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Abstract

Policy gradient methods have achieved remarkable successes in solving challenging
reinforcement learning problems. However, it still often suffers from sparse reward
tasks, which leads to poor sample efficiency during training. In this work, we propose
a guided adaptive credit assignment method to do effectively credit assignment for
policy gradient methods. Motivated by entropy regularized policy optimization, our
method extends the previous credit assignment methods by introducing more general
guided adaptive credit assignment(GACA). The benefit of GACA is a principled
way of utilizing off-policy samples. The effectiveness of proposed algorithm is
demonstrated on the challenging WikiTableQuestions and WikiSQL benchmarks
and an instruction following environment. The task is generating action sequences
or program sequences from natural language questions or instructions, where only
final binary success-failure execution feedback is available. Empirical studies show
that our method significantly improves the sample efficiency of the state-of-the-art
policy optimization approaches.

1 Introduction

Deep reinforcement learning (RL) provides a general framework for solving challenging goal-oriented
sequential decision-making problems, It has recently achieved remarkable successes in advancing
the frontier of AI technologies (Silver et al., 2016; Mnih & Kavukcuoglu, 2013; Silver et al., 2017;
Andrychowicz et al., 2017). Policy gradient (PG) (Kakade, 2002; Mnih et al., 2016; Schulman
et al., 2015) is one of the most successful model-free RL approaches that has been widely applied
to high dimensional continuous control, vision-based robotics, playing video games, and program
synthesis (Liang et al., 2018; Guu et al., 2017; Bunel et al., 2018).

Despite these successes, a key problem of policy gradient methods is that it often suffers from
high sample complexity in sparse reward tasks. In sparse reward tasks, there is only a binary
signal which indicate successful task completion but without carefully shaped reward function to
properly guide the policy optimization. A naive yet effective solution to address this challenge is by
exploring many diverse samples and re-labelling visited states as goal states during training (see
e.g. Andrychowicz et al., 2017; Pong et al., 2019; Liu et al., 2019; Nair et al., 2018). Regardless of
the cost of generating large samples and the bias introduced during comparison, in many practical
applications like program synthesis, it may not even be possible to compare between different states.
A variety of credit assignment techniques have been proposed for policy gradient methods in settings
where comparison of states is not available (See e.g. Liang et al. 2018, Agarwal et al. 2019, and
Norouzi et al. 2016).

In this work, we focus on entropy regularized reinforcement learning. Instead of directly optimizing
the RL objective, which is hard in sparse reward tasks, we sort to optimize policy to approximate a
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learnable prior distribution called guiding prior distribution. By using so-called f -divergence (Csiszár
et al., 2004; Liese & Vajda, 2006; Nowozin et al., 2016; Wang et al., 2018) which defines a broad
class of divergence(e.g., KL and reverse KL divergence) that are sufficient to fully characterize
the distributions under consideration, we construct a class of gradient estimator that allow us to
generalize previous credit assignment methods. The neat property is that the gradient estimator
can adaptively optimize policy based on divergence between itself and the prior distribution. It
is natural to expect this more flexible gradient estimator provide an adaptive trade-off between
different credit assignment methods, in addition, it also has a good property such that all off-policy
samples are utilized to compute gradient, which can yield powerful credit assignment. Our approach
tremendously extends the existing credit assignment used including REINFORCE (Sutton et al.,
2000; Williams, 1992), maximum marginal likelihood(MML) (Dempster et al., 1977; Guu et al.,
2017), MAPO (Liang et al., 2018), iterative maximum likelihood(IML) (Liang et al., 2017; Abolafia
et al., 2018), and RAML (Norouzi et al., 2016).

We evaluate our method on a variety of tasks, including the challenging WikiSQL (Zhong et al.,
2017) and WikiTableQuestions (Pasupat & Liang, 2015) program synthesis benchmarks, and
an instruction following environment TextWorld (Agarwal et al., 2019). Our experiments show
that GACA greatly improves the sample efficiency of the entire policy optimization, and leads to
significant higher asymptotic performance over previous state-of-the-art methods.

2 Background

2.1 Reinforcement Learning and Policy Optimization

Reinforcement learning(RL) considers the problem of finding an optimal policy for an agent that
interacts with an uncertain environment and collects reward per action. The goal of the agent is
to maximize its cumulative reward. Formally, this problem can be viewed as a Markov decision
process over the environment states s ∈ S and agent actions z ∈ Z , with the environment dynamics
defined by the transition probability T (s′|s, z) and reward function r(st, zt), which yields a reward
immediately following the action zt performed in state st. The agent’s action z is selected by a
conditional probability distribution π(z|s) called policy.

In policy gradient methods, we consider a set of candidate policies πθ(z|s) parameterized by θ and
obtain the optimal policy by maximizing the expected cumulative reward or return

J(θ) = Es∼ρπ,z∼π(z|s) [r(s, z)] ,

where ρπ(s) =
∑∞
t=1 γ

t−1Pr(st = s) is the normalized discounted state visitation distribution with
discount factor γ ∈ [0, 1).

2.2 Sparse Reward Reinforcement Learning and Credit Assignment

Auto-regressive model is often used as a policy in many real world applications including program
synthesis and combinational optimization (Liang et al., 2018; Guu et al., 2017). In this work, we
consider the following form of policy distribution.

