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ABSTRACT

In this work, we address the task of natural image generation guided by a condi-
tioning input. We introduce a new architecture called conditional invertible neural
network (cINN). It combines the purely generative INN model with an uncon-
strained feed-forward network, which efficiently preprocesses the conditioning
input into useful features. All parameters of a cINN are jointly optimized with
a stable, maximum likelihood-based training procedure. Even though INNs and
other normalizing flow models have received very little attention in the literature
in contrast to GANs, we find that cINNs can achieve comparable quality, with
some remarkable properties absent in cGANs, e.g. apparent immunity to mode
collapse. We demonstrate these properties for the tasks of MNIST digit generation
and image colorization. Furthermore, we take advantage of our bidirectional cINN
architecture to explore and manipulate emergent properties of the latent space, such
as changing the image style in an intuitive way. 1

1 INTRODUCTION

Generative adversarial networks (GANs) produce ever larger and more realistic samples (Kar-
ras et al., 2017; Brock et al., 2019). Hence they have become the primary choice for a
majority of image generation tasks. As such, their conditional variants (cGANs) would ap-
pear to be the natural tool for conditional image generation as well, and they have suc-
cessfully been applied in many scenarios (Ledig et al., 2017; Miyato & Koyama, 2018).

Figure 1: Diverse colorizations, which our network
created for the same grayscale image. One of them
shows ground truth colors, but which? Solution at
the bottom of next page.

However, a lack in diversity is especially com-
mon when the condition itself is an image, and
special precautions have to be taken to avoid
mode collapse and training stability continues
to pose a challenge.

Conditional variational autoencoders (cVAEs)
do not suffer from the same problems. Training
is generally stable, and since every data point
is assigned a region in latent space, sampling
yields the full variety of data seen during train-
ing. However cVAEs come with drawbacks of
their own: The assumption of a Gaussian pos-
terior on the decoder side implies an L2 recon-
struction loss, which is known to cause blur-
riness. In addition, the partition of the latent
space into diagonal Gaussians leads to either
mode-mixing issues or regions of poor sample
quality (Kingma et al., 2016). There has also
been some success in combining aspects of both
approaches for certain tasks, such as (Isola et al.,
2017; Zhu et al., 2017b; Park et al., 2019).

We propose a third approach, by extending In-
vertible Neural Networks (INNs, Dinh et al.

1Code is available, but held back for the review process due to anonymity.
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(2016); Kingma & Dhariwal (2018); Ardizzone et al. (2019)) for the task of conditional image
generation, by adding conditioning inputs to their core building blocks. INNs are neural networks
which are by construction bijective, efficiently invertible, and have a tractable Jacobian determinant.
They represent transport maps between the input distribution p(x) and a prescribed, easy-to-sample-
from latent distribution p(z). During training, the likelihood of training samples from p(x) is
maximized in latent space, while at inference time, z-samples can trivially be transformed back to
the data domain. Previously, INNs have been used successfully for unconditional image generation,
e.g. by Dinh et al. (2016) and Kingma & Dhariwal (2018).

Unconditional INN training is related to that of VAEs, but it compensates for some key disadvantages:
Firstly, since reconstructions are perfect by design, no reconstruction loss is needed, and generated
images do not become blurry. Secondly, each x maps to exactly one z in latent space, and there is
no need for posteriors p(z |x). This avoids the VAE problem of disjoint or overlapping regions in
latent space. In terms of training stability and sample diversity, INNs show the same strengths as
autoencoder architectures, but with superior image quality. We find that these positive aspects apply
to conditional INNs (cINNs) as well.

One limitation of INNs is that their design restricts the use of some standard components of neural
networks, such as pooling and batch normalization layers. Our conditional architecture alleviates this
problem, as the conditional inputs can be preprocessed by a conditioning network with a standard
feed-forward architecture, which can be learned jointly with the cINN to greatly improve its generative
capabilities. We demonstrate the quality of cINNs for conditional image generation and uncover
emergent properties of the latent space, for the tasks of conditional MNIST generation and diverse
colorization of ImageNet.

Given this, we believe that the cINN architecture brings the research field of INNs and other
normalizing flow models a substantial step forward. Despite the fact that INNs have received very
little attention in the literature in contrast to GANs, we find that cINNs can achieve comparable
quality to cGANs, with some remarkable properties absent in cGANs. This includes diverse outputs
by default, compared to sparse support or mode collapse in cGANs, easier explainability and
interpretability of the learned latent representation, as well as simple and intuitive manipulation and
interpolation of generated or existing images.

