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ABSTRACT

Variance reduction methods which use a mixture of large and small batch gra-
dients, such as SVRG (Johnson & Zhang, 2013) and SpiderBoost (Wang et al.,
2018), require significantly more computational resources per update than SGD
(Robbins & Monro, 1951). We reduce the computational cost per update of vari-
ance reduction methods by introducing a sparse gradient operator blending the
top-K operator (Stich et al., 2018; Aji & Heafield, 2017) and the randomized coor-
dinate descent operator. While the computational cost of computing the derivative
of a model parameter is constant, we make the observation that the gains in vari-
ance reduction are proportional to the magnitude of the derivative. In this paper,
we show that a sparse gradient based on the magnitude of past gradients reduces
the computational cost of model updates without a significant loss in variance
reduction. Theoretically, our algorithm is at least as good as the best available
algorithm (e.g. SpiderBoost) under appropriate settings of parameters and can
be much more efficient if our algorithm succeeds in capturing the sparsity of the
gradients. Empirically, our algorithm consistently outperforms SpiderBoost using
various models to solve various image classification tasks. We also provide empir-
ical evidence to support the intuition behind our algorithm via a simple gradient
entropy computation, which serves to quantify gradient sparsity at every iteration.

1 INTRODUCTION

Optimization tools for machine learning applications seek to minimize the finite sum objective

min
x∈Rd

f(x) ,
1

n

n∑
i=1

fi(x), (1)

where x is a vector of parameters, and fi : Rd → R is the loss associated with sample i. Batch
SGD serves as the prototype for modern stochastic gradient methods. It updates the iterate x with
x− η∇fI(x), where η is the learning rate and fI(x) is the batch stochastic gradient, i.e.

∇fI(x) =
1

|I|
∑
i∈I
∇fi(x).

The batch size |I| in batch SGD directly impacts the stochastic variance and gradient query com-
plexity of each iteration of the update rule. Lower variance improves convergence rate without any
changes to learning rate, but the step-size in the convergence analysis of SGD decreases with vari-
ance (Robbins & Monro, 1951), which suggests that learning rates can be increased when stochastic
variance is decreased to further improve the convergence rate of gradient-based machine learning
optimization algorithms. This is generally observed behavior in practice (Smith et al., 2018; Hoffer
et al., 2017).

In recent years, new variance reduction techniques have been proposed by carefully blending large
and small batch gradients (e.g. Roux et al., 2012; Johnson & Zhang, 2013; Defazio et al., 2014;
Xiao & Zhang, 2014; Allen-Zhu & Yuan, 2016; Allen-Zhu & Hazan, 2016; Reddi et al., 2016a;b;
Allen-Zhu, 2017; Lei & Jordan, 2017; Lei et al., 2017; Allen-Zhu, 2018b; Fang et al., 2018; Zhou
et al., 2018; Wang et al., 2018; Pham et al., 2019; Nguyen et al., 2019; Lei & Jordan, 2019). They
are alternatives to batch SGD and are provably better than SGD in various settings. While these
methods allow for greater learning rates than batch SGD and have appealing theoretical guarantees,
they require a per-iteration query complexity which is more than double than that of batch SGD. This
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leads to the critique by Defazio (2019), which questions the utility of variance reduction techniques
in modern machine learning problems. While their position is reasonable, they only show that naive
implementations of variance reduction methods do not work and do not rule out the possibility
that variance reduction can be effective when combined with new ideas. In this paper, we take a
step in this direction by significantly improving the computational complexity of variance reduction
methods.

The central observation of this work is the following: While the cost of computing the derivative
of a model’s parameter is constant, the variance of the model parameter’s derivative is not. We ex-
perimentally show that, toward the beginning of training, the magnitude of the derivative of model
parameters are roughly equivalent and unstructured, and toward the end of training, they become
progressively more structured. We measure this behavior by computing the entropy of the empirical
distribution over the magnitude of the derivative of the model parameters. We exploit this obser-
vation to reduce the query complexity of variance reduction methods by applying a sparse gradient
operator typically used to reduce the communication complexity of distributed optimization (Stich
et al., 2018; Aji & Heafield, 2017) applications. Stich et al. (2018) addressed the communication
complexity of distributed SGD by transmitting sparse gradients between computer nodes over a low
bandwidth communication channel. Aji & Heafield (2017) expands on this work by using a memory
vector to record dense gradient updates. This is done by adding a dense gradient to the memory vec-
tor at each iteration and transmitting to other nodes on the network the gradient coordinates which
rank among the top k in terms of their magnitude. The transmitted coordinates are set to zero,
which allows coordinates with smaller derivatives to accumulate enough magnitude to eventually be
transmitted.

Like the memory vector in Aji & Heafield (2017), we also use a vector to rank the variance of
the additional gradient computations introduced by variance reduction methods, and compute both
the derivative of model parameters which rank among the top k1 of the stored memory vector, and
additionally compute the gradient of k2 randomly selected model parameters from the remaining
d− k1 parameters.

