure for orthogonalizing
W for 1 ≤ i ≤ k.

a) Let W ?
i ∈ Rd denote the vector which maximizes

∑k
i=1〈

XiB
‖XiB‖ , yi〉

2 over B ∈ Rd;

b) Denote by λj =
∑k
j=1〈

XjW
?
j

‖XjW?
j ‖
, yj〉2;

c) For each 1 ≤ i ≤ k, project XiW
?
i off from every column of Xi. Go to Step a).

Proposition 6. Suppose that r ≤ d. Let B? denote the optimal MTL solution of capacity r in
the shared module. Denote by OPT =

∑k
i=1(‖yi‖2 − ‖Xi(X

>
i Xi)

†X>i yi‖2). Then h(B?) ≤
OPT −

∑d
i=r+1 λi.

Proof. It suffices to show that OPT is equal to
∑k
i=1 λi. The result then follows since h(B?) is

less than the error given by W ?
1 , . . . ,W

?
k , which is equal to OPT −

∑d
i=r+1 λi.

B.2.2 PROOF OF THEOREM 2

We fill in the proof of Theorem 2. First, we restate the result rigorously as follows.
Theorem 7 (Restated). For i = 1, 2, let (Xi, yi) ∈ (Rmi×d,Rmi) denote two linear regression
tasks with parameters θi ∈ Rd. Suppose that each row of X1 is drawn independently from a distri-
bution with covariance Σ1 ⊆ Rd×d and bounded l2-norm

√
L. Assume that θ>1 Σ1θ1 = 1 w.l.o.g.

Let c ∈ [sin(θ1, θ2) · κ(X2), 1/2] denote the desired error margin. Denote by (B?, A?1, A
?
2) the

optimal MTL solution. With probability 1− δ over the randomness of (X1, y1), when

m1 & max

(
L‖Σ1‖ log d

δ

λ2
min(Σ1)

,
κ(Σ1)κ2(X2)

c2
‖y2‖2,

κ2(Σ1)κ4(X2)

c4
σ2

1 log
1

δ

)
,

we have that ‖B?A?2 − θ2‖/‖θ2‖ ≤ 6c+ 1
1−3c‖ε2‖/‖X2θ2‖.
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We note that the error margin c is lower bounded by sin(θ1, θ2)κ(X2). An interesting future question
is to examine what is the right parameter dependence. We observe that this dependence on both
sin(θ1, θ2) (cf. Figure 3 and κ(X2) (cf. Figure 8) arise in our synthetic experiments.

The proof of Theorem 2 consists of two steps.

a) We show that the angle between B? and θ1 will be small. Once this is established, we get
a bound on the angle between B? and θ2 via the triangle inequality.

b) We bound the distance between B?A2 and θ2. The distance consists of two parts. One part
comes from B?, i.e. the angle between B? and θ2. The second part comes from A2, i.e.
the estimation error of the norm of θ2, which involves the signal to noise ratio of task two.

We first show the following geometric fact, which will be used later in the proof.

Fact 8. Let a, b ∈ Rd denote two unit vectors. Suppose that X ∈ Rm×d has full column rank with
condition number denoted by κ = κ(X). Then we have

|sin(Xa,Xb)| ≥ 1

κ2
|sin(a, b)| .

Proof. Let X = UDV > be the SVD of X . Since X has full column rank by assumption, we have
X>X = XX> = Id. Clearly, we have sin(Xa,Xb) = sin(DV >a,DV >b). Denote by a′ = V >a
and b′ = V >b. We also have that a′ and b′ are both unit vectors, and sin(a′, b′) = sin(a, b).

