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ABSTRACT

Extending the capabilities of robotics to real-world complex, unstructured envi-
ronments requires the capability of developing better perception systems while
maintaining low sample complexity. When dealing with high-dimensional state
spaces, current methods are either model-free, or model-based with reconstruc-
tion based objectives. The sample inefficiency of the former constitutes a major
barrier for applying them to the real-world. While the latter present low sample
complexity, they learn latent spaces that need to reconstruct every single detail of
the scene. Real-world environments are unstructured and cluttered with objects.
Capturing all the variability on the latent representation harms its applicability
to downstream tasks. In this work, we present mutual information maximization
for robust plannable representations (MIRO), an information theoretic representa-
tional learning objective for model-based reinforcement learning. Our objective
optimizes for a latent space that maximizes the mutual information with future
observations and emphasizes the relevant aspects of the dynamics, which allows to
capture all the information needed for planning. We show that our approach learns
a latent representation that in cluttered scenes focuses on the task relevant features,
ignoring the irrelevant aspects. At the same time, state-of-the-art methods with
reconstruction objectives are unable to learn in such environments.

1 INTRODUCTION

A fundamental challenge in applying reinforcement learning (RL) to real robotics is the need to define
a suitable state space representation. Designing perception systems manually makes it difficult to
apply the same reinforcement learning algorithm to a wide range of tasks. Real-world environments
are unstructured, cultured, and changing. A suitable representation has to capture features relevant
for the task, while ignoring the other elements in the scene. How do we impose inductive biases in
the learned representation for real-world robotics?

One could, in principle, apply model-free reinforcement algorithms from raw, low-level observations;
however, these tend to be slow, sensitive to hyperparameters, and sample inefficient (Lee et al., 2019).
Current work has focused on learning latent spaces for model-based RL constraining them to be
feature points (Finn et al., 2016), or learning them with reconstruction objectives (Hafner et al.,
2018b; Watter et al., 2015; Ha & Schmidhuber, 2018). While feature points objectives provide a good
inductive bias, they are too rigid for unstructured tasks and cannot incorporate semantic knowledge of
the environment. Learned representations with reconstruction objectives (Kingma & Welling, 2013)
force the model to capture all the diversity of the environment in the learned representation in order
to accurately reconstruct the observations. As a result, in environments with variability, the relevant
features for the task either represent a small component of the latent space or are ignored, both of
which prevents deriving a controller from them.

This work tackles the problem of representation learning from an information theoretic point of
view: learning a latent space that maximizes the mutual information between the latent and future
observations (van den Oord et al., 2018; Hénaff et al., 2019). The mutual information objective
induces an inductive bias towards the shared information with future observations, which allows the
latent space to discard low-level information and local noise (unlike reconstruction-based approaches).
Hence, by foregoing the reliance on reconstruction objectives, we obtain a latent space that is robust
to the presence of variations on the scene if they are unrelated to the task.
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The main contribution of our work is a representational learning approach, MIRO (Mutual Information
Maximization for RObust Plannable Representations), that jointly optimizes for the latent representa-
tion and model, and results in a latent space that is robust against disturbances, noisy observations, and
achieves performance comparable to state-of-the-art algorithms. We show that previous approaches
are brittle even to minor changes in the environment. Finally, we experimentally investigate these
effects on the latent variables in our approach and previous work, pinpointing that our learned space
is invariant to such changes in the environment. The experimental evaluation is carried out in standard
DeepMind Control Suite (Tassa et al., 2018) environments.