Our work makes the following contributions:

• We propose a new architecture called conditional invertible neural network (cINN), which
combines an INN with an unconstrained feed-forward network for conditioning. It gener-
ates diverse images with high realism on par with existing approaces, while adding some
noteworthy and useful properties.
• We demonstrate a stable, maximum likelihood-based training procedure for jointly optimiz-

ing the parameters of the INN and the conditioning network.
• We take advantage of our bidirectional cINN architecture to explore and manipulate emergent

properties of the latent space. We illustrate this for MNIST digit generation and image
colorization.

Quizsolution:Bottomrow,centerimage

2 RELATED WORK

Conditional Generative Modeling. Modern generative models learn to transform noise (usually
sampled from multivariate Gaussians) into desired target distributions. Methods differ by the model-
family these transformations are picked from and by the losses determining optimal solutions.

Conditional generative adversarial networks (cGANs, Mirza & Osindero (2014)) train a pair of
neural networks: a generator transforms a pair of conditioning and noise vectors to images, and a
discriminator penalizes unrealistic looking images. The conditioning information is either concate-
nated to the noise (Mirza & Osindero, 2014), or fed into the network via conditional batch-norm
layers (Dumoulin et al., 2017; Huang & Belongie, 2017; Park et al., 2019). Ensuring diversity of
the generated images (for fixed conditioning) appears to be challenging in this approach. Recent
BigGANs (Brock et al., 2019) successfully address this problem by using very large networks and
batch sizes, but require parallel training on up to 512 TPUs. PacGANs (Lin et al., 2018) employ
augmented discriminators, which evaluate entire batches of real or generated images together rather
than one image at a time. CausalGANs (Kocaoglu et al., 2017) train two additional discriminator
networks, called “labeler” and “anti-labeler”, with the latter explicitly penalizing the lack of diversity.
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Pix2pix (Isola et al., 2017) addresses the important special case when the target is conditioned on
an image in a different modality, e.g. to generate satellite images from maps. In addition to the
discriminator loss, it minimizes the L1 distance between generated and ground-truth targets using
a paired training set, which contains corresponding images from both modalities. This leads to
impressive image quality, but lack of diversity seems to be an especially hard problem in this case. In
contrast, our method does not need explicit precautions to promote diversity.

Bidirectional architectures augment generator networks with complementary encoder networks that
learn the generator’s inverse and enable reconstruction losses, which exploit cycle consistency require-
ments. Conditional variational autoencoders (cVAEs, Sohn et al. (2015)) replace all distributions in a
standard VAE (Kingma & Welling, 2013) by the appropriate conditional distributions, and are trained
to minimize the evidence lower bound (ELBO loss). Since variational distributions are typically
Gaussian, the reconstruction penalty is equivalent to squared loss, resulting in rather blurry generated
images. This is avoided by AGE networks (Ulyanov et al., 2018) and CycleGANs (Zhu et al., 2017a),
which combine standard cGAN discriminators with L1 reconstruction loss in the data domain, and
bidirectional conditional GANs (Jaiswal et al., 2017), which extend the GAN discriminator to act on
the distributions in data and latent space jointly. SPADE (Park et al., 2019), building upon pix2pix
and pix2pixHD (Wang et al., 2018), augments cGANs with additional VAE encoders to shape the
latent space such that diversity is ensured.

Instead of enforcing bijectivity through cycle losses, invertible neural networks are bidirectional
by design, since encoder and generator are realized by forward and backward processing within a
single bijective model. We focus on architectures whose forward and backward pass require the same
computational effort. The coupling layer designs pioneered by NICE (Dinh et al., 2014) and RealNVP
(Dinh et al., 2016) emerged as very powerful and flexible model families under this restriction. Using
additive coupling layers, i-RevNets (Jacobsen et al., 2018b) demonstrated that the lack of information
reduction from data space to latent space does not cause overfitting. The Glow architecture (Kingma
& Dhariwal, 2018) combines affine coupling layers with invertible 1x1 convolutions and achieves
impressive attribute manipulations (e.g. age, hair color) in generated faces images. This approach
was recently generalized to video by Kumar et al. (2019).