The rest of the paper is organized as follows. We begin by providing a sparse variance reduction
algorithm based on a combination of SCSG (Lei et al., 2017) and SpiderBoost (Wang et al., 2018).
We then explain how to perform sparse back-propagation in order to realize the benefits of sparsity.
We prove both that our algorithm is as good as SpiderBoost, and under reasonable assumptions,
has better complexity than SpiderBoost. Finally, we present our experimental results which include
an empirical analysis of the sparsity of various image classification problems, and a comparison
between our algorithm and SpiderBoost.

2 STOCHASTIC VARIANCE REDUCTION WITH SPARSE GRADIENTS

Generally, variance reduction methods reduce the variance of stochastic gradients by taking a snap-
shot ∇f(y) of the gradient ∇f(x) every m steps of optimization, and use the gradient information
in this snapshot to reduce the variance of subsequent smaller batch gradients ∇fI(x) (Johnson &
Zhang, 2013; Wang et al., 2018). Methods such as SCSG (Lei & Jordan, 2017) utilize a large batch
gradient, which is typically some multiple in size of the small batch gradient b, which is much more
practical and is what we do in this paper. To reduce the cost of computing additional gradients, we
use sparsity by only computing a subset k of the total gradients d, where y ∈ Rd.

2.1 SPIDERBOOST WITH SPARSE GRADIENTS

Let 1 ≤ k ≤ d for a parametric model of dimension d. The operator rtopk1,k2 : Rd → Rd is defined
for x, y ∈ Rd as

(
rtopk1,k2(x, y)

)
`

=


y` if |x`| ≥ |x(k1)|
y`(d− k1)/k2 if |x`| < |x(k1)| and ` ∈ S
0 otherwise

,

where |x(1)| ≥ |x(2)| ≥ . . . ≥ |x(d)| denotes the order statistics of coordinates of x in absolute
values and S denotes a random subset with size k that is uniformly drawn from the set {` : |y`| <
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|y(k)|}. For instance, if x = (1, 2, 3, 4, 5), y = (5, 4, 3, 2, 1) and k1 = k2 = 1. Then S is a
singleton uniformly drawn from {1, 2, 3, 4}. Suppose S = {2}, then rtop(x, y) = (0, 12, 0, 0, 1). If
k1+k2 = d, rtopk1,k2(x, y) = y. On the other hand, if k1 = 0, rtopk1,k2(x, y) does not depend on x
and essentially return a rescaled random subset of y. This is the operator used in coordinate descent
methods. Finally, rtopk1,k2(x, y) is linear in y. The following Lemma shows that rtopk1,k2(x, y) is
an unbiased estimator of y, which is a crucial property in our later analysis.

Lemma 1. Given any x, y,

E
(
rtopk1,k2(x, y)

)
= y, Var

(
rtopk1,k2(x, y)

)
=
d− k1 − k2

k2
‖ top−k1(x, y)‖2,

where E is taken over the random subset S involved in the rtopk1,k2 operator and

(top−k1(x, y))` =

{
y` if |x`| ≥ |x(k1)|
0 otherwise

.

Our algorithm is detailed as below.

Algorithm 1: SpiderBoost with Sparse Gradients.
Input: Learning rate η, inner loop size m, outer loop size T , large batch size B, small batch size b,

initial iterate x0, memory decay factor α, sparsity parameters k1, k2.
1 I0 ∼ Unif({1, . . . , n}) with |I0| = B
2 M0 := |∇fI0(x0)|
3 for j = 1, ..., T do
4 x

(j)
0 := xj−1, M

(j)
0 := Mj−1

5 Ij ∼ Unif({1, . . . , n}) with |Ij | = B

6 ν
(j)
0 := ∇fIj (x

(j)
0 )

7 Nj := m (for implementation) or Nj ∼ Geom(m) (for theory)
8 for t = 0, . . . , Nj − 1 do
9 x

(j)
t+1 := x

(j)
t − ην

(j)
t

10 I(j)t ∼ Unif([n]) with |I(j)t | = b

11 ν
(j)
t+1 := ν

(j)
t + rtopk1,k2

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)

12 M
(j)
t+1 := α|ν(j)t+1|+ (1− α)M

(j)
t

13 xj := x
(j)
Nj
, Mj := M

(j)
Nj

Output: xout = xT (for implementation) or xout = xT ′ where T ′ ∼ Unif([T ]) (for theory)

The algorithm includes an outer-loop and an inner-loop. In the theoretical analysis, we generate Nj
as Geometric random variables. This trick is called ”geometrization”, proposed by Lei & Jordan
(2017) and dubbed by Lei & Jordan (2019). It greatly simplifies analysis (e.g. Lei et al., 2017;
Allen-Zhu, 2018a). In practice, as observed by Lei et al. (2017), it does not make a difference if Nj
is simply set to be m. For this reason, we apply ”geometrization” in theory to make arguments clean
and readable. On the other hand, in theory the output is taken as uniformly random elements from
the set of last iterates in each outer loop. This is a generic strategy for nonconvex optimization, as
an analogue of the average iterates for convex optimization, proposed by Nemirovski et al. (2009).
In practice, we simply use the last iterate as convention.