πθ(z|s0) =
∏|z|

i=t
π(zt | z<t, s0), (1)

where z<t = (z1, . . . , zt−1) denotes a prefix of the action sequence z, s0 ∈ Z denotes some context
information about the task, such as initial state or goal state (Andrychowicz et al., 2017). And
πθ(z|s0) satisfy ∀z ∈ Z : πθ(z|s0) ≥ 0 and Ez∈Zπθ(z|s0) = 1.
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In environments where dense reward function is not available, only a small fraction of the agents’
experiences will be useful to compute gradient to optimize policy, leading to substantial high
sample complexity. Therefore, it is of great practical importance to develop algorithms which can
learn from binary signal indicating successful task completion or other unshaped reward signal.

Rank Player County
1 Nicky English Tipperary
2 Mark Corrigan Offaly
3 Joe Hennessy Kerry
3 Finbarr Delaney Cork
5 Nicky English Tipperary
5 Adrian Ronan Kilkenny
7 Nicky English Tipperary

x = “Which player
ranked the most?”
R(z) =
I{Execute(z) ==
“Nicky English”}

Figure 1: An example of the program synthesis task, where
an agent is presented with a context s0 consists of a natural
language question and a table, and is asked to generate a
program z = (z1, z2, .., zn). The agent receives a reward of
1 if execution of z on the relevant data table leads to the
correct answer g (e.g., “Nicky English”).

In Section 3, we will describe a method
to efficiently utilize high-reward and
zero-reward trajectories to address
this challenge. We will evaluate the
method on program synthesis and in-
structions following navigation, both
are particular sparse reward tasks.
Figure 1 shows an example of sparse
reward program synthesis. The model
needs to discover the programs that
can generate the correct answer in a
given context and generalizes over un-
seen context.

We consider goal-conditioned rein-
forcement learning from sparse re-
wards. This constitutes a modification
to the reward function such that it depends on a goal g ∈ G , such that r(z, g, s) : S × Z ×G → R.
Every episode starts with sampling a state-goal pair from some distribution p(s0, g). Unlike the
state, the goal stays fixed for the whole episode. At every time step, an action is chosen according to
some policy π, which is expressed as a function of the state and the goal, π : S ×G → Z . Therefore,
we apply the following sparse reward function:

r(z, g, s) =

{
1, if F (z) = g

0, otherwise
(2)

where g is a goal and F (z) denotes evaluating action sequence z on the task that controls when the
goal is considered completed. The objective is given by

J(θ) = Es0,g∼p(s0,g),z∼Z [r(z, g, s0)] =
∑

s0,g∼p(s0,g)

∑
z∼Z

r(z, g, s0)πθ(z|s0) (3)

=
∑

s0,g∼p(s0,g)

∑
z∼Z

r(z, g, s0)
∏H

t=1
π(zt | z<t, s0), (4)

where H is the length of the trajectory. We can calculate the gradient of Equation 4 with REIN-
FORCE (Williams, 1992) and estimate it using Monte Carlo samples.

∇θJ(θ) =
∑

s0,g∼p(s0,g)

∑
z∼Z
∇θ log πθ(z|s0)r(z, g, s0), (5)

Unfortunately, since the search space of programs is very large, most samples z have reward R(z) = 0,
thus have no contribution to the gradient estimation in Equation 5. Besides, because the variance of
score function estimators is very high, it is challenging to estimate the gradient in Equation 5 with
a small number of successful programs. Previous method Liang et al. (2018) propose to estimate
gradient as as a combination of expectations inside and outside successful programs buffer, however
it’s still restricted to use successful programs only, and suffers from high sample complexity.

3



Under review as a conference paper at ICLR 2020

3 Method

In this section, we fist introduce entropy regularized reinforcement learning and describe optimizing
policy via minimizing a discrepancy between itself and a prior in Section 3.1, and then introduce
learn-able prior to guide policy optimization in Section 3.2, finally we introduce a class of flexible
adaptive gradient estimator Section 3.3.

3.1 Entropy Regularized Reinforcement Learning.

We consider a general entropy regularized objective (Ziebart et al., 2008) which favors stochastic
policies by augmenting the objective with the relative entropy of the policy,

J(θ) =
∑

s0,g∼p(s0,g)

∑
z∼Z

πθ(z|s0)r(z, g, s0) + λH(πθ(z|s0)), (6)

where λ is a regularization weight, H(πθ(z|s0)) is the entropy regularization term. Entropy based
policy optimization is a general framework that has gained many successes in a variety of tasks (see
e.g., Haarnoja et al., 2018; Teh et al., 2017). Perhaps not surprisingly, maximizing Equation 6 is
equivalent to minimizing the Kullback–Leibler discrepancy between policy πθ(z|s0) and an energy
based prior distribution.