Let λ1, . . . , λd denote the singular values of X . Then,

sin2(Da′, Db′) = 1−

(∑d
i=1 λ

2
i a
′
ib
′
i

)2

(∑d
i=1 λ

2
i a
′
i
2
)(∑d

i=1 λ
2
i b
′
i
2
)

=

∑
1≤i,j≤d λ

2
iλ

2
j (a
′
ib
′
j − a′jb′i)2(∑d

i=1 λ
2
i a
′
i
2
)(∑d

i=1 λ
2
jb
′
i
2
)

≥ λ4
ß min

λ4
ß max

·
∑

1≤i,j≤d

(a′ib
′
j − a′jb′i)2

=
1

κ4
((

d∑
i=1

a′i
2
)(

d∑
i=1

b′i
2
)− (

d∑
i=1

a′ib
′
i)

2) =
1

κ4
sin(a′, b′).

This concludes the proof.

We first show the following Lemma, which bounds the angle between B? and θ2.

Lemma 9. In the setting of Theorem 2, with probability 1− δ over the randomness of task one, we
have that

|sin(B?, θ2)| ≤ sin(θ1, θ2) + c/κ(X2).

Proof. We note that h(B?) ≥ ‖y1‖2 by the optimality of B?. Furthermore, 〈 X2B
?

‖X2B?‖ , y2〉 ≤ ‖y2‖2.
Hence we obtain that

〈 X1B
?

‖X1B?‖
, y1〉2 ≥ ‖y1‖2 − ‖y2‖2.

For the left hand side,

〈 X1B
?

‖X1B?‖
, y1〉2 = 〈 X1B

?

‖X1B?‖
, X1θ1 + ε1〉2

= 〈 X1B
?

‖X1B?‖
, X1θ1〉2 + 〈 X1B

?

‖X1B?‖
, ε1〉2 + 2〈 X1B

?

‖X1B?‖
, X1θ1〉〈

X1B
?

‖X1B?‖
, ε1〉
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Note that the second term is a chi-squared random variable with expectation σ2
1 . Hence it is

bounded by σ2
1

√
log 1

δ with probability at least 1 − δ. Similarly, the third term is bounded by

2‖X1θ1‖σ1

√
log 1

δ with probability 1− δ. Therefore, we obtain the following:

‖X1θ1‖2 cos2(X1B
?, X1θ1) ≥ ‖y1‖2 − ‖y2‖2 − (σ2

1 + 2σ1‖X1θ1‖)
√

log
1

δ

Note that

‖y1‖2 ≥ ‖X1θ1‖2 + 2〈X1θ1, ε1〉

≥ ‖X1θ1‖2 − 2‖X1θ1‖σ1

√
log

1

δ
.

Therefore,

‖X1θ1‖2 cos2(X1B
?, X1θ1) ≥ ‖X1θ1‖2 − ‖y2‖2 − (σ2

1 + 3σ1‖X1θ1‖)
√
log

1

δ

⇒ sin2(X1B
?, X1θ1) ≤ ‖y2‖2

‖X1θ1‖2
+

4σ1

√
log 1

δ

‖X1θ1‖

⇒ sin2(B?, θ1) ≤ κ2(X1)

 ‖y2‖2

‖X1θ1‖2
+

4σ1

√
log 1

δ

‖X1θ1‖

 (by Lemma 8)

By matrix Bernstein inequality (see e.g. Tropp et al. (2015)), when m1 ≥ 10‖Σ1‖ log d
δ /λ

2
min(Σ1),

we have that: ∥∥∥∥ 1

m1
X>1 X1 − Σ1

∥∥∥∥ ≤ 1

2
λmin(Σ1).

Hence we obtain that κ2(X1) ≤ 3κ(Σ1) and ‖X1θ1‖2 ≥ m1 · θ>1 Σ1θ1/2 ≥ m1/2 (where we
assumed that θ>1 Σ1θ1 = 1). Therefore,

sin2(B?, θ1) ≤ 3κ(Σ1)

‖y2‖2

m2
1/4

+
4σ1

√
log 1

δ√
m1/2

 ,

which is at most c2/κ2(X2) by our setting of m1. Therefore, the conclusion follows by triangle
inequality (noting that both c and sin(θ1, θ2) are less than 1/2).