2 RELATED WORK

Model-based Reinforcement Learning from Image Observations. Recent work has shown that
model-based reinforcement learning RL is able to achieve the same performance as model-free
methods while being substantially more sample efficient (Wang et al., 2019). However, such
achievements have been limited to envitonments where a compact state space representation is
available, and extending them to raw sensory high-dimensional input spaces poses a major challenge.
In such cases, learning a compact and accurate latent space is crucial to relieve the dynamics model
from directly modeling the raw sensor input space. Recent work on high-dimensional observations
on model-based RL can be categorized in two main classes: 1) video prediction models (Jayaraman
et al., 2018; Ebert et al., 2018; Kaiser et al., 2019), and 2) latent space learning with reconstruction
objectives (Hafner et al., 2018b; Lee et al., 2019; Watter et al., 2015; Wahlström et al., 2015;
Zhang et al., 2018; Ha & Schmidhuber, 2018). Both video prediction models and latent space with
reconstruction objectives share the commonality that the latent space is learned using loss on the
raw pixel observations. As a result, the latent space model needs to incorporate all information to
reconstruct every detail on the observations, which is redundant as the task is usually represented by
a small fraction of the scene in real world environments.

Instead, in this work, we propose to learn a latent space by maximizing the mutual information (MI)
between the latent and future observations. The omission of a reconstruction objective relieves the
dynamics model from encoding the variation in the scene, which proves to be more robust when the
observation is visually noisy.

Representation Learning. Variational autoencoders (VAE) (Kingma & Welling, 2013; Higgins
et al.; van den Oord et al., 2017) learn an embedding by optimizing the variational lower bound
of the likelihood of data. The learned latent follows a prior distribution, usually Gaussian, which
makes sampling and distance meaningful in the latent space. As a result, a plethora of work in
reinforcement learning, both model-based (Ha & Schmidhuber, 2018; Zhang et al., 2018; Lee et al.,
2019) and model-free (Nair et al., 2018; Pong et al., 2019), utilizes VAE and its variations as means
of representation learning. However, the objective of VAE encourages it to account for maximal
variance in the data distribution, which may be dominated by information unrelated to the task of
interest in the real world.

Another class of representation learning approach, inspired by the InfoMax principle (Linsker,
1988), learns a latent space by maximizing the mutual information (MI) between observation and
latent representation. Despite the difficulty of estimating MI directly, recent work has shown that
representations learned by maximizing a Noise Contrastive Estimation lower bound of MI are able to
achieve state-of-the-art performance in downstream benchmark tasks in various domains, including
image classification, video captioning and natural language processing (van den Oord et al., 2018;
Hénaff et al., 2019; Hjelm et al., 2018; Sun et al., 2019; Tian et al., 2019; Bachman et al., 2019).

3 BACKGROUND

This work tackles the problem of learning a latent space that is suitable for planning from high-
dimensional observations in POMDPs. In this work, the observations constitute single images, which
are not enough to completely capture the dynamics of the system. For instance, a single image does
not contain any information of the velocity or an object might be occluded.

Partially Observable Markov Decision Process. A discrete-time finite partially observable Markov
decision process (POMDP)M is defined by the tuple (S,A, T,R,O, O, γ, ρ0, H). Here, S is the
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set of states, A the action space, T (st+1|st, at) the transition distribution (p(st+1|st, at)), R(st
is the probability of obtaining the reward rt at the state st (p(rt|st)), O is the observation space,
O(ot|st) (p(ot|st)), γ the discount factor, ρ0 : S → R+ represents the initial state distribution, and
H is the horizon of the process. We define the return as the sum of rewards rt along a trajectory
τ := (s0, a0, ..., sH−1, aH−1, sH). The goal of reinforcement learning is to find a controller π :

S ×A → R+ that maximizes the expected return, i.e.: maxπ J(π) = Eat∼π
st∼p

[
∑H
t=1 γ

trt].

Mutual Information. The mutual information between two random variables X and Y , denoted by
I(X;Y ) is a reparametrization-invariant measure of dependency. Specifically, it characterizes the
Kullback-Leibler divergence between the joint distribution (X,Y ) and the product of the marginals
X and Y : I(X;Y ) = Ep(x,y)

[
log p(x|y)

p(x)

]
= Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
= DKL((X,Y )‖X ⊗ Y ).