Similar to Aji & Heafield (2017), we maintain a memory vector at each iteration of our algorithm.
We assume the optimization procedure is taking place locally and thus do not transmit and zero out
any components. Instead, we maintain an exponential moving average M (j)

t of the magnitudes of
each coordinate of our gradient estimate ν(j)t . We then useM (j)

t as an approximation to the variance
of each gradient coordinate in our rtopk1,k2 operator. With M (j)

t as input, the rtopk1,k2 operator
targets k1 high variance gradient coordinates in addition to the k2 randomly selected coordinates.

The cost of invoking rtopk1,k2 is dominated by the algorithm for selecting the top k coordinates,
which has linear worst case complexity when using the introselect algorithm.
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2.2 SPARSE BACK-PROPAGATION

One crucial step in using sparsity with any optimization algorithm is computing the gradient in a
way that takes advantage of sparsity. Consider the forward pass of a deep neural network, where φ
is a deep composition of parametric functions,

φ(x; θ) = φL(φL−1(. . . φ0(x; θ0) . . . ; θL−1); θL). (2)

The unconstrained problem of minimizing over the θ` can be rewritten as a constrained optimization
problem as follows:

min
θ

1

n

n∑
i=1

loss(z(L+1)
i , yi)

s.t. z
(L)
i = gL−1(z

(L−1)
i ; θL−1)

...

z
(`+1)
i = g`(z

(`)
i ; θ`)

...

z
(1)
i = g0(xi; θ0).

(3)

In this form, zL+1
i is the model estimate for data point i. Consider g`(x; θ`) = σ(xT θ`), where

σ is some subdifferentiable activation function. If we apply the rtopk1,k2 operator per-layer in the
forward-pass, with appropriate scaling of k1 and k2 to account for depth, we see that the number
of multiplications in the forward pass is reduced to k1 + k2: σ(rtopk1,k2(v, x)T rtopk1,k2(v, θ`)).
A sparse forward-pass yields a computation graph for a (k1 + k2)-parameter model, and back-
propagation will compute the gradient of the objective with respect to model parameters in linear
time (Chauvin & Rumelhart, 1995).

2.3 GRADIENT QUERY COMPLEXITY

We assume that sampling an index i and accessing the pair∇fi(x) incur a unit of cost and accessing
the truncated version rtopk1,k2(y,∇fi(x)) incur (k1 + k2)/d units of cost. Note that calculating
rtopk1,k2(y,∇fI(x)) incurs |I|(k1 + k2)/d units of computational cost. Given our framework, the
theoretical complexity of the algorithm is

Ccomp(ε) ,
T∑
j=1

(
B + 2bNj

k1 + k2
d

)
. (4)

3 THEORETICAL COMPLEXITY ANALYSIS

3.1 NOTATION AND ASSUMPTIONS

Denote by ‖ · ‖ the Euclidean norm and by a ∧ b the minimum of a and b. For a random vector
Y ∈ Rd,

Var(Y ) =

d∑
i=1

Var(Yi).

We say a random variable N has a geometric distribution, N ∼ Geom(m), if N is supported on the
non-negative integers with

P(N = k) = γk(1− γ), ∀k = 0, 1, . . . ,

for some γ such that EN = m. Here we allow N to be zero to facilitate the analysis.

Assumption A1 on the smoothness of individual functions will be made throughout the paper.
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A1 fi is differentiable with
‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,

for some L <∞ and for all i ∈ {1, . . . , n}.

As a direct consequence of assumption A1, it holds for any x, y ∈ Rd that

− L

2
‖x− y‖2 ≤ fi(x)− fi(y)− 〈∇fi(y), x− y〉 ≤ L

2
‖x− y‖2. (5)

To formulate our complexity bounds, we define

f∗ = inf
x
f(x), ∆f = f(x̃0)− f∗.

Further we define σ2 as an upper bound on the variance of the stochastic gradients:

σ2 = sup
x

1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2. (6)

3.2 WORST-CASE GUARANTEE

Theorem 1. Under the following setting of parameters

ηL =

√
k2

6dm
, B =

⌈
2σ2

ε2
∧ n
⌉

For any T ≥ T (ε) , 4∆f/ηmε
2,

E‖∇f(xout)‖ ≤ ε.
If we further set

m =
Bd

b(k1 + k2)
,

the complexity to achieve the above condition is

ECcomp(ε) = O

( σ
ε3
∧
√
n

ε2

)
L∆f

√
b(k1 + k2)

k2

 .

Recall that the complexity of SpiderBoost (Wang et al., 2018) is

O

((
σ

ε3
∧
√
n

ε2

)
L∆f

)
.

Thus as long as b = O(1), k1 = O(k2), our algorithm has the same complexity as SpiderBoost
under appropriate settings. The penalty term O(

√
b(k1 + k2)/k2) is due to the information loss by

sparsification.

3.3 DATA ADAPTIVE ANALYSIS

Let
g
(j)
t = ‖ top−k1(M

(j)
t ,∇f(x

(j)
t+1)−∇f(x

(j)
t ))‖2,

and

G
(j)
t =

1

n

n∑
i=1

‖ top−k1(M
(j)
t ,∇fi(x(j)t+1)−∇fi(x(j)t ))‖2.

