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ABSTRACT

We propose a new architecture for distributed image compression from a group of
distributed data sources. The work is motivated by practical needs of data-driven
codec design, low power consumption, robustness, and data privacy. The proposed
architecture, which we refer to as Distributed Recurrent Autoencoder for Scalable
Image Compression (DRASIC), is able to train distributed encoders and one joint
decoder on correlated data sources. Its compression capability is much better than
the method of training codecs separately. Meanwhile, for 10 distributed sources,
our distributed system remarkably performs within 2 dB peak signal-to-noise ratio
(PSNR) of that of a single codec trained with all data sources. We experiment
distributed sources with different correlations and show how our methodology
well matches the Slepian-Wolf Theorem in Distributed Source Coding (DSC). Our
method is also shown to be robust to the lack of presence of encoded data from
a number of distributed sources. Moreover, it is scalable in the sense that codes
can be decoded simultaneously at more than one compression quality level. To
the best of our knowledge, this is the first data-driven DSC framework for general
distributed code design with deep learning.

1 INTRODUCTION

It has been shown by a variety of previous works that deep neural networks (DNN) can achieve
comparable results as classical image compression techniques (Toderici et al., [2015} |[Ballé et al.
2016; |Gregor et al.,|2016; [Toderici et al., [2017} [Theis et al., |2017; Johnston et al., 2017; [Liu et al.,
2018} L1 et al., 2018} Mentzer et al.l [2018)). Most of these methods are based on autoencoder net-
works and quantization of bottleneck representations. These models usually rely on entropy codec
to further compress codes. Moreover, to achieve different compression rates it is unavoidable to train
multiple models with different regularization parameters separately, which is often computationally
intensive.

In this work, we are motivated to develop an architecture that has the following advantages. First,
unlike classical distributed source coding (DSC) which requires customized code design for dif-
ferent scenarios (Xiong et al., 2004), a data-driven distributed compression framework can handle
nontrivial distribution of image sources with arbitrary correlations. Second, the computation com-
plexity of encoders (e.g. mobile devices) can be transferred to the decoder (e.g. a remote server).
Such a system of low complexity encoders can be used in a variety of application domains, such as
multi-view video coding (Girod et al.,|2005)), sensor networks (Xiong et al.,|2004)), and under-water
image processing where communication bandwidth and computational power are quite restricted
(Stojanovic & Preisigl 2009; [Schettini & Corchs, [2010). Third, the distributed framework can be
more robust against heterogeneous noises or malfunctions of encoders, and such robustness can be
crucial in, e.g., unreliable sensor networks (Girod et al.|[2005; [Ishwar et al.| 2005} Xiao et al.,[2006).
Last but not least, the architecture is naturally scalable in the sense that codes can be decoded at more
than one compression quality level, and it allows efficient coding of correlated sources which are
not physically co-located. This is especially attractive in video streaming applications (Guillemot
et al.,[2007; |Gehrig, [2008]).

It is tempting to think that splitting raw data into different encoders compromises the compression
quality. It is thus natural to ask this question: Can distributed encoders perform as well as a single
encoder trained with all data sources together? A positive answer from a theoretical perspective was
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Figure 1: Illustration of Deep Distributed Source Coding.
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Figure 2: Illustration of Recurrent Autoencoder for Scalable Image Compression.

given in the context of information theory, where DSC is an important problem regarding the com-
pression of multiple correlated data sources. The Slepian-Wolf Theorem shows that lossless coding
of two or more correlated data sources with separate encoders and a joint decoder can compress data
as efficiently as the optimal coding using a joint encoder and decoder (Slepian & Wolt},|1973};|Cover,
1975). The extension to lossy compression with Gaussian data sources was proposed as Wyner-Ziv
Theorem (Wyner & Ziv}[1976)). Although these theorems were published in 1970s, it was after about
30 years that practical applications such as Distributed Source Coding Using Syndromes (DISCUS)
emerged (Pradhan & Ramchandran, 2003). One of the main advantages of DSC is that the com-
putation complexity of the encoder is transferred to the decoder. A system architecture with low
complexity encoders can be a significant advantage in applications such as multi-view video coding
and sensor networks (Girod et al., [2005; |Xiong et al., 2004).

Motivated by the theoretical development of DSC, in this work we propose a DNN architecture
that consists of distributed encoders and a joint decoder (illustrated in Fig. [T|and [Z). We show that
distributed encoders can perform as well as a single encoder trained with all data sources together.
Our proposed DSC framework is data-driven by nature, and it can be applied to distributed data even
with unknown correlation structure.