Based on the above Lemma, we are now to ready to prove Theorem 2.

Proof of Theorem 2. Note that in the MTL model, after obtaining B?, we then solve the linear layer
for each task. For task 2, this gives weight value A?2 := 〈X2θ̂, y2〉/‖X2θ̂‖2. Thus the regression
coefficients for task 2 isB?A?2. For the rest of the proof, we focus on bounding the distance between
B?A?2 and θ2. By triangle inequality,

‖B?A?2 − θ2‖ ≤
|〈X2B

?, ε2〉|
‖X2B?‖2

+

∣∣∣∣ 〈X2B
?, X2θ2〉

‖X2B?‖2
− ‖θ2‖

∣∣∣∣+ ‖B?‖θ2‖ − θ2‖ . (6)

Note that the second term of equation 6 is equal to

|〈X2B
?, X2(θ2 − ‖θ2‖B?)〉|
‖X2B?‖2

≤ κ(X2) · ‖θ2 − ‖θ2‖B?‖.

The first term of equation 6 is bounded by

‖ε2‖
‖X2B?‖

≤ ‖ε2‖‖θ2‖
‖X2θ2‖ − ‖X2(θ2 − ‖θ2‖B?)‖

. (7)
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Lastly, we have that

‖θ2 − ‖θ2‖B?‖2 = ‖θ2‖22(1− cos(B?, θ2)) ≤ 2‖θ2‖2 sin2(B?, θ2)

By Lemma 9, we have

|sin(B?, θ2)| ≤ sin(θ1, θ2) + c/κ(X2)

Therefore, we conclude that equation 7 is at most

‖ε2‖ · ‖θ2‖
‖X2θ2‖ −

√
2λmax(X2)‖θ2‖ sin(θ1, θ2)−

√
2cλmin(X2)‖θ2‖

≤ ‖ε2‖ · ‖θ2‖
‖X2θ2‖ − 3cλmin(X2)‖θ2‖

≤ 1

1− 3c

‖ε2‖ · ‖θ2‖
‖X2θ2‖

Thus equation 6 is at most the following.

‖θ2‖ ·
(

1

1− 3c

‖ε2‖
‖X2θ2‖

+
√

2(κ(X2) + 1) · sin(B?, θ2)

)
≤‖θ2‖ ·

(
1

1− 3c

‖ε2‖
‖X2θ2‖

+ 6c

)
.

Hence we obtain the desired estimation error of BA?2.

B.2.3 EXTENSION TO THE RELU MODEL

In this part, we extend Theorem 2 to the ReLU model. Note that the problem is reduced to the
following objective.

max
B∈Rd

g(B) = 〈 ReLU(X1B)

‖ReLU(X1B)‖
, y1〉2 + 〈 ReLU(X2B)

‖ReLU(X2B)‖
, y2〉2 (8)

We make a crucial assumption that task 1’s input X1 follows the Gaussian distribution. Note that
making distributional assumptions is necessary because for worst-case inputs, even optimizing a
single ReLU function under the squared loss is NP-hard (Manurangsi and Reichman (2018)). We
state our result formally as follows.
Theorem 10. Let (X1, y1) ∈ (Rm1×d,Rm1) and (X2, y2) ∈ (Rm2×d,Rm2) denote two
tasks. Suppose that each row of X1 is drawn from the standard Gaussian distribution. And
yi = ai · ReLU(Xiθi) + εi are generated via the ReLU model with θ1, θ2 ∈ Rd. Let
E
[
(ai · ReLU(Xiθi))

2
j

]
= 1 for every 1 ≤ j ≤ m1 without loss of generality, and let σ2

1 denote the
variance of every entry of ε1.