Lemma 1. Equation 6 is equivalent to minimizing the following objective,

L(θ) =
∑

s0,g∼p(s0,g)

∑
z∼Z

λDKL (πθ(z|s0)‖π̄(z)) , π̄(z) = exp

(
1

λ
(r(z, g, s0)− V (s0))

)
(7)

where V (s0) = λ log
∫
z∼Z exp(R(z, g, s0)/λ) is a ’soft-version’ of value function, serving as a nor-

malization constant here. From Equation 7, we aim to approximate the distribution π̄(z) with a
distribution from a family {πθ(z|s0) : θ ∈ Θ}, where θ is the parameter that we want to optimize,
and πθ(z|s0) is represented as an autoregressive policy in Equation 1. In environments where only
sparse reward function is available, only a small fraction of the agent’s samples will be useful to
compute gradient to optimize policy, thus Equation 6 often leads to a substantial sample complexity.
Equation 7 seems would be a better objective since all of the agent’s samples can contribute to the
minimization of KL-divergence, however, for a given s0, the prior distribution is simply a binary
value function over z, this makes it no a good credit assignment function. Intuitively, we would like
π̄(z) weighs higher on ‘almost success‘ action sequences z and weighs lower on ‘far from success‘
action sequences z.

3.2 Guiding Prior Distribution.

In this part, we will describe how to learn the prior distribution π̄(z) to guide policy optimization.

Proposition 1. Given a policy πθ(z|s0), new guiding prior distribution π̄(z) that minimizes the
discrepancy in Equation 7 is given by,

π̄(z) = Es0,g∼p(s0,g) [πθ(z|s0)] . (8)

Substitute Equation 8 into Equation 7 leads to a mutual information regularization,

Es0,g∼p(s0,g)DKL (πθ(z|s0) ‖ π̄(z)) = I(s0; z) (9)

Proof. See Appendix C for details.
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Proposition 1 indicates that alternatively optimizing πθ(z|s0) and π̄(z) leads to a complex mixture
distribution of π̄(z), increasing the expressive power of prior for credit assignment. Since Equation 8
minimizes DKL (πθ(z|s0) ‖ π̄(z)) and leads to a mutual information between s0 and z, therefore the
entropy regularized objective becomes the following mutual information regularized objective,

J(θ) =
∑

s0,g∼p(s0,g)

∑
z∼Z

πθ(z|s0)r(z, g, s0)− λI(s0; z), (10)

Equation 10 draws connection with rate distortion theory (Shannon, 1959; Cover & Thomas, 2012),
intuitively, the policy πθ(z|s0) is encouraged to discard reward-irrelevant information in context s0

subject to a limited channel capacity given by I(s0; z). In the next section, we will present a class of
gradient estimator that can adaptively update policy distribution to approximate the guiding prior.

3.3 Adaptive Gradient Estimation.

While DKL(πθ(z|s0) || π̄(z)) is the typical divergence measure widely used in variational inference
and reinforcement learning (see e.g. Wainwright et al., 2008; Hoffman et al., 2013; Levine, 2018), it
often leads to model collapse because of its mode-seeking property. Therefore, directly optimizing
Equation 7 often gives a suboptimal model πθ(z|s0). It is therefore natural to consider alternative
divergence measures. We approach this problem by minimizing the general f -divergence (Ali &
Silvey, 1966; Morimoto, 1963) between π̄(z) and πθ(z|s0). f -divergence includes a large spectrum
of divergences (e.g., KL and reverse KL divergence) and is shown to be powerful in various
settings (Nowozin et al., 2016; Wang et al., 2018),

DF(π̄(z) || πθ(z|s0)) = Ez∼πθ(z|s0)

[
f

(
π̄(z)

πθ(z|s0)

)
− f(1)

]
, (11)

where f : R+ → R is any twice-differentiable convex function. It can be shown by Jensen’s
inequality that DF(p || q) ≥ 0 for any p and q. Further, if f(t) is strictly convex at t = 1, then
DF(π̄(z) || πθ(z|s0)) = 0 implies π̄(z) = πθ(z|s0). We use stochastic optimization to minimizing
Equation 11, then gradient of Equation 11 is given by:

Lemma 2. Assume f is a differentiable convex function and log πθ(z|s0) is differentiable w.r.t. θ.
For f-divergence defined in equation 11, we have

∇θDF(π̄(z) || πθ(z|s0)) = −Ez∼πθ(z|s0)

[
ρf

(
πθ(z|s0)

π̄(z)

)
∇θ log πθ(z|s0)

]
, (12)

where ρf (t) = f ′(t)t− f(t).

Proof. See Appendix B for details or Wang et al. (2018).

Equation 12 shows that the gradient of f -divergence between πθ(z|s0) and π̄(z) can be specified
through ρf or f . In next section, we will describe how to adaptive choose ρf or f based on the
discrepancy between πθ(z|s0) and π̄(z). The space of Z is enumerable and the environment is
deterministic, the expectation over z ∼ πθ(z|s0) can be efficiently computed through sampling in
replay buffer. We proceed to describe how to estimate this gradient with samples.