The paper is outlined below. We review previous related works in Section 2. We describe our
proposed architecture for general image compression and its basic modules in Subsections 3.1-3.4.
Then we elaborate the Deep Distributed Source Coding framework in Subsection 3.5. Experimental
results are shown in Section 4, followed by conclusions in Section 5.
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Figure 3: The Slepian-Wolf achievable region for two sources X and Y.

2 RELATED WORK

Though there has been a variety of research on lossy data compression in the past few decades,
little attention has been paid to a systematic approach for general and practical distributed code
design, especially in the presence of an arbitrary number of nontrivial data sources with arbitrary
correlations (Xiong et al.}[2004). A main motivation of this work is to attempt to replace the practical
hand-crafted code design with data-driven approaches. To our best knowledge, what we propose is
the first data-driven DSC architecture. Unlike hand-crafted quantizers, our neural network-based
quantizers show that the correlations among different data sources can be exploited by the model
parameters. Inspired by DSC, We empirically show that it is possible to approach the theoretical
limit with our methodology.

2.1 IMAGE COMPRESSION WITH DEEP LEARNING

There exist a variety of classical codecs for lossy image compression. Although the JPEG standard
was developed thirty years ago, it is still the most widely used image compression
method. Several extensions to JPEG including JPEG2000 (Skodras et all, 2001), WebP
[2010) and BPG 2014) have been developed. Most of these classical codecs rely on a
quantization matrix applied to the coefficients of discrete cosine transform or wavelet transform.

Common deep neural network architecture for image compression are auto-encoders including non-
recurrent autoencoders (Ball€ et al 2016} [Theis et all, 2017} [Li et al 2018, Mentzer et al, 2018)
and recurrent autoencoders (Toderici et al., 2015} 2017} [Johnston et al, [2017). Non-recurrent au-
toencoders use entropy codec to encode quantized bottleneck representations, and recurrent models
introduce incremental binarized codes at each compression quality. The generated codes of non-
recurrent models is not scalable and their performance heavily relies on the conditional generative
model like PixelCNN (Van den Oord et al.,[2016) which arithmetic coding can take advantage of
let all 2018} [Mentzer et al., [2018). Recurrent autoencoders, on the other hand, can reconstruct im-
ages at lower compression qualities with the subset of high quality codes. Other notable variations
include adversarial training (Rippel & Bourdev, 2017), multi-scale image compression (Nakanishi

2018), and generalized divisive normalization (GDN) layers (Ball¢ et al.| 2016).

Another challenge is to well define the derivative of quantizations of bottleneck representations.
Ball€ et al| (2016) replaced non-differentiable quantization step with a continuous relaxation by
adding uniform noises. [Toderici et al.| (2015), on the other hand, used a stochastic form of binariza-
tion. discuss the performance of different quantization techniques in details.

2.2 DISTRIBUTED SOURCE CODING

Our methodology is inspired by the information-theoretic results on DSC which have been estab-
lished since 1970s. The [Slepian & Wolf| (1973) Theorem shows that two correlated data sources
encoded separately and decoded jointly can perform as well as joint encoding and decoding, and
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outperform separate encoding and separate decoding. The striking result indicates that as long as
the codes are jointly decoded, there can be no loss in coding efficiency even the codes are separately
encoded. (Cover| (1975) generalizes the achievability of Slepian-Wolf coding to arbitrary number of
correlated sources. Wyner & Ziv|(1976) Coding gives a rate-distortion curve as an extension to lossy
cases.

A classical illustration of Slepian-Wolf achievable region is shown in Fig.[3] We can achieve the per-
formance of joint encoding and decoding of two data sources X and Y where the bit rate R is equal
to the joint entropy H (X,Y") with separate encoding and joint decoding. Specifically, the achiev-
able region proved by the Slepian-Wolf Theorem is given by Rx > H(X|Y), Ry > H(Y|X),
and Rx + Ry > H(X,Y) as shown in the shaded area of Fig.[3| Here R. and H(-) denote
the bit rates and (conditional) entropies in classical Shannon theory. In practice, although some
works are proposed to approach the mid-point C' (Schonberg et al., [2004), the most widely used
scheme is source coding with side information (syndrome bits) at the decoder (Pradhan & Ram-
chandran| [2003)). This code design takes advantage of the corner points A and B which correspond
to HX,Y)=H(Y)+ H(X|Y)and H(X,Y) = H(X) + H(Y|X) respectively.