Suppose that c ≥ sin(θ1, θ2)/κ(X2). Denote by (B?, A?1, A
?
2) the optimal MTL solution of equa-

tion 8. With probability 1− δ over the randomness of (X1, y1), when

m1 & max

(
d log d

c2
(

1

c2
+ log d),

‖y2‖2

c2

)
,

we have that the estimation error is at most:

sin(B?, θ1) ≤ sin(θ1, θ2) +O(c/κ(X2)),

|A?2 − a2|
a2

≤ O(c) +
1

(1−O(c))
· ‖ε2‖
a2 · ReLU(‖X2θ2‖)

Proof. The proof follows a similar structure to that of Theorem 2. Without loss of generality, we
can assume that θ1, θ2 are both unit vectors. We first bound the angle between B? and θ1.

By the optimality of B?, we have that:

〈 ReLU(X1B
?)

‖ReLU(X1B?)‖
, y1〉2 ≥ 〈

ReLU(X1θ1)

‖ReLU(X1θ1)‖
, y1〉2 − ‖y2‖2
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From this we obtain:

a2
1 · 〈

ReLU(X1B
?)

‖ReLU(X1B?)‖
,ReLU(X1B

?)〉2

≥a2
1 · ‖ReLU(X1θ1)‖2 − ‖y2‖2 − (σ2

1 + 4a1 · σ1‖ReLU(X1θ1)‖)
√

log
1

δ
(9)

Note that each entry of ReLU(X1θ1) is a truncated Gaussian random variable. By the Hoeffding
bound, with probability 1− δ we have∣∣∣‖ReLU(X1θ1)‖2 − m1

2

∣∣∣ ≤√m1

2
log

1

δ
.

As for 〈ReLU(X1B
?),ReLU(X1θ1)〉, we will use an epsilon-net argument over B? to show the

concentration. For a fixed B?, we note that this is a sum of independent random variables that are
all bounded within O(log m1

δ ) with probability 1 − δ. Denote by φ the angle between B? and θ1,
a standard geometric fact states that (see e.g. Lemma 1 of Du et al. (2017)) for a random Gaussian
vector x ∈ Rd,

E
x

[
ReLU(x>B?) · ReLU(x>θ1)

]
=

cosφ

2
+

cosφ(tanφ− φ)

2π
:=

g(φ)

2
.

Therefore, by applying Bernstein’s inequality and union bound, with probability 1− η we have:

|〈ReLU(X1B
?),ReLU(X1θ1)〉 −m1g(φ)/2| ≤ 2

√
m1g(φ) log

1

η
+

2

3
log

1

η
log

m1

δ

By standard arguments, there exists a set of dO(d) unit vectors S such that for any other unit vector
u there exists û ∈ S such that ‖u − û‖ ≤ min(1/d3, c2/κ2(X2)). By setting η = d−O(d) and
take union bound over all unit vectors in S, we have that there exists û ∈ S satisfying ‖B? − û‖ ≤
min(1/d3, c2/κ2(X2)) and the following:

|〈ReLU(X1û),ReLU(X1θ1)〉 −m1g(φ′)/2| .
√
m1d log d+ d log2 d

≤ 2m1c
2/κ2(X2) (by our setting of m1)

where φ′ is the angle between û and θ1. Note that∣∣∣〈ReLU(X1θ̂)− ReLU(X1B
?),ReLU(X1θ1)〉

∣∣∣ ≤ ‖X1(û−B?)‖ · ‖ReLU(X1θ1)‖

≤ c2/κ2(X2) ·O(m1)

Together we have shown that

|〈ReLU(X1B
?),ReLU(X1θ1)〉 −m1g(φ′)/2| ≤ c2/κ2(X2) ·O(m1).

Combined with equation 9, by our setting of m1, it is not hard to show that

g(φ′) ≥ 1−O(c2/κ2(X2)).