Estimating and optimizing the mutual information objective poses a challenging problem. In this
work, we use a multi-sample unnormalized lower bound based on noise contrastive estimation,
INCE van den Oord et al. (2018).

4 ROBUST PLANNABLE REPRESENTATIONS

Enabling complex real robotics tasks requires extending current model-based methods to low-level
high-dimensional observations. However, in order to do so, we need to specify which space they
should operate on. Real-world environments are unstructured, cluttered, and present distractors.
Our approach, MIRO, is able to learn latent representations that capture the relevant aspects of the
dynamics and the task by framing the representational learning problem in information theoretic
terms: maximizing the mutual information between the latent space and the future observations. This
objective advocates for representing just the relevant aspects of the dynamics, removing the burden
of reconstructing the entire pixel observation.

We first motivate the use of the mutual information objective as a representational learning objec-
tive for control, then we derive our objective that entangles dynamics and reward learning with
the representational objective, and finally we instantiate this objective in a concrete model-based
algorithm.

4.1 ROBUSTNESS OF LEARNED LATENT SPACES

Representations that ignore the presence of elements unrelated to the task at hand would allow us
to apply successfully off-the-shelf reinforcement learning algorithms in real-world environments.
In contrast, current representational learning approaches for control are based on reconstruction
objectives. Here we show that these methods are not suitable for real-world tasks, since even in the
presence of simple distractors, they completely fail to capture the important aspects of the task.

Concretely, several prior work learns representations by reconstructing the observation using a
variational auto-encoder (VAE) (Kingma & Welling, 2013):

max
θ,φ

Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z))

here p(z) ∼ N (0, 1), and θ, φ are the parameters of the encoder and decoder, respectively. This
objective captures the variation of the input in the latent space while the commonalities are stored
in the weights of the auto-encoder. As a result, an unstructured and changing environment will be
encoded in the latent space even when this variation is irrelevant to the control problem.

The mutual information objective presents itself as an alternative to learn representations that just
capture the variation of the task at hand. In the POMDP setup, we propose to maximize the mutual
information between past observations and future observations, i.e., maxθ I(o1:t; ot+h), where θ are
the parameters of the encoder. In this case no decoder is needed. We estimate the mutual information
using InfoNCE lower bound (van den Oord et al., 2018):

max
θ

E
[

fθ(o1:t, ot+h)∑
h′ fθ(o1:t, ot+h′)

]
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Figure 1: Left. Point-mass environment with distractors. Right. As a function of the number of the distractors,
we plot the accuracy of the regression to the position of the point-mass when regressing from the latent
representation learned by a variational autoencoder (VAE) and when regressing from the latent representation
learned by contrastive predictive coding (CPC). Even in simple domains the reconstruction based objective for
learning representations (VAE) discards the information needed for modelling the dynamics of the system, while
the mutual information objective preserves it.

Here, the expectation is on sets of observtions {oi1 , ..., oh, ..., oiN } with N-1 negative examples
and one positive example, oh, and fθ represent a score function. The mutual information objective
allows us to encode an inductive bias towards the important aspects of the task. The inductive bias
arises from the fact that we are optimizing a discriminative model, instead of generative such as the
VAE. Figure 1 shows the effect of distractors on the learned representation in a simple point-mass
environment. Both representations are learned using the same data, raw pixel images of the point
mass with the distractors. Then, we regress on top of the learned representations to the position of
the point-mass. The mutual information objective allows to maintain the accuracy even when more
distractors are present. However, the autoencoder accuracy is increasingly harmed by the appearance
of unrelated objects to the task.

4.2 LEARNING LATENT SPACES FOR CONTROL

a0 a1 a2

s0 s1 s2 s3

r0, o0 r1, o1 r2, o2 r3, o3

Figure 2: Probabilistic graphical model of the
POMDP. The only variables observed (shaded
nodes) are the actions, observations (high-
dimensional images), and rewards. Our model has
to infer the latent space (dashed lines) as well as to
model the conditional probabilities (solid lines).