By Cauchy-Schwarz inequality and the linearity of top−k1 , it is easy to see that g(j)t ≤ G
(j)
t . If our

algorithm succeeds in capturing the sparsity, both g(j)t and G(j)
t will be small. In this subsection we

will analyze the complexity under this case. Further define Rj as

Rj = Ejg(j)Nj
+

EjG(j)
Nj

b
, (7)

where Ej is taken over all randomness in j-th outer loop (line 4-13 of Algorithm 1).
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Theorem 2. Under the following setting of parameters

ηL =

√
b ∧m
3m

, B =

⌈
3σ2

ε2
∧ n
⌉

For any T ≥ T (ε) , 6∆f/ηmε
2,

E‖∇f(xout)‖2 ≤
2ε2

3
+

(d− k1 − k2)m

k2
ER̄T ,

where

R̄T =
1

T

T∑
j=1

Rj .

If ER̄T ≤ ε2 k2
3(d−k1−k2)m , then

E‖∇f(xout)‖ ≤ ε.
If we further set

m =
Bd

b(k1 + k2)
,

the complexity to achieve the above condition is

ECcomp(ε) = O

((
σ

ε3
∧
√
n

ε2

)
L∆f

√
k1 + k2

d

b

b ∧m

)
.

In practice, m is usually much larger than b. As a result, the complexity of our algorithm is
O(
√

(k1 + k2)/d) smaller than that of SpiderBoost if our algorithm captures the sparsity as desired.
Although this type of data adaptive analysis is not as clean as the worst-case guarantee (Theorem
1), it can reveal the potentially superior performance of the algorithm. Similar analyses have been
done for various other algorithms, including AdaGrad (Duchi et al., 2011) and Adam (Kingma &
Ba, 2014).

4 EXPERIMENTS

We run two key sets of experiments to demonstrate the performance of Sparse SpiderBoost, as well
as to illustrate the potential of sparsity as a way to improve the gradient query complexity of variance
reduction methods. By computing the entropy of the empirical distribution over the magnitude of the
derivative of the model parameters, we address one of the key assumptions of this approach: That
while the computational cost of each model parameter’s derivative is the same, the gains in variance
reduction, as well as progress made toward optima, may be different. We also provide experiments
on image classification tasks to illustrate the performance of SpiderBoost with and without sparsity.

In all experiments, unless otherwise specified, we run SpiderBoost and Sparse SpiderBoost with a
learning rate η = 0.1, large-batch size B = 1000, small-batch size b = 100, inner loop length of
m = 10, memory decay factor of α = 0.5, and k1 and k2 both set to 5% of the total number of
model parameters. We call the sum k1 + k2 = 10% the sparsity of the optimization algorithm. For
models, we use a 2-layer fully connected neural network with hidden layers of width 100, a simple
convolutional neural net which we describe in detail in appendix B, and Resnet-18 (He et al., 2015).
All models use ReLu activations. For datasets, we use CIFAR-10 (Krizhevsky et al.), SVHN (Netzer
et al., 2011), and MNIST (LeCun & Cortes, 2010). None of our experiments include Resnet-18 on
MNIST as MNIST is an easier dataset; it is included primarily to provide variety for the other models
we include in this work.

4.1 GRADIENT ENTROPY AS A MEASURE OF GRADIENT STRUCTURE

Our method relies partially on the assumption that the magnitude of the derivative of some model
parameters are greater than others. To measure this, we compute the entropy of the empirical dis-
tribution over the magnitude of the derivative of the model parameters. This metric provides a way
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for us to intuit the effectiveness of our sparsity operator throughout training. In Algorithm 1, the
following term updates our estimate of the variance of each coordinate’s derivative:

Mt+1 := α|Gt|+ (1− α)Mt.

Consider the entropy of the following probability vector p = Mt

‖Mt‖1 . The entropy of p provides us
with a measure of how much structure there is in our gradients. To see this, consider the hypothetical
scenario where pi = 1

d . In this scenario we have no structure; the top k1 component of our sparsity
operator is providing no value and entropy is maximized. On the other hand, if a single entry pi = 1
and all other entries pj = 0, then the top k1 component of our sparsity operator is effectively
identifying the only relevant model parameter.

To measure the potential of our sparsity operator, we compute the entropy of p while running Spi-
derBoost on a variety of datasets and model architectures. The results of running this experiment
are summarized in the following table.

Table 1: Entropy Ratios of Memory Vector

Fully Connected NN Convolutional NN Resnet-18
CIFAR-10 0.49 0.20 0.96
SVHN 0.52 0.23 0.94
MNIST 0.68 0.20 -

Each entry of table 3 is the ratio of the entropy after 150 epochs of training SpiderBoost over the
entropy at t = 0. We believe a better metric is the symmetric KL divergence, but the ratio we provide
is easier to compute and allows us to illustrate our point without ambiguity.