Some researchers have also shown the applicability of DSC on still images (Dikici et al., |2005).
In practical applications, low complexity video encoding benefits from the DSC framework which
can transfer the complexity of encoder to decoder (Puri & Ramchandran, 2002} |Aaron et al.| [2002).
Scalable Video Coding can also be incorporated with DSC (Xu & Xiong, [2006)). These proposed
methods indicate the feasibility of DSC in our problem setting.

3 METHODS

In this section, we first describe the recurrent autoencoder for scalable image compression used in
our work. We will elaborate the basic modules including Convolutional Long short-term memory
(ConvLSTM), Pixel (Un)Shuffle, and Binarizer used in our model. We will then describe how this
Deep Learning architecture is used in Distributed Source Coding framework.

3.1 NETWORK ARCHITECTURE

Our compression network consists of an encoder, a binarizer, and a decoder. The activation function
following each Convolutional Neural Network (CNN) module is tanh. For the first iteration of our
model, the input images are initially encoded and transformed into (—1, 1) by tanh activation func-
tion. Binary codes are quantized from bottleneck representations. The decoder then reconstructs
images based on the received binary codes. Finally, we compute the residual difference between
the original input images and the reconstructed output images. At the next iteration, the residual
difference is feedback as the new input for our model. This procedure is repeated multiple iterations
to gain more codes for better reconstruction performance. Therefore, the reconstructed images at
each iteration are the sum of output reconstructions from previous and current iterations. The de-
pendencies among iterations are modeled by recurrent models like ConvLSTM. We iterate 16 times
to generate scalable codes. Compared to non-scalable codes which require new set of codes at each
compression quality, scalable codes are able to reconstruct images at lower compression quality by
using the subset of codes. This is especially attractive in video streaming applications (Guillemot
et al.,[2007; |Gehrig, [2008]).

Consider dataset X = {z}*V consisting of N i.i.d. samples of some continuous or discrete variables
x. The data generating process is unknown. Autoencoders for compression and reconstruction can
be formulated in the following way. Data can be compressed with a neural network-based encoder
f(; 0) into quantized codes Z and reconstructed with a decoder g(Z; ¢). We can binarize bottleneck
representations z and control the compression quality by varying its channel sizes. The loss function
L(x, %) is minimized with respect to the model parameters 6 and ¢.

z = f(x;0), Z = Binarize(z),Z = g(Z; ¢), (1)

Minimize £(x, %) ()

Deep recurrent autoencoder gradually increases compression quality by creating a correlated resid-
ual sequence from the difference between the input and output of our model. The advantage of

recurrent model is that we can use a subset of generated codes to reconstruct images at lower com-
pression qualities. Classical autoencoders, on the contrary, not only have to train multiple networks
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with different penalty coefficients for rate-distortion loss but also have to generate different codes
for different compression quality. Suppose T iterations are used, we can formulate the recurrent
autoencoder in the following way.

2zt = f(x4;0), 2, = Binarize(z;), 3)
Ty = g(Z;0), 1 = ¢ — Ty, 71 = 0, “4)
1 T t
Minimize - > L(xr, ) ). (5)
t=1 i=1

3.2 CONVOLUTIONAL LONG SHORT-TERM MEMORY

As proposed by [ Xingjian et al.| (2015)), simply replacing the Fully Connected (FC) layer in LSTM
with convolutional layer, ConvLSTM is able to capture the spatial structure in the temporal se-
quence. We do not add any bias term to our modules because the output of each layer is saturated
by tanh. The key equations are shown below.

it = oWy * 2y + Wy x hy_q), (6)
ft = 0(Wap*xe + Whyg sk hi_y), (7)
¢t = freo—1 +igtanh(Woe * 24 + Whe % hi—1), (3
0 = 0(Wao ¥t + Who * hy_1), 9
hy = o¢ tanh(c;). (10)

The first and last layers of the encoder and decoder are feed-forward Convolutional Neural Network
with tanh activations. The recurrent layers are all ConvLSTM networks. We do not replace CNN
layer with ConvLSTM because the size of the feature maps of hidden state at shallow layers costs a
mass amount of memory. From our various experimental studies, the performance does not degrade
significantly because no convolutional layers are in between ConvLSTM layers.