In this section, we develop the MIRO objective that
entangles the representation, dynamics model, and
reward predictor. Consequently, the objective not
only learns a representation that is robust, but also
emphasizes the important aspects of the dynamics
and the task.

Figure 2 shows the POMDP set-up, where the only
observed variables are the observations ot and re-
wards rt, and we are trying to model the under-
lying latent space st and the underlying process
that generates the observed variables. We model
the latent space st and reward rt to be Gaussian
with diagonal covariance given the previous state
and action, i.e., st+1|st, at ∼ N (µt+1,Σt+1) and
rt|st, at ∼ N (νt,Λt). In order to learn the underly-
ing process of the POMDP and successfully use this
representation for control, we learn four functions:
an encoder, filter, transition dynamics, and reward
predictor. In order to plan, we need to process the
current observation (encoder), update the latent space with the current observation (filter), predict the
next states (transition dynamics) and predict the future rewards (reward predictor). In the following,
we describe in detail the parametrization, and functionality of each of these components:

Encoder. The encoder parametrizes a map from a high-dimensional observation to a lower
dimensional manifold, eθ : O → Z ⊆ Rm. We represent the encoded observation eθ(ot) with the
notation zt ∈ Z . Contrary to prior work in learning latent spaces for planning, we do not make any
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Figure 3: Proposed architecture that optimizes the MIRO objective. The shaded variables are observed, while
the unshaded are latent, the yellow nodes represent parametric functions. The observation ot is fed into the
encoder resulting in the intermediate latent variable zt. Together with the prior on the latent state ŝt constitute
the input of the filter, modelled as a feed-forward neural network,. The filtered state st and action at is passed
through the dynamics model, which is a recurrent neural network, to obtain the predicted (prior) latent for the
next state ŝt+1. The dashed lines denote the variables between which we maximize the mutual information.
(Circle: stochastic; square: deterministic)

assumption on the underlying distribution of zt or ot (such as they are Gaussian (Kingma & Welling,
2013)).

Filter. This function, gζ : Z ×S → S , filters the belief of the prior ŝt state variable with the current
encoded observation zt resulting in the filtered variable st. Essentially, it updates the latent to be
coherent with the most recent observation.

Dynamics model. The dynamics model approximates the transition function on the learned latent
space, fφ : S ×A → S . The dynamics parametrizes the mean µt and diagonal covariance Σt of the
underlying transition distribution of the latent process. We denote by ŝt+1 the prior latent variable
resulting from sampling from the dynamics model distribution.

Reward predictor. The reward predictor regresses onto the observed rewards from the latent
variable. Hence, it is a mapping from latent states to rewards, rψ : S → R. As said, we assume that
the rewards follow a Gaussian distribution with unit variance.

We denote by Θ = {θ, ζ, φ, ψ} the parameters of our function approximators. These are learned
altogether with the following constrained optimization objective:

max
Θ

I(st; ot+h)

s.t.: DKL(gζ(zt+1, ŝt+1)‖st+1) ≤ ε
DKL(rt‖rψ(st, at)) ≤ ε

As seen in the previous section, the mutual information maximization term allows us to obtain latent
spaces that just contain information about the relevant components of the scene. The enforcement of
the constraints has two purposes: 1) ensures small prediction errors when planning, and 2) guides the
state space to capture the components for predicting rewards and future states.