Our operator, which exploits gradient structure, reduces overall variance by targeting model param-
eters that have high variance derivatives. The table suggests that such gradient structure exists. For
each model, the entropy at the beginning of training is almost maximal. Maximum entropy of the
convolutional model, which consists of 62, 006 parameters, is 15.92. This is mainly due to random
initialization of model parameters. After 150 epochs, the entropy of Mt drops to approximately
3, which suggests a substantial amount of gradient structure. The numbers for these results are
provided in B.

Note that for the datasets that we tested, the gradient structure depends primarily on the model
and not the dataset. In particular, for Resnet-18, the entropy appears to vary minimally after 150
epochs. We hypothesize that this may be due to our use of a constant learning rate (vs. performing
exponential decay every 150 epochs).

There is structure in the gradients of some of the neural networks we present, and our algorithm will
take advantage of that structure when it’s available.

4.2 PERFORMANCE ON IMAGE CLASSIFICATION TASKS

Figure 1: SpiderBoost with 10% sparsity (10% of parameter derivatives) compared to SpiderBoost
without sparsity. Figure (a) compares the two algorithms using Resnet-18 and Cifar-10. Figure (b)
compares the two algorithms using a convolutional neural network trained on MNIST. The x-axis
measures gradient queries over N , the size of the respective datasets.
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We choose to test our algorithm on image classification tasks as these tasks are high dimensional and
challenging from an optimization point of view. Figure 1 compares SpiderBoost alone to Spider-
Boost with 10% sparsity (10% of parameter derivatives). All experiments in this section are run for
50 epochs. Hyperparameter tuning of sparsity values 0.1, 0.2, 0.4, and 0.8 for Sparse SpiderBoost
showed that a value of 0.1 performs best. In our comparison to SpiderBoost, we measure the number
of gradient queries over the size of the dataset N . A single gradient query is taken to be the cost of
computing a gradient for a single data point. If i is the index of a single sample, then ∇fi(x) is a
single gradient query. Using the batch gradient to update model parameters for a dataset of size N
has a gradient query cost of N . For a model with d parameters, using a single sample to update k

d

model parameters has a gradient query cost of kd , etc.

Our results of fitting the convolutional neural network to MNIST show that sparsity provides a sig-
nificant advantage compared to using SpiderBoost alone. We only show 2 epochs of this experiment
since the MNIST dataset is fairly simple and convergence is rapidly achieved. The results of training
Resnet-18 on CIFAR-10 suggests that our sparsity algorithm works well on large neural networks,
and non-trivial datasets. Results for the rest of our experiments can be found in appendix B.

5 DISCUSSION

In this paper, we show how sparse gradients with memory can be used to improve the gradient
query complexity of SVRG-type variance reduction algorithms. While we provide a concrete sparse
variance reduction algorithm for SpiderBoost, the techniques developed in this paper can be adapted
to other variance reduction algorithms.

Our rigorous theoretical analysis proves multiple properties of our algorithm. We show that our
algorithm provides a way to explicitly control the gradient query complexity of variance reduction
methods, a problem which has thus far not been explicitly addressed. Assuming our algorithm cap-
tures the sparsity structure of the optimization problem, we also prove that the complexity of our
algorithm is an improvement over SpiderBoost. The results of our direct comparison to Spider-
Boost validates this assumption, and our entropy experiment empirically supports the hypothesis
that gradient sparsity does exist.

The results of our entropy experiment also support the results in Aji & Heafield (2017), which show
that the top k operator generally outperforms the random k operator. Not every problem we tested
exhibited sparsity structure. While this is true, our analysis proves that our algorithm performs no
worse than SpiderBoost in these settings. Even when there is no structure, our algorithm reduces to
a random sampling of k1 + k2 coordinates.

Another potential weakness of our method is the technical difficulty of implementing a sparse back-
propagation algorithm in modern machine learning libraries, such as Tensorflow (Abadi et al., 2015)
and Pytorch (Paszke et al., 2017). Models implemented in these libraries generally assume dense
structured parameters. The optimal implementation of our algorithm makes use of a sparse forward
pass and assumes a sparse computation graph upon which backpropagation is executed. Libraries
that support dynamic computation graphs, such as Pytorch, will construct the sparse computation
graph in the forward pass. This makes the required sparse backpropagation trivial and suggests that
our algorithm will perform best on libraries that support dynamic computation graphs.

While our algorithm makes progress toward improving the practical viability of variance reduction
algorithms, we believe further improvements can be made, such as better utilization of reduced vari-
ance during training, and better control over increased variance in very high dimensional models
such as dense net (Defazio, 2019). We recognize these issues and hope to make progress on them
in future work. We’d also like to note the connection between our work and some of the challenges
faced in distributed optimization. Our work can be used to decrease overall variance and communi-
cation complexity in the distributed setting.
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A TECHNICAL PROOFS

A.1 PREPARATORY RESULTS

Lemma 2 (Lemma 3.1 of Lei & Jordan (2019)). Let N ∼ Geom(m). Then for any sequence
D0, D1, . . . with E|DN | <∞,

E(DN −DN+1) =
1

m
(D0 − EDN ) .