3.4 Final Algorithm.

Given Equation 12, it’s natural to ask how to estimate the gradient, a naive way is simply store
past trajectories in a replay buffer and sample random mini-batch from it to compute the gradient.
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However this approach suffers from the fact that a large fraction of sampled trajectories have
zero-reward, which leads to high sample complexity. We propose to save high-reward trajectories
and zero-reward trajectories into two separated replay buffers, and estimate the gradient by the
following equation,

Proposition 2. Given replay buffers B and C for saving high-reward and zero-reward trajectories,
an unbiased and low variance estimation is given by,

∇θD̂F (π̄(z) || πθ(z|s0)) =

wB

∑
z∼π+

θ (z|x)

ρf

(
πθ(z|s0)

π̄(z)

)
∇θ log πθ(z|s0) + wC

∑
z∼π−

θ (z|x)

ρf

(
πθ(z|s0)

π̄(z)

)
∇θ log πθ(z|s0) (13)

where wB and wB represent the total probability of trajectories in replay buffers B and C respectively,
wB + wC = 1, and

π+
θ (z | x) =

{
πθ(z|s0)/wB if z ∈ B
0 if z ∈ C , π−θ (z | x) =

{
0 if z ∈ B
πθ(z|s0)/wC if z ∈ C (14)

Proof. See Appendix D for details.

The gradient estimation uses high-reward trajectories thus πθ(z|s0) will not forget them,
the estimation also utilize zero-reward trajectories in the past, which improves sample effi-
ciency. The corresponding framework is shown in Figure 2. Note that different from MAPO
where they also use a buffer to save successful programs, Equation 13 differs in that all
off-policy samples can be used to estimate gradient, which leads to a better approximation.

Figure 2: Overview of GACA: it consists of mul-
tiple actors for sampling and storing high reward
episodes into buffer B and zero reward episodes
into buffer C, gradient is estimated at central
learner periodically using samples from both B, C
based on Equation 13.

We follow Wang et al. (2018) in choosing
f -divergence such that it achieve a trade-off
between exploration and exploitation, specifi-
cally, let {zi} be drawn from buffers B and C
and wi = π(zi|s0)/π̄(zi), then we substitute
ρf (πθ(z|s0)/π̄(z)) with the inverse of approxi-
mate tail probability given by 1

n

∑n
i=1 I(wi ≥ t).

The benefit of doing this is policy distribution
πθ(z|s0) can adaptively coverage and approxi-
mate prior distribution π̄(z).

In practice, to overcome cold start problem
in sparse reward policy optimization, we fol-
low Liang et al. (2018) to clip wB to a given
range such that wB = max(wB, wl) and wB =
min(wB, wu) where wl ≤ wu. Note that Equa-
tion 13 generalizes previous work in credit assign-
ment including REINFORCE, MML (Dempster
et al., 1977; Berant et al., 2013; Guu et al., 2017),

MAPO (Liang et al., 2018), RAML (Norouzi et al., 2016), and IML (Liang et al., 2017; Abolafia
et al., 2018). It is natural to expect this more flexible gradient estimator provide an adaptive
trade-off between different credit assignment methods and can yield powerful credit assignment. Due
to page limit, we leave discussions and proofs in Appendix E. Combining Theorem 1 and Theorem 2
together, we summarize the main algorithm in Algorithm 1.
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4 Experiment

We first introduce the set up of experiments, then evaluate GACA on two sparse reward pro-
gram synthesis benchmarks WikiTableQuestions and WikiSQL, and an instruction following
environment (Agarwal et al., 2019).

4.1 Experimental setup
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Figure 3: Comparing GACA and baselines on benchmarks. The plot
is average of 5 runs with a bar of one standard deviation.

WikiTableQuestions (Pa-
supat & Liang, 2015)
contains 2,108 tables and
18,496 question-answer
pairs build from tables
extracted from Wikipedia.
WikiSQL (Zhong et al.,
2017) is a recent large
scale dataset on learning
natural language interfaces
for databases. It contains
24,241 tables extracted
from Wikipedia and 80,654
question-program pairs. It
is annotated with programs
(SQL). In both datasets,
question-answers are split

into train, evaluation, and test sets. We only use the question-answer pairs for weakly su-
pervised training. We also evaluate GACA on a instruction following navigation environment
TextWorld (Agarwal et al., 2019). The task is a instruction following navigation in a maze of
size N × N with K deadly traps distributed randomly over the maze. An agent is given need a
language instruction which outlines an optimal path that the agent can take to reach the goal, the
agent needs to generate a sequence of actions and the agent receives a reward of 1 if it succeeds in
reaching the goal within a certain number of steps, otherwise 0. An example of this task is shown in
Figure 5. For details in experiments, refer to Appendix F.

4.2 Comparing GACA with baselines

Firstly, we compare GACA with several baseline methods that are special cases of GACA, to show
the effectiveness of guiding prior and adaptive gradient estimation. We first briefly introduce each
baseline method here and leave the detailed discussion and proof of generalization in Appendix E.

REINFORCE: REINFORCE maximizes the expected reward and estimate the gradient with
on-policy samples ∇θJRL =

∑
s0,g∼p(s0,g)

∑
z∼πθ(z|s0),∇θ log πθ(z|s0)r(z, s0, g), in contrast, GACA

utilizes off-policy samples while still maintain unbiased gradient estimate.

MML: Maximize Marginal Likelihood (Dempster et al., 1977; Berant et al., 2013) maximizes the
marginal probability of the replay buffer B, JMML =

∑
s0,g∼p(s0,g) log

∑
z∼B πθ(z|s0).