In practice, the previous objective is intractable to optimize. The exact maximization, or even
evaluation, of the mutual information term is intractable, as well as the set of non-linear inequalities.
Instead, we optimize a tractable lower bound of this objective. First, we replace the mutual information
term with the noise constrative estimator lower bound INCE. Second, we formulate its Lagrangian
and treat the dual parameters as hyperparameters. Altogether, it gives an optimization objective that
can be easily optimized with stochastic gradient descent

max
Θ

INCE(st; ot+h)− λ1DKL(gζ(zt, ŝt+1)‖ŝt+1)− λ2DKL(rt‖rψ(st, at)) (1)
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Algorithm 1 Model-Based Reinforcement Learning with MIRO

1: Initialize encoder eθ, filter gζ , dynamics model fφ, reward predictor rψ and dataset D ← ∅.
2: repeat
3: T ← ∅
4: for k = 1 . . .K do
5: Sample initial state s0 ∼ ρ0

6: for t = 0 . . . H do
7: Filter the state ŝt with ot using gζ to get st
8: Get action at from planner using st, fφ and rψ
9: Take action at in the environment and obtain ot+1, rt

10: T ← T ∪ {st, at, rt, ot}
11: Estimate next state ŝt+1 ∼ fφ(st, at)
12: end for
13: D ← D ∪ T
14: end for
15: Optimize Equation 1 with mini-batches from dataset D
16: until Until desired performance is achieved
17: return Optimal model parameters Θ

We optimize this objective by using Monte-Carlo estimates and backpropagating through the stochas-
tic nodes with the path-wise derivative, also known as reparametrization trick (Kingma & Welling,
2013). As in van den Oord et al. (2018), we use a log-bilinear model for the score function, which
leads to the following formulation of the InfoNCE objective

INCE(st; ot+h) = E

[
log

(
exp(ŝ>t+hWhzt+h)

exp(ŝ>t+hWhzt+h) +
∑K−1
j=1 exp(ŝ>t+hWhzj)

)]
(2)

Even though more complicated models can be used, as well as models that encode the future sequences
of actions; This simple score model tends to work well in practice.

5 ROBUST LATENT SPACE MODEL-BASED REINFORCEMENT LEARNING

In this section, we present our architecture, implementation, and instantiation into a model-based
method. The presented algorithm uses planning, but our representational learning method for control
is agnostic to the derived controller. Methods such as Lee et al. (2019) could be used with MIRO.
The pseudocode for the model-based approach is shown in Alg. 1, and is typical in model-based
RL algorithms, it iterates between three steps: 1) data collection, 2) model learning, and 3) policy
improvement or planning.

Data Collection. At each iteration, we first collect data by planning with the current dynamics
model. On-policy data collection relieves the model from learning the entire space, and instead it just
focuses on the regions that the agents visits. It also allows to overcome the insufficient coverage of
the initial data distribution. The data collected is stored in a replay buffer that is used for training the
model.

Model Learning. The architecture of the model is shown in Figure 3. It is composed by an
convolutional encoder, a feed forward filter, and a dynamics model that has the form of a recurrent
neural network. The reward predictor, not shown in Figure 3, is modelled as a feed forward neural
network that has as input the latent state variable. The model is trained using all the data collected so
far on the MIRO objective (Equation 1).

Planning. In this work, we use model-predictive control (MPC) with cross-entropy method (CEM)
for action selection (Botev et al., 2013). The CEM algorithm selects the action sequence that
maximizes the expected return under the learned dynamics. Specifically, it is a population based
procedure that iteratively refits a Gaussian distribution, starting from a unit Gaussian, on the best
sequences of actions. The MPC component prevents overfitting to the model deficiencies by selecting
the best CEM action and replanning at each step. Note that our represenational learning objective is
orthogonal to the planning method used.
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Figure 4: An example trajectory of Cheetah environment with distractors. The distractor objects (red sphere
and green cube) are placed at a random position at each time step.

6 RESULTS

In this section, we empirically corroborate the claims in the previous sections. Specifically, the
experiments are designed to address the following questions:

1. Is our approach able to maintain its performance in front of distractors in the scene?

2. How does our method compare with state-of-the-art reconstruction objectives?

3. Does our latent variable remain unchanged in the presence of visual noise?

To answer the posed questions, we evaluate our framework, in four continuous control benchmark
tasks MuJoCo simulator: cartpole-balance, reacher, finger-spin and half-cheetah (Todorov et al.,
2012; Tassa et al., 2018). We choose PlaNet (Hafner et al., 2018b) as the state-of-the-art reconstruction
objective baseline for plannable representations.