Thanks to tractable Jacobian determinants, the coupling layer architecture enables maximum likeli-
hood training (Dinh et al., 2014; 2016), but experimental comparisons with other training methods
are inconclusive so far. For instance, Danihelka et al. (2017) found minimization of an adversarial
loss to be superior to maximum likelihood training in RealNVPs, Schirrmeister et al. (2018) trained
i-RevNets in the same manner as adversarial auto-encoders, i.e. with a discriminator acting in latent
rather than data space, and Flow-GANs (Grover et al., 2018) performed best using bidirectional
training, a combination of maximum likelihood and adversarial loss. On the other hand, maximum
likelihood training worked well within Glow (Kingma & Dhariwal, 2018), and i-ResNets (Behrmann
et al., 2018) could even be trained with approximated Jacobian determinants. In this work we
reinforce the view that high-quality generative models can be trained by maximum likelihood loss
alone. To the best of our knowledge, we are the first to apply the coupling layer design for conditional
generative models, with the exception of Ardizzone et al. (2019), who use it to compute posteriors
for (relatively small) inverse problems, but do not consider image generation.

Colorization. State-of-the-art regression models for colorization produce visually near-perfect
images (Iizuka et al., 2016), but do not account for the ambiguity inherent in this inverse problem. To
address this, models would ideally define a conditional distribution of plausible color images for a
given grayscale input, instead of just returning a single “best” solution.

Popular existing approaches for diverse colorization predict per-pixel color histograms from a U-Net
(Zhang et al., 2016) or from hypercolumns of an adapted VGG network (Larsson et al., 2016).
However, sampling from these local histograms independently can not lead to a spatially consistent
colorization, requiring additional heuristic post-processing steps to avoid artefacts.

In terms of generative models, both VAEs (Deshpande et al., 2017) and cGANs (Isola et al., 2017;
Cao et al., 2017) have been proposed for the task. However, their solutions do not reach the quality
of the regression-based models, and cGANs in particular often lack diversity. To compensate,
modifications and extensions to generative approaches have been developed, such as auto-regressive
models (Guadarrama et al., 2017) and CRFs (Royer et al., 2017). However, these methods are
computationally very expensive and often unable to scale to realistic image sizes.
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Conceptually closest to our proposed method is the work of (Ulyanov et al., 2018), where an encoder
network maps color information to a latent space and a generator network learns the inverse transform,
both conditioned on the grayscale image. Their experiments however are limited to a data set with
only cars, and just three latent dimensions, leading to global, but no local diversity.

In contrast to the above, our flow-based cINN generates diverse colorizations in one standard feed-
forward pass. It models the distribution of all pixels jointly, and allows for meaningful latent space
manipulations.

3 METHOD

Our method is an extension of the affine coupling block architecture established by Dinh et al. (2016).
There, each network block splits its input u into two parts [u1,u2] and applies affine transformations
between them that have strictly upper or lower triangular Jacobians:

v1 = u1 � exp
(
s1(u2)

)
+ t1(u2)

v2 = u2 � exp
(
s2(v1)

)
+ t2(v1) .

(1)

The outputs [v1,v2] are concatenated again and passed to the next coupling block. The internal
functions sj and tj can be represented by arbitrary neural networks, and are only ever evaluated in
the forward direction, even when the coupling block is inverted:

u2 =
(
v2 − t2(v1)

)
� exp

(
s2(v1)

)
u1 =

(
v1 − t1(u2)

)
� exp

(
s1(u2)

)
.

(2)

As shown by Dinh et al. (2016), the logarithm of the Jacobian determinant for such a coupling block
is simply the sum of s1 and s2 over image dimensions.

3.1 CONDITIONAL INVERTIBLE TRANSFORMATIONS

We adapt the design of Eqs. (1) and (2) to produce a conditional version of the cou-
pling block. Because the subnetworks sj and tj are never inverted, we can concate-
nate conditioning data c to their inputs without losing the invertibility, replacing s1(u2)
with s1(u2, c) etc. Our conditional coupling block design is illustrated in Fig. 2.

CCin

u1

u2

� + v1

� + v2

outs1 t1 s2 t2

c

Figure 2: One conditional affine cou-
pling block (CC).