IML: Iterative maximize likelihood (Liang et al., 2017; Abolafia et al., 2018) uniformly
maximizes the likelihood of all the high-reward trajectories in past experience, ∇θJIML =∑
s0,g∼p(s0,g)

∑
z∼B ∇θ log πθ(z|s0).
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MAPO, MAPOX: Memory Augmented Policy Optimization (Liang et al., 2018) is a re-
cent method for reusing high-reward trajectories, it maximizes the expected reward and es-
timate the gradient with off-policy high-reward trajectories, ∇θJMAPO =

∑
s0,g∼p(s0,g)(1 −

α)
∑

z∼π(z|x)∇θ log πθ(z|s0)r(z, s0, g)+α
∑

z∼B∇θ log πθ(z|s0)r(z, s0, g), where α is a weight equals
to the total probability of high-reward trajectory z in buffer B. MAPOX (Agarwal et al., 2019)
improves MAPO by running MAPO on data collected with more explorative method IML, which
promotes exploration.

RAML: Reward Augmented Maximum Likelihood (Norouzi et al., 2016) is a more general variant
of IML, which weights off-policy samples with an energy based prior distribution in Equation 7,
JRAML =

∑
s0,g∼p(s0,g)

∑
z∼Z π̄(z) log πθ(z|s0)r(z, s0, g), where π̄(z) = exp

(
1
λ (r(z, s0, g)− V (x))

)
.

Dataset
Method

WikiTableQuestions WikiSQL
Val Test Improvement Val Test Improvement

REINFORCE < 10 < 10 < 10 < 10
IML 35.4± 0.6 36.8± 0.4 +7.5 69.3± 0.5 70.1± 0.2 +5.8
RAML 35.4± 0.7 35.9± 0.6 +8.4 57.5± 0.3 61.4± 0.3 +14.5
MML 37.8± 0.7 39.7± 0.3 +4.6 68.7± 0.2 70.7± 0.1 +5.2
MAPO 42.3± 0.1 42.8± 0.3 +1.5 71.9± 0.6 72.5± 0.1 +3.4
MAPOX 42.5± 0.4 43.6± 0.4 +0.8 74.4± 0.5 74.9± 0.3 +0.8
GACA w/o GP 43.3± 0.4 43.9± 0.2 74.6± 0.3 75.3± 0.2
GACA w/o AG 42.1± 0.5 43.2± 0.3 73.8± 0.3 75.1± 0.2
GACA 44.6± 0.3 44.3± 0.2 75.2± 0.3 75.9± 0.1

Table 1: Comparison to baselines and ablation study on WikiTableQuestions and WikiSQL benchmarks.
GACA w/o AG represents GACA without adaptive gradient estimation(Section 3.3), and GACA w/o GP
represents GACA without guiding prior(Section 3.2).

Results are shown in Table 1 and Figure 3, on both WikiTableQuestions and WikiSQL bench-
marks, where GACA noticeably improves upon previous methods in terms of both sample efficiency
and asymptotic performance significantly by performing better credit assignment. The comparison
shows that both adaptive gradient estimation and guiding prior(GP) leads to significant improvement
over other baselines. The improvement over MAPOX shows that solely exploration is not enough
because it’s almost impossible to explore such a large state space, while guiding prior and adaptive
gradient estimation provides an efficient way of exploration and exploitation.

4.3 Comparing GACA with state-of-the-art

Method Val. Test

Oracle Reward 95.7(±1.3) 92.6(±1.0)
MeRL 75.3(±1.6) 72.3(±2.2)
BoRL 83.0(±3.6) 74.5(±2.5)
GACA 87.3(±4.1) 80.1(±2.8)

Figure 4: Evaluation of GACA with state-
of-the-art on TextWorld.

We present the results on sparse reward program synthesis
in Table 3 and Table 2. The results of TextWorld
are shown in Table 4. GACA outperforms previously
sparse reward program synthesis methods significantly. In
particular, our method outperform most recent state-of-
the-art method BoRL and MeRL proposed in Agarwal
et al. (2019) by a large margin. These results demonstrate
the efficacy of the proposed credit assignment compared
to previous credit assignment methods. We also analyzed
a trained model qualitatively and see that it can generate

fairly complex programs, see Appendix H for some examples of generated programs.
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Method E.S. Val. Test

MAPO 1 42.3 42.8 +5.1
MeRL 1 44.1 43.2 +4.7
BoRL 1 42.9 43.8 +4.1
GACA 1 44.6 44.3

MAPO (ensemble) 10 - 46.3 +1.6
MeRL (ensemble) 10 - 46.9 +1.0
GACA (ensemble) 10 - 47.9

Table 2: Evaluation of GACA with state-of-the-art
on WikiTableQuestions.

Method E.S. Val. Test

MAPO 1 71.9 72.5 +3.4
MeRL 1 74.9 74.8 +1.1
BoRL 1 74.6 74.2 +1.7
GACA 1 75.2 75.9

MAPO (ensemble) 10 - 74.9 +3.4
MeRL (ensemble) 10 - 77.1 +1.2
GACA (ensemble) 10 - 78.3

Table 3: Evaluation of GACA with state-of-the-art
on WikiSQL.