6.1 ROBUST CONTINUOUS CONTROL COMPARISON

To test the robustness of MIRO and PlaNet in visually noisy environments, we add distractors to each
of the four above environments in the background, as shown in Fig. 4.

(a) Cartpole Balance (b) Reacher

(c) Finger (d) Half Cheetah

Figure 5: Learning curves of MIRO and PlaNet on environments with and without distractors. All curves
represent mean and the shaded area represents one standard deviation among 3 seeds. MIRO’s performance
remains unchange in the presence of disctractor objects in the environments while PlaNet is drastically affected
by such objects. When no distractors are present in the scene both approaches have comparable performance.
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The results, depicted in Figure 5, show that in all four environments the performance of MIRO is
not undermined by the presence of objects unrelated to the task. Interestingly, in the half-cheetah
environment, the performance even improves with visual noise in the background. We argue that the
presence of visual noise forces the embedding to focus even more on information relevant to the task,
and thus makes the embedding more suitable for planning. In comparison, the performance of PlaNet
struggles in face of distractors: the agent is unable to learn in the reacher environment, and struggle
to learn in the other environment obtaining sub-optimal performance. When no distractors are present
in the scene, Figure 5, shows that our approach achieves comparable or superior performance than its
reconstruction-based counterpart.

6.2 UNDERSTANDING THE LEARNED LATENT SPACE

Figure 6: Normalized different in the latent variable
when encoding the same observation with and without
distractors. MIRO learns representations that are invari-
ant to distractors, resulting in lower difference, while the
embedding learned by the sequential VAE fails to cap-
ture the relevant aspects of the dynamics despite being
trained jointly with the dynamics.

Here, we provide insight into robustness of la-
tent learned by MIRO. An ideal latent space
should only encode information essential to the
dynamics of the task. Thus, given observa-
tions oclean and odis, the later being the same
as the former but with added distractors in the
background, the desired behaviour of our en-
coder would be to output the same latent varible;
i.e., zclean ≈ zdis, being zclean the encoded oclean
(eθ(oclean)) and zdis the encoded odis (eθ(odis)).
In order to quantify the discrepancy on the latent,
we measure its normalized difference

‖zclean − zdis‖2
‖zclean‖2

.

Figure 6 shows the average normalized differ-
ence on the Cartpole Balance environment when
the latent space is learned using the MIRO ob-
jective and a sequential VAE objective (Hafner
et al., 2018a; Lee et al., 2019; Ha & Schmidhu-
ber, 2018). The results manifest that the embed-
ding learned by MIRO excludes irrelevant information over the course of training. In contrast, with
sequential VAE, the normalized error increases and lands at higher final value, which indicates that
the model fails to understand the essential elements in the task despite being trained jointly with the
dynamics.

7 CONCLUSION

In this paper, we present MIRO, an information theoretic representational learning objective that
tackles the problem of learning robust and generalizable representations for control. Our approach
maximizes the mutual information between the learned latent space and future observations, empha-
sizing the features that are relevant for the dynamics and the reward predictions. We compare our
approach in standard benchmark control environments with and without visual disturbances. Our
method remains unaffected by those disturbances while state-of-the-art methods fail to complete the
tasks. When disturbances are removed it attains comparable or superior performance to prior work.
Furthermore, we experimentally investigate the effect of such disturbances in the latent variables,
showing that MIRO’s latents are invariant to visual noises. The development of this method has
been motivated for the applicability of general reinforcement learning to real-world and unstructured
environments. Consequently, an enticing direction for future work would be to analyze MIRO’s
behaviour in real-robotic agents outside structured environments.
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