In general, we will refer to a cINN with network param-
eters θ as f(x; c, θ), and the inverse as g(z; c, θ). For any
fixed condition c, the invertibility is given as

f−1(· ; c, θ) = g(· ; c, θ). (3)

3.2 MAXIMUM LIKELIHOOD TRAINING OF CINNS

By prescribing a probability distribution pZ(z) on latent
space Z, the model f assigns any input x a probability, dependent on both the network parameters θ
and the conditioning c, through the change-of-variables formula:

pX(x; c, θ) = pZ (f(x; c, θ))

∣∣∣∣ det
(
∂f

∂x

)∣∣∣∣ . (4)

Here, we use the Jacobian matrix ∂f/∂x. We will denote the determinant of the Jacobian, evaluated
at some training sample xi, as Ji ≡ det

(
∂f/∂x|xi

)
. Bayes’ theorem gives us the posterior over

model parameters as p(θ;x, c) ∝ pX(x; c, θ) · pθ(θ). Our goal is to find network parameters that
maximize its logarithm, i.e. we minimize the loss

L = Ei
[
− log

(
pX(xi; ci, θ)

)]
− log

(
pθ(θ)

)
, (5)

which is the same as in classical Bayesian model fitting.

Inserting Eq. (4) with a standard normal distribution for pZ(z), as well as a Gaussian prior on the
weights θ with 1/2σ2

θ ≡ τ , we obtain

L = Ei
[
‖f(xi; ci, θ)‖22

2
− log

∣∣Ji∣∣]+ τ‖θ‖22 . (6)
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The latter term represents L2 weight regularization, while the former is the maximum likelihood loss.

Training a network with this loss yields an estimate of the maximum likelihood network parameters
θ̂ML. From there, we can perform conditional generation for a fixed c by sampling z and using the
inverted network g: xgen = g(z; c, θ̂ML), with z ∼ pZ(z).
Training with the maximum likelihood method makes it virtually impossible for mode collapse to
occur: If any mode in the training set has low probability under the current guess pX(x; c, θ), the
corresponding latent vectors will lie far outside the normal distribution pZ and receive big loss from
the first L2-term in Eq. (6). In contrast, the discriminator of a GAN only supplies a weak signal,
proportional to the mode’s relative frequency in the training data, so that the generator is not penalized
much for ignoring a mode completely.

3.3 CONDITIONING NETWORK

In complex settings, we expect that higher-level features of c need to be extracted for the conditioning
to be effective, e.g. global semantic information from an image as in Section 4.2. In such cases,
feeding the condition c directly into the cINN would place an unreasonable burden on the s and t
networks, as higher-level features would have to be re-learned in each coupling block.

To address this issue, we introduce an additional feed-forward conditioning network h, which
transforms the condition c to some intermediate representation c̃ = h(c), and replace ci in Eq. (6)
with c̃i = h(ci). The network h can be pretrained, e.g. by using features from a VGG architecture
trained for image classification. Alternatively or additionally, h can be trained jointly with the cINN
by propagating gradients from the maximum likelihood loss through the conditioning c̃. In this case,
the conditioning network will learn to extract features which are particularly useful for embedding
the cINN inputs x into latent variables z.

3.4 IMPORTANT DETAILS

For cINNs to match the performance of well-established architectures for conditional generation, we
introduce a number of minor modifications and adjustments to the architecture and training procedure.
With these adaptions, our training setup is very stable and converges every time.

Noise as data augmentation. We add a small amount of noise to the inputs x as part of the standard
data augmentation. This helps to smooth out quantization artifacts in the input, and prevents sparse
gradients when large parts of the image are completely flat (as e.g. in MNIST).

Soft clamping of scale coefficients. We apply an additional nonlinear function to the scale co-
efficients s, of the form sclamp = (2α/π)arctan(s/α), which yields sclamp ≈ s for |s| � α and
sclamp ≈ ±α for |s| � α. This prevents any instabilities stemming from exploding magnitude of the
exponential exp(sclamp). We find α = 1.5 work well.

Initialization. Heuristically, we find that Xavier initialization (Glorot & Bengio, 2010) leads to
stable training from the start. We experienced training instability when initial parameter values were
too high. Similar to Kingma & Dhariwal (2018), we also initialize the last convolution in all s and t
subnetworks to zero, so training starts from an identity transform.

Soft channel permutations. We use random orthogonal matrices to mix the information between
the channels. This allows for more interaction between the two information streams u1,u2 in the
coupling blocks. A similar technique was used by Kingma & Dhariwal (2018), but our matrices stay
fixed throughout training and are guaranteed to be cheaply invertible.