Note that

1− g(φ′) = 1− cosφ′ − cosφ′(tanφ′ − φ′)

≤ 1− cosφ′ = 2 sin2 φ
′

2
. c2/κ2(X2),

which implies that sin2 φ′ . c2/κ2(X2) (since cosφ
′

2 ≥ 0.9). Finally note that ‖û − B?‖ ≤
c2/κ2(X2), hence

‖û−B?‖2 = 2(1− cos(û, B?)) ≥ 2 sin2(û, B?).

Overall, we conclude that sin(B?, θ1) ≤ O(c/κ(X2)). Hence

sin(B?, θ2) ≤ sin(θ1, θ2) +O(c/κ(X2)).
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For the estimation of a2, we have∣∣∣∣ 〈ReLU(X2B
?), y2〉

‖ReLU(X2B?)‖2
− a2

∣∣∣∣ ≤|〈ReLU(X2B
?), ε2〉|

‖ReLU(X2B?)‖2

+a2

∣∣∣∣ 〈ReLU(X2B
?),ReLU(X2B

?)− ReLU(X2θ2)〉
‖ReLU(X2B?)‖2

∣∣∣∣
The first part is at most

‖ε2‖
‖ReLU(X2B?)‖

≤ ‖ε2‖
‖ReLU(X2θ2)‖ − ‖ReLU(X2θ2)− ReLU(X2B?)‖

≤ 1

1−O(c)

‖ε2‖
‖ReLU(X2θ2)‖

Similarly, we can show that the second part is at most O(c). Therefore, the proof is complete.

B.3 PROOF OF PROPOSITION 3

In this part, we present the proof of Proposition 3. In fact, we present a more refined result, by
showing that all local minima are global minima for the re-weighted loss in the linear case.

f(A1, A2, . . . , Ak;B) =

k∑
i=1

αi‖XiBAi − yi)‖2F . (10)

The key is to reduce the MTL objective f(·) to low rank matrix approximation, and apply recent
results by Balcan et al. (2018) which show that there is no spurious local minima for the latter
problem .
Lemma 11. Assume that X>i Xi = αiΣ with αi > 0 for all 1 ≤ i ≤ k. Then all the local minima
of f(A1, . . . , Ak;B) are global minima of equation 3.

Proof. We first transform the problem from the space of B to the space of C. Note that this is
without loss of generality, since there is a one to one mapping between B and C with C = DV >B.
In this case, the corresponding objective becomes the following.

g(A1, . . . , Ak;B) =

k∑
i=1

αi · ‖UiCAi − yi‖2

=

k∑
i=1

‖C(
√
αiAi)−

√
αiU

>
i yi‖2 +

k∑
i=1

αi · (‖yi‖2 − ‖U>i yi‖2)

The latter expression is a constant. Hence it does not affect the optimization solution. For the
former, denote by A ∈ Rr×k as stacking the

√
αiAi’s together column-wise. Similarly, denote by

Z ∈ Rd×k as stacking
√
αiU

>
i yi together column-wise. Then minimizing g(·) reduces solving low

rank matrix approximation: ‖CA− Z‖2
F

.

By Lemma 3.1 of Balcan et al. (2018), the only local minima of ‖CA − Z‖2
F

are the ones where
CA is equal to the best rank-r approximation of Z. Hence the proof is complete.

Now we are ready to prove Proposition 3.

Proof of Proposition 3. By Proposition 5, the optimal solution of B? for equation 10 is V D−1

times the best rank-r approximation to αiU>yiy>i U , where we denote the SVD of X as UDV >.
Denote by QrQ

>
r as the best rank-r approximation to U>ZZ>U , where we denote by Z =

[
√
α1y1,

√
α2y2, . . . ,

√
αkyk] as stacking the k vectors to a d by k matrix. Hence the result of

Proposition 5 shows that the optimal solution B? is V D−1Qr, which is equal to (X>X)−1XQr.
By Proposition 4, the optimality ofB? is the same up to transformations on the column space. Hence
the proof is complete.