Remark 1. The requirement E|DN | < ∞ is essential. A useful sufficient condition if |Dt| =
O(Poly(t)) because a geometric random variable has finite moments of any order.
Lemma 3 (Lemma B.2 of Lei & Jordan (2019)). Let z1, . . . , zM ∈ Rd be an arbitrary population
and J be a uniform random subset of [M ] with size m. Then

Var

 1

m

∑
j∈J

zj

 ≤ I(m < M)

m
· 1

M

M∑
j=1

‖zj‖22.

Proof of Lemma 1. WLOG, assume that |x1| ≥ |x2| ≥ . . . ≥ |xd|. Let S be a random subset of
{k1 + 1, . . . , d} with size k2. Then(

rtopk1,k2(x, y)
)
`

= y`

(
I(` ≤ k1) +

d− k1
k2

I(` ∈ S)

)
.

As a result,

E
[(

rtopk1,k2(x, y)
)
`

]
= y`

(
I(` ≤ k1) +

d− k1
k2

I(` > k1)P (` ∈ S)

)
= y`,

and

Var
[(

rtopk1,k2(x, y)
)
`

]
=

(
d− k1
k2

)2

y2` I(` > k1)P (` ∈ S)(1− P (` ∈ S))

=
d− k1 − k2

k2
y2` I(` > k1).

Therefore,

Var
(
rtopk1,k2(x, y)

)
=
d− k1 − k2

k2

∑
`>k1

y2` =
d− k1 − k2

k2
‖ top−k1(x, y)‖2.

A.2 ANALYSIS OF A SINGLE INNER LOOP

Lemma 4. For any j, t,

Ej,t(ν(j)t+1 − ν
(j)
t ) = ∇f(x

(j)
t+1)−∇f(x

(j)
t )

and

Varj,t(ν
(j)
t+1 − ν

(j)
t ) ≤ η2L2

b
‖ν(j)t ‖2 +

d− k1 − k2
k2

(
g
(j)
t +

G
(j)
t

b

)
,

where Ej,t and Varj,t are taken over the randomness of I(j)t and the random subset S involved in
the rtopk1,k2 operator.
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Proof. By definition,

ν
(j)
t+1 − ν

(j)
t = rtopk1,k2

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)
.

Let S be the random subset involved in rtopk1,k2 . Then S is independent of (I(j)t ,M
(j)
t , x

(j)
t+1, x

(j)
t ).

By Lemma 1,
ES
(
ν
(j)
t+1 − ν

(j)
t

)
= ∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )

and

VarS

(
ν
(j)
t+1 − ν

(j)
t

)
=
d− k1 − k2

k2

∥∥∥top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥2 .

Since I(j)t is independent of (M
(j)
t , x

(j)
t+1, x

(j)
t ), the tower property of conditional expectation and

variance implies that

Ej,t
(
ν
(j)
t+1 − ν

(j)
t

)
= EI(j)t

(
∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)

= ∇f(x
(j)
t+1)−∇f(x

(j)
t ),

and

Varj,t

(
ν
(j)
t+1 − ν

(j)
t

)
= EI(j)t

(
VarS

(
ν
(j)
t+1 − ν

(j)
t

))
+ VarI(j)t

(
ES
(
ν
(j)
t+1 − ν

(j)
t

))
. (8)

To bound the first term, we note that top−k1 is linear in y and thus

EI(j)t

∥∥∥top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥2

=
∥∥∥EI(j)t

top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥2

+ VarI(j)t

[
top−k1

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)]

= g
(j)
t + VarI(j)t

1

b

∑
i∈I(j)t

top−k1(M
(j)
t ,∇fi(x(j)t+1)−∇fi(x(j)t ))


≤ g(j)t +

G
(j)
t

b
, (9)

where the last inequality uses Lemma 3. To bound the second term of equation 8, by Lemma 3,

VarI(j)t

(
ES
(
ν
(j)
t+1 − ν

(j)
t

))
= VarI(j)t

(
∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)

≤ 1

b

1

n

n∑
i=1

‖∇fi(x(j)t+1)−∇fi(x(j)t )‖2
(i)

≤ L2

b
‖x(j)t+1 − x

(j)
t ‖2

(ii)
=

η2L2

b
‖ν(j)t ‖2,

where (i) uses assumption A1 and (ii) uses the definition that x(j)t+1 = x
(j)
t − ην

(j)
t .

Lemma 5. For any j, t,

Ej,t‖ν(j)t+1 −∇f(x
(j)
t+1)‖2 ≤ ‖ν(j)t −∇f(x

(j)
t )‖2 +

η2L2

b
‖ν(j)t ‖2 +

d− k1 − k2
k2

(
g
(j)
t +

G
(j)
t

b

)
,

where Ej,t and Varj,t are taken over the randomness of I(j)t and the random subset S involved in
the rtopk1,k2 operator.

Proof. By Lemma 4, we have

ν
(j)
t+1 −∇f(x

(j)
t+1) = ν

(j)
t −∇f(x

(j)
t ) +

(
ν
(j)
t+1 − ν

(j)
t − Ej,t(ν(j)t+1 − ν

(j)
t )
)
.