Haar wavelet downsampling. All prior INN architectures use checkerboard patterns for reshaping
to lower spatial resolutions. We find it helpful to instead perform downsampling with Haar wavelets
(Haar, 1910), which essentially decompose images into an average pooling channel as well as vertical,
horizontal and diagonal derivatives, see Fig. 3. The three derivative channels contain high resolution
information which we can split off early, transforming only the remaining information further in later
stages of the cINN. This also contributes to mixing the variables between layers, complementing
the soft permutations. Similarly, Jacobsen et al. (2018a) use a discrete cosine transform as a final
transformation in their INN, to replace global average pooling.
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Figure 4: cINN model for conditional MNIST
generation.

Figure 5: Axes in our MNIST model’s latent space, which linearly encode the style attributes width,
thickness and slant.

Discussion. The soft clamping, along with the Haar wavelet downsampling are critical for training
stability at sufficiently high learning rates. With them, the network is exceptionally stable, and
converges to a good optimum every time. The noise augmentation and initialization additionally
increase the convergence speed. The permutations are necessary to achieve sufficient expressive
power and high quality results, but do not affect the training stability or speed. Ablation curves for
these improvements are given in the appendix.

4 EXPERIMENTS

We present results and explore the latent space of our models for two conditional image generation
tasks: MNIST digit generation and image colorization.

4.1 CLASS-CONDITIONAL GENERATION FOR MNIST

As a first experiment, we perform simple class-conditional generation of MNIST digits. We construct a
cINN of 24 coupling blocks using fully connected subnetworks s and t, which receive the conditioning
directly as a one-hot vector (Fig. 4). No conditioning network h is used. For data augmentation we
only add a small amount of noise to the images (σ = 0.02), as described in Section 3.4.

Samples generated by the model are shown in Fig. 6. We find that the cINN learns latent representa-
tions that are shared across conditions c. Keeping the latent vector z fixed while varying c produces
different digits in the same style. This property, in conjunction with our network’s invertibility, can
directly be used for style transfer, as demonstrated in Fig. 7. This outcome is not obvious – the trained
cINN could also decompose into 10 essentially separate subnetworks, one for each condition. In this
case, the latent space of each class would be structured differently, and inter-class transfer of latent
vectors would be meaningless. The structure of the latent space is further illustrated in Fig. 5, where
we identify three latent axes with interpretable meanings. Note that while the latent space is learned
without supervision, we found the axes in a semi-automatic fashion: We perform PCA on the latent
vectors of the test set, without the noise augmentation, and manually identify meaningful directions
in the subspace of the first four principal components.

4.2 DIVERSE IMAGE COLORIZATION

For a more challenging task, we turn to colorization of natural images. The common approach for
this task is to represent images in Lab color space and generate color channels a,b by a model
conditioned on the luminance channel L.
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Figure 6: MNIST samples from our cINN conditioned
on digit labels. All ten digits within one row (0, . . . , 9)
were generated using the same latent code z, but
changing condition c. We see that each z encodes
a single style consistently across digits, while varying
z between rows leads to strong differences in writing
style.

Figure 7: To perform style transfer, we
determine the latent code z = f(x; c, θ)
of a test image (left), then use the inverse
network g = f−1 with different conditions
ĉ to generate the other digits in the same
style, x̂ = g(z; ĉ, θ).
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Figure 8: cINN model for diverse colorization. The conditioning network h consists of a truncated
VGG (Simonyan & Zisserman, 2014) pretrained to colorize ImageNet, with separate convolutional
heads h1, h2, h3, . . . tailoring the extracted features to each individual conditional coupling block
(CC). After each group of coupling blocks, we apply Haar wavelet downsampling (Fig. 3) to reduce
the spatial dimensions and, where indicated by arrows, split off parts of the latent code z early.

We train on the ImageNet dataset (Russakovsky et al., 2015), again adding low noise to the a,b
channels (σ = 0.05). As the color channels do not require as much resolution as the luminance
channel, we condition on 256 × 256 pixel grayscale images, but generate 64 × 64 pixel color
information. This is in accordance with the majority of existing colorization methods.