To show that all local minima are also equal to (X>X)−1XQr, we can simply apply Lemma 11
and Proposition 3.
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C SUPPLEMENTARY EXPERIMENTAL RESULTS

We fill in the details left from our experimental section. In Appendix C.1, we review the datasets
used in our experiments. In Appendix C.2, we describe the models we use on each dataset. In
Appendix C.3, we describe the training procedures for all experiments. In Appendix C.4 and Ap-
pendix C.5, we show extended synthetic and real world experiments to support our claims.

C.1 DATASETS

In this subsection, we describe the synthetic settings we use to verify our theory. We present more de-
tails of the three datasets Sentiment Analysis, General Language Understanding Evaluation (GLUE)
benchmark, and ChestX-ray14.

Synthetic Settings. For the synthetic experiments, we draw 10,000 random data samples with di-
mension d = 100 from the standard Gaussian N (0, 1) and calculate the corresponding labels based
on the model described in experiment. We split the data samples into training and validation sets
with 9,000 and 1,000 samples in each. For classification tasks, we generate the labels by applying
a sigmoid function and then thresholding the value to binary labels at 0.5. For ReLU regression
tasks, we apply the ReLU activation function on the real-valued labels. The number of data samples
used in the experiments varies depending on the specification. Specifically, for the task covariance
experiment of Figure 3, we fix task 1’s data with m1 = 9, 000 training data and vary task 2’s data
under three settings: (i) same rotation Q1 = Q2 but different singular values D1 6= D2; (ii) same
singular values D1 = D2 but random rotations Q1 6= Q2.

Sentiment Analysis. For the sentiment analysis task, the goal is to understand the sentiment opin-
ions expressed in the text based on the context provided. This is a popular text classification task
which is usually formulated as a multi-label classification task over different ratings such as positive
(+1), negative (-1), or neutral (0). We use six sentiment analysis benchmarks in our experiments:

• Movie review sentiment (MR): The MR dataset is proposed in Pang and Lee (2005) for
detecting positive and negative movie reviews. In this dataset, each movie review consists
of a single sentence.

• Sentence subjectivity (SUBJ): The SUBJ dataset is proposed in Pang and Lee (2004) and
the goal is to classify whether a given sentence is subjective or objective.

• Customer reviews polarity (CR): The CR dataset, collected by Hu and Liu (2004), provides
customer reviews of various products. The goal of this task is to categorize positive and
negative reviews.

• Question type (TREC): The TREC dataset is collected by Li and Roth (2002). The aim is
to classify a question into 6 question types.

• Opinion polarity (MPQA): The MPQA dataset detects whether an opinion is polarized or
not (Wiebe et al. (2005)).

• Stanford sentiment treebank (SST): The SST dataset, created by Socher et al. (2013), is an
extension of the MR dataset.

The General Language Understanding Evaluation (GLUE) benchmark. GLUE is a collec-
tion of natural language understanding tasks including question answering, sentiment analysis, text
similarity and textual entailment problems. The GLUE benchmark is a state-of-the-art multi-task
learning benchmark for both academia and industry. We select five representative tasks including
CoLA, MRPC, QNLI, RTE, and SST-2 to validate our proposed method. We emphasize that the
goal of this work is not to come up with a state-of-the-art result but rather to provide insights into
the working of multi-task learning. It is conceivable that our results can be extended to the entire
dataset as well. This is left for future work. More details about the GLUE benchmark can be found
in the original paper (Wang et al. (2018a)).

ChestX-ray14. The ChestX-ray14 dataset (Wang et al. (2017)) is the largest publicly available
chest X-ray dataset. It contains 112,120 frontal-view X-ray images of 30,805 unique patients. Each
image contains up to 14 different thoracic pathology labels using automatic extraction methods on
radiology reports. This can be formulated as a 14-task multi-label image classification problem,
where each task is a binary classification problem. The ChestX-ray14 dataset is a representative
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dataset in the medical imaging domain as well as in computer vision. We use this dataset to examine
our proposed task re-weighting scheme since it satisfies the assumption that all tasks have the same
input data but different labels.