5 Related Work

Credit assignment is a critical part of various sequential decision making methods. Guu et al.
(2017) builds connection between REINFORCE and MML by proposing hybrid approaches to take
advantages of both MML and REINFORCE. Entropy based policy optimization is widely used in
reinforcement learning (Ziebart et al., 2008; Schulman et al., 2017), recently entropy based off-policy
policy optimization is also proposed to approximate optimal policy distribution by minimizing
the Kullback–Leibler divergence between policy and optimal distribution (Haarnoja et al., 2018),
Norouzi et al. (2016) considers an alternative direction of the Kullback–Leibler divergence, where
samples from exponential payoff distribution are used to estimate gradient. Recent work Grau-Moya
et al. (2019) also propose to learn prior distribution in Q-learning and show that is leads to a mutual
information regularization. Experience replay is widely used in sparse reward reinforcement learning
in order to exploit past high reward trajectories (Gangwani et al., 2019; Liang et al., 2018; Oh
et al., 2018; Abolafia et al., 2018). Andrychowicz et al. (2017); Liu et al. (2019) further propose to
re-label visited states as goal states during training. More recent progress includes meta-learning
the reward(such as discount factor) (Xu et al., 2018). Weber et al. 2019 provides a comprehensive
review of credit assignment methods in stochastic computation graph.

Policy optimization can suffer from high variance, and a variety of work have been proposed for
reducing variance of policy gradient (Mnih et al., 2016; Wu et al., 2018; Liu et al., 2017; Grathwohl
et al., 2018) which mainly relied on control variate techniques. Wang et al. (2016) propose truncation
with bias correction to reduce variance from using off-policy samples in buffer. Tucker et al. (2018)
compare recent different variance reduction method analytically. Liang et al. (2018) propose to
reduce the variance of the gradient through stratified sampling on high-reward trajectories. GACA
further apply the stratified sampling on both high-reward and zero-reward trajectories, which reduce
further variance without introducing bias.

6 Conclusion

We developed the Guided Adaptive Credit Assignment, a new and general credit assignment
method for obtaining sample efficiency of policy optimization in sparse reward setting. Our method
generalizes several previous approaches. We demonstrated its practical advantages over existing
methods, including MML, IML, REINFORCE, etc, in several challenging sparse reward tasks. In the
future, we will investigate how to further boost the performance by incorporating prior knowledge
such as the distribution of all possible trajectories. We would also like to point out that our method
can be useful in other challenging optimization tasks such as machine translation and combinatorial
where credit assignment remains a major challenge.
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A Proof of Lemma 1

Proof. To derive Lemma 1, consider the KL divergence between πθ(z|s0) and π̄(z) =
exp

(
1
λ (r(z, g, s0)− V (s0))

)
, where V (s0) = λ log

∫
z∼Z exp(r(z, g, s0)/λ) is a ’soft-version’ of value

function, serving as a normalization constant here.

DKL (πθ(z|s0) ‖ π̄(z))

= Ez∼πθ(z|s0) [log πθ(z|s0)− log π̄(z)]

= Ez∼πθ(z|s0)

[
log πθ(z|s0)− r(z, g, s0)/λ+ log V (s0)

]
= Ez∼πθ(z|s0) [log πθ(z|s0)− r(z, g, s0)/λ] + log V (s0),

Rearranging,

Ez∼πθ(z|s0) [r(z, g, s0)] + λH(πθ(z|s0))

= −λDKL (πθ(z|s0) ‖ π̄(z)) + λ log V (s0),

thus maximizing left hand side Ez∼πθ(z|s0) [r(z, g, s0)] + λH(πθ(z|s0)) is equivalent to minimizing
DKL (πθ(z|s0) ‖ π̄(z)).

B Proof of Lemma 2

Proof. To derive Lemma 2, consider that ∇θπθ(z|s0) = πθ(z|s0)∇θ log πθ(z|s0), then we have

∇θDf (π̄(z) || πθ(z|s0))

= Eπθ(z|s0)

[
∇θf

(
π̄(z)

πθ(z|s0)

)
+ f

(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0)

]

= Eπθ(z|s0)

[
f ′
(

π̄(z)

πθ(z|s0)

)
∇θ
(

π̄(z)

πθ(z|s0)

)
+ f

(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0)

]

= Eπθ(z|s0)

[
− f ′

(
π̄(z)

πθ(z|s0)

)(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0) + f

(
π̄(z)

πθ(z|s0)

)
∇θ log πθ(z|s0)

]

= −Eπθ(z|s0)

[
ρf

(
π̄(z)

πθ(z|s0)

)
log πθ(z|s0)

]
,

where ρf (t) = f ′(t)t− f(t).

For convex function f , we have f ′′(t) ≥ 0, which implies ρ′f (t) = f ′′(t)t ≥ 0 on t ∈ R+, thus ρf is a
monotonically increasing function on R+. If ρt is strictly increasing at t = 1, we have f is strictly
convex at t = 1, which guarantees DF(p || q) = 0 imply p = q.

C Proof of Proposition 1

Firstly, we prove that the minimization leads to mutual information. To begin with, let p(s0)
denotes the uniform distribution of context s0, p(z) denotes the distribution of action sequence z,
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and π̄(z) = 1
|D|
∑

(x,y)∼D πθ(z|s0).