Since I(j)t is independent of (ν
(j)
t , x

(j)
t ),

Covj,t

(
ν
(j)
t −∇f(x

(j)
t ), ν

(j)
t+1 − ν

(j)
t

)
= 0.

As a result,

Ej,t‖ν(j)t+1 −∇f(x
(j)
t+1)‖2 = ‖ν(j)t −∇f(x

(j)
t )‖2 + Varj,t(ν

(j)
t+1 − ν

(j)
t ).

The proof is then completed by Lemma 4.
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Lemma 6. For any j,

Ej‖ν(j)Nj
−∇f(x

(j)
Nj

)‖2 ≤ mη2L2

b
Ej‖ν(j)Nj

‖2 +
σ2

B
+

(d− k1 − k2)m

k2
Rj ,

where Ej is taken over all randomness in j-th outer loop (line 4-13 of Algorithm 1). 4.

Proof. By definition,

‖ν(j)t+1‖ ≤ ‖ν
(j)
t ‖+

∥∥∥rtopk1,k2

(
M

(j)
t ,∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
)∥∥∥

≤ ‖ν(j)t ‖+
∥∥∥∇fI(j)t

(x
(j)
t+1)−∇fI(j)t

(x
(j)
t )
∥∥∥

≤ ‖ν(j)t ‖+
∑
i∈I(j)t

∥∥∥∇fi(x(j)t+1)−∇fi(x(j)t )
∥∥∥

≤ ‖ν(j)t ‖+ b
√
nσ.

As a result,
‖ν(j)t ‖ ≤ ‖ν

(j)
0 ‖+ tb

√
nσ, (10)

Thus,
‖ν(j)t −∇f(x

(j)
t )‖2 ≤ 2‖ν(j)t ‖2 + 2‖∇f(x

(j)
t )‖2 = Poly(t).

This implies that we can apply Lemma 2 on the sequence Dt = ‖ν(j)t −∇f(x
(j)
t )‖2.

Letting j = Nj in Lemma 5 and taking expectation over all randomness in Ej , we have

Ej‖ν(j)Nj+1 −∇f(x
(j)
Nj+1)‖2

≤ Ej‖ν(j)Nj
−∇f(x

(j)
Nj

)‖2 +
η2L2

b
Ej‖ν(j)Nj

‖2 +
d− k1 − k2

k2
Ej

g(j)Nj
+
G

(j)
Nj

b


= Ej‖ν(j)Nj

−∇f(x
(j)
Nj

)‖2 +
η2L2

b
Ej‖ν(j)Nj

‖2 +
d− k1 − k2

k2
Rj . (11)

By Lemma 2,

Ej‖ν(j)Nj
−∇f(x

(j)
Nj

)‖2 − Ej‖ν(j)Nj+1 −∇f(x
(j)
Nj+1)‖2

=
1

m

(
‖ν(j)0 −∇f(x

(j)
0 )‖2 − Ej‖ν(j)Nj

−∇f(x
(j)
Nj

)‖2
)

=
1

m

(
Ej‖ν(j)0 −∇f(xj−1)‖2 − Ej‖ν(j)Nj

−∇f(xj)‖2
)
, , (12)

where the last line uses the definition that xj−1 = x
(j)
0 , xj = x

(j)
Nj

. By Lemma 3,

Ej‖ν(j)0 −∇f(xj−1)‖2 ≤ σ2I(B < n)

B
. (13)

The proof is completed by putting equation 11, equation 12 and equation 13 together.

Lemma 7. For any j, t,

f(x
(j)
t+1) ≤ f(x

(j)
t ) +

η

2
‖ν(j)t −∇f(x

(j)
t )‖2 − η

2
‖∇f(x

(j)
t )‖2 − η

2
(1− ηL)‖ν(j)t ‖2.

Proof. By equation 5,

f(x
(j)
t+1) ≤ f(x

(j)
t ) +

〈
∇f(x

(j)
t ), x

(j)
t+1 − x

(j)
t

〉
+
L

2
‖x(j)t − x

(j)
t+1‖2

= f(x
(j)
t )− η

〈
∇f(x

(j)
t ), ν

(j)
t

〉
+
η2L

2
‖ν(j)t ‖2

= f(x
(j)
t ) +

η

2
‖ν(j)t −∇f(x

(j)
t )‖2 − η

2
‖∇f(x

(j)
t )‖2 − η

2
‖ν(j)t ‖2 +

η2L

2
‖ν(j)t ‖2.

The proof is then completed.
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Lemma 8. For any j,

Ej‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) + Ej‖ν(j)Nj

−∇f(xj)‖2 − (1− ηL)Ej‖ν(j)Nj
‖2,

where Ej is taken over all randomness in j-th outer loop (line 4-13 of Algorithm 1).

Proof. Since ‖∇f(x)‖ ≤ σ for any x,

|f(x
(j)
t+1)− f(x

(j)
t )| ≤ σ‖ν(j)t ‖.