C.2 MODELS

We describe the models we use for the experiments.

Synthetic Settings. For the synthetic experiments, we use the linear regression model, the logistic
regression model and a one-layer neural network with the ReLU activation function.

Sentiment Analysis. For the sentiment analysis experiments, we consider three different models
including multi-layer perceptron (MLP), LSTM, CNN:

• For the MLP model, we average the word embeddings of a sentence and feed the result into
a two layer perceptron, followed by a classification layer.

• For the LSTM model, we use the standard one-layer single direction LSTM as proposed
by Lei et al. (2018), followed by a classification layer.

• For the CNN model, we use the model proposed by Kim (2014) which uses one con-
volutional layer with multiple filters, followed by a ReLU layer, max-pooling layer, and
classification layer. We follow the protocol of Kim (2014) and set the filter window size to
be {3, 4, 5}.

We use the pre-trained GLoVe embeddings trained on Wikipedia 2014 and Gigaword 5 corpora 6.
We fine-tune the entire model in our experiments. In the multi-task learning setting, the shared
modules include the embedding layer and the feature extraction layer (i.e. the MLP, LSTM, or CNN
model). Each task has its separate output module.

GLUE. For the experiments on the GLUE benchmark, we use a state-of-the-art language model
called BERT (Devlin et al. (2018)). For each task, we add a classification/regression layer on top it
as our model. For all the experiments, we use the BERTLARGE uncased model, which is a 24 layer
network as described in Devlin et al. (2018). For the multi-task learning setting, we follow the work
of Liu et al. (2019a) and use BERTLARGE as the shared module.

ChestX-ray14. For the experiments on the ChestX-ray14 dataset, we use the DenseNet model
proposed by Rajpurkar et al. (2017) as the shared module, which is a 121 layer network. For each
task, we use a separate classification output layer. We use the pre-trained model7 in our experiments.

C.3 TRAINING PROCEDURES

In this subsection, we describe the training procedures for our experiments.

Synthetic Settings. For the synthetic experiments, we do a grid search over the learning rate from
{1e−4, 1e−3, 1e−2, 1e−1} and the number of epochs from {10, 20, 30, 40, 50}. We pick the best
results for all the experiments. We choose the learning rate to be 1e − 3 and the number of epochs
to be 30. For regression task, we report the Spearman’s correlation score For classification task, we
report the classification accuracy.

Sentiment Analysis. For the sentiment analysis experiments, we randomly split the data into train-
ing, dev and test sets with percentages 80%, 10%, and 10% respectively. We follow the protocol
of Lei et al. (2018) to set up our model for the sentiment analysis experiments. The default hidden
dimension of the model (e.g. LSTM) is set to be 200, but we vary this parameter for the model
capacity experiments. We report the accuracy score on the test set as the performance metric.

GLUE For the GLUE experiments, the train procedure is used on the alignment modules and the
output modules. Due to the complexity of the BERTLARGE module, which involves 24 layers of
non-linear transformations, we fix the BERTLARGE module during the training process to examine
the effect of adding the alignment modules to the training process. In general, even after fine-tuning
the BERTLARGE module on a set of tasks, it is always possible to add our alignment modules and
apply Algorithm 1.

6http://nlp.stanford.edu/data/wordvecs/glove.6B.zip
7https://github.com/pytorch/vision
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(a) Linear regression tasks
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(b) Logistic classification tasks
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(c) Regression tasks with ReLU non-linearity
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(d) Classification tasks with ReLU non-linearity

Figure 8: Comparing MTL model performance over different task similarity. For (a) and (c), MTL
trains two regression tasks; For (b) and (d), MTL trains two classification tasks. For regression
task, we use spearman correlation as model performance indicator. For classification task, we use
accuracy. We report the average model performance over two tasks. The x-axis denotes the cosine
distance, i.e. 1− cos(θ1, θ2).