DKL(p(s0)πθ(z|s0) || p(s0)p(z))−DKL (p(s0)p(z|s0) || p(s0)π̄(z)) (15)

= Es0,g∼p(s0,g)Ez∼Zp(s0)πθ(z|s0) log
p(s0)πθ(z|s0)

p(s0)p(z)
(16)

− Es0,g∼p(s0,g)Ez∼Z log
p(s0)p(z|s0)

p(s0)π̄(z)
(17)

= Es0,g∼p(s0,g)Ez∼Zp(s0)p(z|s0) log
π̄(z)

p(z)
(18)

= Es0,g∼p(s0,g)Ez∼Z π̄(z) log
π̄(z)

p(z)
(19)

= DKL (π̄(z) || p(z)) (20)
≥ 0, (21)

the right side of Equation 15 DKL (p(s0)p(z|s0) || p(s0)π̄(z)) is actually equals mutual information
between state and action. Recall that mutual information is defined as,

I(x; z) = Es0,g∼p(s0,g)Ez∼Z log
p(s0, z)

p(s0)p(z)
(22)

= Es0,g∼p(s0,g)p(s0)DKL (πθ(z|s0)‖p(z)) (23)
= Es0,g∼p(s0,g)DKL (πθ(z|s0)‖p(z)) , (24)

Next, we prove that π̄(z) given in Equation 8 is the solution of this minimization problem, this can
be directly inferred from the above inequality.

D Proof of Proposition 2

Proof. To prove Equation 13 is an unbiased estimation of Equation 12, note that we can either
enumerate replay buffers B and C when the size of buffers are small or approximate sampling from
both buffers according to the specified ratio. In any case, this gives us a stratified sampling estimator
of Equation 12, which is unbiased and low variance.

E Proof of generalizations of existing credit assignment methods

E.1 REINFORCE:

REINFORCE maximizes the expected reward and estimate the gradient with on-policy samples
∇θJRL =

∑
s0,g∼p(s0,g)

∑
z∼πθ(z|s0),∇θ log πθ(z|s0)r(z, s0, g), in contrast, GACA utilizes off-policy

samples while still maintain unbiased gradient estimate. GACA reduces to REINFORCE by simply
choosing ρf as constant 1.

E.2 MML:

Maximize Marginal Likelihood (Dempster et al., 1977; Berant et al., 2013) maximizes the marginal
probability of the replay buffer B, JMML =

∑
s0,g∼p(s0,g) log

∑
z∼B πθ(z|s0). Choosing wl = 1 in

Equation 13, and clearly there exists monotonically increasing function ρf satisfy ρf (πθ(z|s0)
π̄(z) ) = w(z),

thus GACA reduces to MML.
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E.3 IML:

Iterative maximize likelihood (Liang et al., 2017; Abolafia et al., 2018) uniformly maximizes the
likelihood of all the high-reward trajectories in past experience, where the gradient is given by,
∇θJIML =

∑
s0,g∼p(s0,g)

∑
z∼B ∇θ log πθ(z|s0), choosing ρf = 1 and wB = 1 in Equation 13, GACA

reduces to IML.

E.4 MAPO, MAPOX:

Memory Augmented Policy Optimization (Liang et al., 2018) is a recent method for reusing high-
reward trajectories, it maximizes the expected reward and estimate the gradient with off-policy
high-reward trajectories, ∇θJMAPO =

∑
s0,g∼p(s0,g)(1 − α)

∑
z∼π(z|x)∇θ log πθ(z|s0)r(z, s0, g) +

α
∑

z∼B∇θ log πθ(z|s0)r(z, s0, g), where α is a weight equals to the total probability of high-reward
trajectory z in buffer B. MAPOX (Agarwal et al., 2019) improves MAPO by running MAPO on
data collected with IML, which promotes exploration. When choosing ρf ( π̄(z)

πθ(z|s0) ) = log( π̄(z)
πθ(z|s0) )−1

and setting wB = 1, GACA reduces to MAPO.

E.5 RAML:

Reward Augmented Maximum Likelihood (Norouzi et al., 2016) is a more general variant of
IML, which weights off-policy samples with an energy based prior distribution in Equation 7,
JRAML =

∑
s0,g∼p(s0,g)

∑
z∼Z π̄(z) log πθ(z|s0)r(z, s0, g), where π̄(z) = exp

(
1
λ (r(z, s0, g)− V (x))

)
.

Choosing ρf ( π̄(z)
πθ(z|s0) ) = π̄(z)

πθ(z|s0) and setting wB = 1 in Equation 13, GACA reduces to RAML.

F Experiments Details

Figure 5: Instruction following navigation in maze.
An agent is presented with a sequence of (Left,
Right, Up, Down) instructions. Given the input
text, the agent on the blue dot need to perform a
sequence of actions, and only receives a reward of
1 if it reaches the goal at the orange star.