This implies that

|f(x
(j)
t )| ≤ σ

t∑
k=0

‖ν(j)t ‖+ |f(x
(j)
0 )|.

As shown in equation 10, ‖ν(j)t ‖ = Poly(t) and thus |f(x
(j)
t )| = Poly(t). This implies that we can

apply Lemma 2 on the sequence Dt = f(x
(j)
t ).

Letting j = Nj in Lemma 7 and taking expectation over all randomness in Ej , we have

Ejf(x
(j)
Nj+1) ≤ Ejf(x

(j)
Nj

) +
η

2
‖ν(j)Nj

−∇f(x
(j)
Nj

)‖2 − η

2
‖∇f(x

(j)
Nj

)‖2 − η

2
(1− ηL)‖ν(j)Nj

‖2.

By Lemma 2,

Ejf(x
(j)
Nj

)− Ejf(x
(j)
Nj+1) =

1

m
Ej(f(x

(j)
0 )− f(x

(j)
Nj

)) =
1

m
Ej(f(xj−1)− f(xj)).

The proof is then completed.

Combining Lemma 6 and Lemma 8, we arrive at the following key result on one inner loop.
Theorem 3. For any j,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B
+

(d− k1 − k2)m

k2
Rj

−
(

1− ηL− mη2L2

b

)
Ej‖ν(j)Nj

‖2.

A.3 COMPLEXITY ANALYSIS

Proof of Theorem 1. By definition equation 7 of Rj and the smoothness assumption A1,

ERj ≤
b+ 1

b
L2E‖x(j)Nj+1 − x

(j)
Nj
‖2 ≤ 2η2L2E‖ν(j)Nj

‖2.

By Theorem 3,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B

−
(

1− ηL− mη2L2

b
− 2(d− k1 − k2)mη2L2

k2

)
Ej‖ν(j)Nj

‖2.

Since η =
√
k2/6dm,

ηL+
mη2L2

b
+

2(d− k1 − k2)mη2L2

k2
≤ 1√

6
+

1

6
+

1

3
≤ 1.

As a result,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B
.

Since xout = xT ′ where T ′ ∼ Unif([T ]), we have

E‖xout‖2 ≤
2

ηmT
E(f(x0)− f(xT+1)) +

σ2I(B < n)

B
≤ 2∆f

ηmT
+
σ2I(B < n)

B
.
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The setting of T and B guarantees that

2∆f

ηmT
≤ ε2

2
,

σ2I(B < n)

B
≤ ε2

2
.

Therefore,
E‖∇f(xout)‖2 ≤ ε2.

By Cauchy-Schwarz inequality,

E‖∇f(xout)‖ ≤
√

E‖∇f(xout)‖2 ≤ ε.

In this case, the average computation cost is

ECcomp(ε) = T (ε)

(
B +

2(k1 + k2)

d
bm

)
= 3BT (ε)

= O

(
BL∆f

ηmε2

)
= O

(√
BbL∆f

ε2

√
k1 + k2
k2

)
.

The proof is then proved by the setting of B.

Proof of Theorem 2. Under the setting of η,

ηL+
mη2L2

b
≤ 1√

3
+

1

3
≤ 1.

By Theorem 3,

E‖∇f(xj)‖2 ≤
2

ηm
Ej(f(xj−1)− f(xj)) +

σ2I(B < n)

B
+
d− k1 − k2

k2
Rj .

By definition of xout,

E‖∇f(xout)‖2 ≤
2∆f

ηmT
+
σ2I(B < n)

B
+

(d− k1 − k2)m

k2
ER̄T .

Under the settings of T and B,

2∆f

ηmT
≤ ε2

3
,

σ2I(B < n)

B
≤ ε2

3
.

This proves the first result. The second result follows directly. For the computation cost, similar to
the proof of Theorem 1, we have

ECcomp(ε) = O(BT ) = O

(
L∆f

ε2
B√

m(b ∧m)

)
.

The proof is then completed by trivial algebra.

B EXPERIMENTS

B.1 DESCRIPTION OF SIMPLE CONVOLUTIONAL NEURAL NETWORK

The simple convolutional neural network used in the experiments consists of a convolutional layer
with a kernel size of 5, followed by a max pool layer with kernel size 2, followed by another convo-
lutional layer with kernel size 5, followed by a fully connected layer of input size 16 ∗ side2 × 120
(side is the size of the second dimension of the input), followed by a fully connected layer of size
120× 84, followed by a final fully connected layer of size 84× the output dimension.
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Table 2: Entropy of Memory Vector at t = 0

Fully Connected NN Convolutional NN Resnet-18
CIFAR-10 16.41 13.38 22.59
SVHN 15.36 13.00 22.62
MNIST 14.29 14.21 -

Table 3: Entropy of Memory Vector after 150 epochs

Fully Connected NN Convolutional NN Resnet-18
CIFAR-10 8.09 2.66 21.70
SVHN 8.05 2.97 21.31
MNIST 9.77 2.77 -

Figure 2: SpiderBoost with various values of sparsity. Both figures use MNIST. The x-axis measures
gradient queries over N , the size of the respective datasets.
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