3.3 PIxEL (UN)SHUFFLE

We resize feature maps with Pixel UnShuffle modules. Pixel Shuffle module is originally proposed
by Shi et al.[(2016)) to tackle image and video super-resolution problem. Compared to transposed
convolutional layers, Pixel Shuffle module is computationally efficient, because it is non-parametric
and only requires tensor reshaping and dimension permutation (Shi et al., 2016). We note that al-
though this method is used for upscaling, it is actually invertible and we propose to use its inversion
for downscaling. Thus, the encoder and decoder can be constructed symmetrically. Our experimen-
tal results show that symmetric recurrent autoencoder architecture actually produces better results
with less number of parameters, compared to the asymmetric architecture using transposed convo-
lutional layers as proposed in Toderici et al.| (2017). We describe the module with the following
pseudocodes.

Algorithm 1 Pixel UnShuffle

Require: X ~ (N,C,H,W), rg,rw

Ensure: rp,ry are integers, divides H, W
Reshape X ~ (N,C,H/rg,ra, W/rw,rw)
Permute X ~ (N, C,rg,rw, H/rg, W/rw)
Reshape X ~ (N,C X rg X rw, H/rg, W/rw)

3.4 BINARIZER

The derivative of quantization function is only defined at the rounded integer itself. Therefore,
we have to replace its derivative in the backward pass of backpropagation with a form of smooth
approximation Rumelhart et al.|(1988). Thanks to a thorough discussion of different alternative ap-
proaches by [Theis et al.| (2017), we choose to use the identity function to replace its derivatives that
cannot be well defined as shown in[TT]} During training, we use a stochastic form of binarization pro-
posed by Toderici et al.|(2017). For bottleneck representations z € (—1, 1), the details of binarizer
Z = Binarize(z) are described as follows.
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Train
% = Binarize(z) — 1,  with pr.obablllty (z+1)/2
—1, otherwise
d . d_. . d
Test

1, ifz>0

» (12)

otherwise

Binarize(z) = {

)

3.5 DEEP DISTRIBUTED SOURCE CODING FRAMEWORK

Fig. [I] and [2] illustrate our Distributed Recurrent Autoencoder for Scalable Image Compression
(DRASIC). Similar to classical DSC framework, each data source is encoded separately and de-
coded jointly. In our network, each distributed encoder in Fig. [1| has the exact same structure in
Fig. Pl Traditionally, researchers have to design different kind of codes for specific data sources
(Schonberg et al., 2004). We propose to use data-driven approach to handle complex scenarios
where the distribution of data sources is unknown and their correlations can be arbitrary. Our pro-
posal may also shed new light on sophisticated application scenarios such as videos where data
sources and correlations are time dependent.

In our neural network-based DSC, M distributed encoders encode corresponding data sources ="
that can be arbitrarily correlated. Each neural network-based encoder f(z™;6™) has their own
model parameters §”*. After binarizing bottleneck representations z"*, code sources z"™ are trans-
mitted and concatenated batch-wisely. A single decoder g(2™; ¢) reconstructs images Z"™ from all
sources with the same model parameters ¢. In classical settings, the joint decoder has to process
all compressed codes from each source jointly. In our data-driven setting, the joint training process
optimizes the model such that the single decoder can decode from correlated sources. In this case,
decoding codes from a particular data source does not depend on synchronization of codes from
other sources, since the model has been optimized to adapt the correlations among all sources.

zt = f(z*;0™), Z" = Binarize(z;"), (13)

Tt =g9(Z" @), vl = " — ", 1" =0, (14)
| T.oM ¢

Minimize m;ﬁ;ﬁ(ﬂ”,;x?‘) (15)

Our result shows that the resulting distributed model can perform as well as encoding all data by
one single encoder. However, if we encode and decode each data source separately, the performance
becomes significantly worse, i.e. with Z[" = g(Z}"; ¢™).

4 EXPERIMENTS

To show our model is capable of compressing natural images, we train our model on CIFARI10
dataset (Stojanovic & Preisig, 2009) and evaluate the rate-distortion curve on Kodak dataset
(Franzén, |2002). To show our model is capable of compressing grayscale images and demonstrate
the feasibility of training encoders in a distributed manner, we train and evaluate our models with
MNIST dataset|LeCun et al.|(1998)). We observe that many non-recurrent autoencoders outperform
recurrent models on rate-distortion curves (Li et al.| [2018; Mentzer et al.,[2018). We emphasize the
distinction between the recurrent and non-recurrent autoencoders which do not have the scalability
of reconstructing low quality images by using the subset of codes for high quality reconstruction.
Our experiments aim to empirically demonstrate the feasibility of scalable distributed source coding
in a data-driven setting. We use Adam optimizer (Kingma & Bal [2014)) with minibatch size of 100
for all experiments. We use learning rate 0.001 for a total of 200 epochs and decay every 50 epochs
by a factor of 0.5. Our model uses a depth size D = 3 such that a 32 x 32 RGB image will be
compressed into 8 x 4 x 4 binarized codes at each iteration. We iterate our models 16 times to
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Figure 4: Our symmetric recurrent autoencoder performs comparable to classical codecs and neural
network-based codecs for natural images and handwritten grayscale images.
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Figure 5: Rate-distortion curves for data sources distributed by class labels with 7' = 16 for all
sources.