For WikiTableQuestions, we follow the con-
struction in Pasupat & Liang (2015) for con-
verting a table into a directed graph that can
be queried. The rows and cells are converted
to graph nodes while column names become la-
beled directed edges. Each batch includes sam-
ples from 25 examples For WikiSQL, we follow
the setting in Liang et al. (2018) for choosing the
sampling batch size. Our model use a seq2seq
model as πθ(z|s0), and two key-variable mem-
ory as high-reward buffer B and zero-reward
buffer C, and associated with a domain specific
language interpreter (Liang et al., 2017). In
the beginning of training, a policy with random
initialization will assign small probabilities to
high reward trajectories, this causes them to be
ignored during gradient estimation, therefore,
improving on random initialization is difficult.
In practice, to overcome cold start problem in
sparse reward policy optimization, we clip the
probability of high reward trajectories in buffer
B as stated in Section 3.4. Our code is based
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on open source implementation of MAPO (Liang et al., 2018) which implements a distributed
actor-learner architecture Espeholt et al. (2018) to accelerate sampling through distributed actors.
Gradients are estimated and periodically updated through a central learner (Espeholt et al., 2018).
For TextWorld1, we use a set of 300 randomly generated environments with training and validation
splits of 80% and 20% respectively following Agarwal et al. (2019). The agent is evaluated on 300
unseen test environments from the same distribution. An example of TextWorld is shown in
Figure 5.

Our code is based on the open source implementations of MAPO (Liang et al., 2018), MeRL (Agarwal
et al., 2019), and tail-adapted variational inference (Wang et al., 2018), we port their code to PyTorch
and implement GACA on it for experiments. We will release the code later.

We used the Adam Optimizer (Kingma & Ba, 2015) for WikiSQL, WikiTABLE, and TextWorld.
We performed hyper-parameter sweeps via random search over the interval

(
10−4, 10−2

)
for learning

rate. All the hyperparameters are tuned on the evaluation set.

G Algorithm

Algorithm 1 Guided Adaptive Credit Assignment for Sample Efficient Policy Optimization

Require: Training data distribution p(s0, g), random initialized policy distribution πθ(z|s0), uniform
initialized prior distribution π̄(z), high-reward episodes buffer B, and zero-reward episodes buffer
C, and clipping thresholds wl and wu.
repeat
Sample initial states and goals {s0, g} from data distribution p(s0, g)
Collect trajectories with πθ(z|s0) given {s0, g} and push trajectories into replay buffers B and
C according to their rewards.
Draw {zi} from buffers B and C through stratified sampling, compute wB and wC

Compute tail probability 1
n

∑n
i=1 I(wi ≥ t), where wi = π(zi | x)/π̄(zi)

Update policy distribution πθ(z|s0) with Equation 13 by substituting ρf (πθ(z|s0)/π̄(z)) with
the inverse of tail probability
Compute new guiding prior distribution π̄(z) = Es0,g∼p(s0,g) [πθ(z|s0)]

until converge or early stop

H Qualitative Results

In order to evaluate the qualitative quality of the proposed method, we compare GACA with
the recent state-of-the-art MAPO on WIKITABLEQUESTIONS. Figure 4 shows examples of
generated programs from natural language queries using model trained with GACA or MAPO, the
difference between generated programs show that sometimes GACA is capable of generating correct
programs that capture the meaning of the natural language queries while MAPO generates either
wrong answer programs or spurious programs.

1https://github.com/google-research/google-research/tree/master/meta_reward_learning/
textworld

17

https://github.com/google-research/google-research/tree/master/meta_reward_learning/textworld
https://github.com/google-research/google-research/tree/master/meta_reward_learning/textworld


Under review as a conference paper at ICLR 2020

Query/Generated Programs Comment

Query nu-1147: Which opponent of the kansas city
chiefs in 1987 saw a total of more than 70,000 in
attendance?
MAPO: r0 = (argmax all_rows r.attendance-number); rres
= (hop r0 r.opponent-string)
GACA: r0 = (filter> all_rows [70,000] r.attendance-
number); rres = (hop r0 r.opponent-string)

The program generated by MAPO leads to
wrong answer, because it wrongly assume
that the one with largest number of atten-
dance number is the opponent of kansas
city. Instead GACA captures the semantic
meaning of the query and generates correct
program.

Query nu-1167: Who was the first oldest living presi-
dent?
MAPO: r0 = (first all_rows); rans = (hop r0 r.president)
GACA: r0 = (filter_str_contain_any all_rows [oldest living
president’] r.became_oldest_living_president-string ); rres
=( hop r0 r.president-string )

MAPO gets correct answer by chance
because it is spurious program, MAPO
wrongly assumes the data is ordered, in
contrast, GACA generates programs that
capture underlying semantic information.

Query nu-3733: At least how many more people at-
tended gamestorm 15 than gamestrom 13?
MAPO: r0 = (filter_str_contain_any all_rows [13] r.dates-
string); rres = ( hop r0 r.attendance-number )
GACA: r0 = (filter_str_contain_any all_rows [13] r.dates-
string); r1 = (filter_str_contain_any all_rows [13] r.dates-
string); (diff r0 r1 r.attendance-number)

MAPO gets correct answer by chance
because it is spurious program, MAPO
wrongly assumes the data is ordered, in
contrast, GACA generates programs that
capture underlying semantic information.

Table 4: Example of generated programs from models trained using MAPO and GACA on Wik-
iTableQuestions
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