For the training parameters, we apply grid search to tune the learning rate from {2e−5, 3e−5, 1e−5}
and the number of epochs from {2, 3, 5, 10}. We choose the learning rate to be 2e−5 and the number
of epochs to be 5 for all the experiments. We use the GLUE evaluation metric (cf. Wang et al.
(2018b)) and report the scores on the development set as the performance metric.

ChestX-ray14. For the ChestX-ray14 experiments, we use the configuration suggested by Rajpurkar
et al. (2017) and report the AUC score on the test set after fine-tuning the model for 20 epochs.

C.4 EXTENDED SYNTHETIC EXPERIMENTS

We describe two more synthetic experiments to validate our theoretical results.

The effect of varying cosine similarity on linear and ReLU models. We demonstrate the effect
of cosine similarity in synthetic settings for both regression and classification tasks.

We start with linear settings. We generate 20 synthetic task datasets (either for regression tasks, or
classification tasks) based on data generation procedure and vary the task similarity between task 1
and task i. We run the experiment with a different dataset pairs (dataset 1 and dataset i). We compare
the performance gap between MTL and STL model. From Figure 8a and Figure 8a, we find that for
both regression and classification settings, with the larger task similarity the MTL outperforms more
than STL model and the negative transfer could occur if the task similarity is too small.

We consider a non-linear model with one layer of ReLU activations. We use the same setup as the
linear setting, but apply a ReLU activation when we generate the data. The similar results are shown
in Figure 8c and Figure 8d.

Further validation for non-linear settings. We provide further validation of our results on non-
linear models with ReLU activations. In this synthetic experiment, there are two sets of model
parameters Θ1 ⊆ Rd×r and Θ2 ⊆ Rd×r (d = 100 and r = 10). Θ1 is a fixed random rotation
matrix and there are m1 = 100 data points for task 1. Task 2’s model parameter is Θ2 = αΘ1 +
(1−α)Θ′, where Θ′ is also a fixed rotation matrix that is orthogonal to Θ1. Note that α is the cosine
value/similarity of the principal angle between Θ1 and Θ2. We then generate X1 ⊆ Rm1×d and
X2 ⊆ Rm2×d from Gaussian. For each task, the labels are yi = ReLU(XiΘi)e+ εi, where e ∈ Rr
is the all ones vector. Given the two tasks, we use MTL with ReLU activations and capacityH = 10
to co-train the two tasks. The goal is to see how different levels of α or similarity affects the transfer
from task two to task one. Note that this setting parallels the linear setting of Theorem 2.
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(a) Regression tasks with non-linearity
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(b) Classification tasks with non-linearity

Figure 9: Comparing the rate of transfer by varying the cosine similarity of the two tasks STL
models.

C.5 EXTENDED ABLATION STUDIES

We add more details to the ablation study on the robustness of Algorithm 2.

The effect of label noise on Algorithm 2. To evaluate the robustness of Algorithm 2 in the presence
of label noise, we conduct the following experiment. First, we select two tasks from the ChestX-
ray14 dataset. Then, we randomly pick one task to add 20% of noise to its labels by randomly
flipping them. We compare the performance of training both tasks using our re-weighted scheme
(Algorithm 2) vs. using the unweighted scheme. On 20 randomly chosen task pairs, our method
improves over the unweighted training scheme by 2.4% AUC score averaged over the 20 task pairs.
Figure 10 shows 5 example task pairs from our evaluation.

Round robin
Mixing

4.85

M
TL

 p
er

fo
rm

an
ce

0.4

0.5

0.6

0.7

0.8

Fibrosis 
Edema

Consolidation 
Pneumothorax

Emphysema 
Infiltration

Consolidation 
Edema

Emphysema 
Consolidation

Figure 10: Comparing the re-weighted scheme of Algorithm 2 to the unweighted scheme.
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