achieve the compression rates from 0.125 to 2 Bit Per Pixel (BPP). We empirically found that £
loss performs much better than £, and binary cross entropy loss. Fig. @] shows that our symmetric
recurrent autoencoder performs comparable to classical codecs and neural network-based codecs on
compressing natural images, and performs significantly better on compressing handwritten grayscale
images.

To demonstrate the feasibility of compressing distributed data sources, we split our data into cor-
related subsets to emulate the case where encoders only have access to distributed correlated data
sources. We conduct our experiments with (2,4, 8,10) number of distributed sources. For the
MNIST dataset, the correlated data sources are from images separated by class labels. Each data
source only contains the images of the same digit. First, we compare our result, labeled as Dis-
tributed, to the case where all data are trained with one encoder and one decoder jointly, labeled as
Joint. The Joint curve is approximated as the theoretical upper bound of performance. Second, we
compare our result to the case where each data source is trained with a separate pair of encoder and
decoder, labeled as Separate.

In our data-driven setting, decoding codes from a particular data source does not require synchro-
nization of codes from all sources as in classical settings. In a classical DSC code design, if the
syndrome bits H(X|Y") are used and the data source Y is accidentally blocked, we will not be able
to decode the data source X . We test each pair of distributed encoder and joint decoder separately to
demonstrate the robustness of our framework. The solid curves are the average performance across
all encoders. At each iteration, the confidence band is determined by the best and worst performance
of all encoders. Fig.[5]and Fig.[6]show that distributed encoders not only dominate separately trained
codecs but also have narrower confidence bands. As the number of encoders increases, the confi-
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Figure 6: Rate-distortion curves for data sources distributed by class labels with 7' = 16 for the first
half of sources and T' = 8 for the second half of sources.

dence bands of separately trained codecs become wider because each separate codec can only access
very limited amount of data and thus suffer from overfitting. As the number of iterations increases,
the confidence bands also become wider. This is because the residual differences at a later iteration
become less correlated.

We also demonstrate the performance of low complexity encoders which are trained with a smaller
number of iterations. In Fig. @ the first half of encoders is trained with 16 iterations, labeled as
Full in solid lines, and the second half of encoders is only trained with 8§ iterations, labeled as Half
in dashed lines. For example, for m = 8, encoders 1 to 4 are trained with 16 iterations while
encoders 5 to 8 are trained with 8 iterations. The theoretical limits (in black lines) are trained with
all available data as in Fig.[5] Half complexity encoders perform as well as full complexity encoders
in the first 8 iterations, because their dependencies of the first eight iterations are trained properly
with the model parameters. After the eighth iteration, both full and half complexity encoders can
still approach their theoretical limits. However, without specifically training dependencies after the
eighth iterations, the performance of half complexity encoders slightly decreases.

5 CONCLUSION

We introduced a data-driven Distributed Source Coding framework based on Distributed Recurrent
Autoencoder for Scalable Image Compression (DRASIC). Compared to classical code design, our
method has the following advantages. First, instead of explicitly estimating the correlations among
data sources in advance, we use data-driven approach to learn the dependencies with the neural net-
work parameters. Given enough training data, our method can handle an arbitrary number of sources
with arbitrary correlations. Second, we showed the robustness of our framework. Unlike classical
code design which may require careful data source synchronization, each distributed encoder of our
model, once trained and deployed, can be used independently of others because the dependencies
are already learned by the model parameters. Third, as one of the most important applications of
Distributed Source Coding, low complexity encoders were shown to be feasible based on our exper-
imental results. Data sources trained with less data and fewer number of iterations can still approach
the theoretical limit obtained by pulling all the data. Last but not least, our recurrent model can
reconstruct images efficiently even at low compression quality.

We point out two interesting directions of future work. First, the compression quality of the proposed
architecture may be improved by introducing spatially adaptive weights over different iterations, e.g.
by using context models for adaptive arithmetic coding. Second, the network architecture may be
further extended to handle time-dependent data sources.
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