As with most generative INN architectures, we do not keep the resolution and channels fixed
throughout the network, for the sake of computational cost. Instead, we use 4 resolution stages, as
illustrated in Fig. 8. At each stage, the data is reshaped to a lower resolution and more channels, after
which a fraction of the channels are split off as one part of the latent code. As the high resolution
stages have a smaller receptive field and less expressive power, the corresponding parts of the latent
vector encode local structures and noise. More global information is passed on to the lower resolution
sections of the cINN.

For the conditioning network h, we start with the same VGG-like architecture from Zhang et al.
(2016) and pretrain on the colorization task. By cutting off the network before the second-to-last
convolution, we extract 256 feature maps of size 64 × 64 from the grayscale image L. We then
add independent heads on top of this for each conditional coupling block in the cINN, indicated
by small hexagons in Fig. 8. Thus each coupling block k receives its own specialized conditioning
c̃
(k)
i = hk

(
h(ci)

)
. Each head consists of up to five strided convolutions, depending on its required

output resolution, and a batch normalization layer. The ablation study in Fig. 14 confirms that the
conditioning network is necessary to capture semantic information.

We initially train the cINN and the hk, keeping the parameters of the conditioning network h fixed,
for 30 000 iterations. After this, we train both jointly until convergence, for 3 days on 3 Nvidia
GTX1080 GPUs. The Adam optimizer is essential for fast convergence, and we lower the learning
rate when the maximum likelihood loss levels off.

At inference time, we use joint bilateral upsampling (Kopf et al., 2007) to match the resolution of the
generated color channels â, b̂ to that of the luminance channel L. This produces visually slightly
more pleasing edges than bicubic upsampling, but has little to no impact on the results. It was not
used in the quantitative results table, to ensure an unbiased comparison.
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Latent space interpolations and color transfer are shown in Figs. 9 and 10, with more experiments in
the appendix. In Table 1, a quantitative comparison to existing methods is given. The cINN clearly
has the best sample diversity, as summarized by the variance and best-of-8 accuracy. The cGAN
completely ignores the latent code, and relies only on the condition. As a result, we do not observe
any measurable diversity, in line with results from Isola et al. (2017). In terms of FID score, the
cGAN performs best, although its results do not appear more realistic to the human eye, cf. Fig. 13.
This may be due to the fact that FID is sensitive to outliers, which are unavoidable for a truly diverse
method (see Fig. 12), or because the discriminator loss implicitly optimizes for the similarity of deep
CNN activations. The VGG classification accuracy of colorized images is decreased for all generative
methods equally, because occasional outliers may lead to misclassification.

Because the diverse COLORGAN by Cao et al. (2017) was exclusively trained on the LSUN bedrooms
dataset (Yu et al., 2015) at small resolution, and would not converge on ImageNet, we compare this
separately and provide results in the appendix. In this simple case, the performance of the cINN and
COLORGAN is almost equal in all apsects, with much shorter training time for the cINN.

5 CONCLUSION AND OUTLOOK

We have proposed a conditional invertible neural network architecture which enables guided genera-
tion of diverse images with high realism. For image colorization, we believe that even better results
can be achieved when employing the latest tricks from large-scale GAN frameworks. Especially the
non-invertible nature of the conditioning network makes cINNs a suitable method for other computer
vision tasks such as diverse semantic segmentation.

Grayscale input z = 0.0 · z∗ z = 0.7 · z∗ z = 0.9 · z∗ z = 1.0 · z∗ z = 1.25 · z∗

Figure 9: Effects of linearly scaling the latent code z while keeping the condition fixed. Vector z∗
is “typical” in the sense that ‖z∗‖2 = E

[
‖z‖2

]
, and results in natural colors. As we move closer

to the center of the latent space (‖z‖ < ‖z∗‖), regions with ambiguous colors become desaturated,
while less ambiguous regions (e.g. sky, vegetation) revert to their prototypical colors. In the opposite
direction (‖z‖ > ‖z∗‖), colors are enhanced to the point of oversaturation.

Figure 10: For color transfer, we first compute the latent vectors z for different color images (L,a,b)
(top row). We then send the same z vectors through the inverse network with a new grayscale
condition L∗ (far left) to produce transferred colorizations a∗,b∗ (bottom row). Differences between
reference and output color (e.g. pink rose) can arise from mismatches between the reference colors
a,b and the intensity prescribed by the new condition L∗.
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cINN (ours) VAE-MDN cGAN CNN BW Ground truth
MSE best of 8 3.53±0.04 4.06±0.04 9.75±0.06 6.77 ±0.05 – –
Variance 35.2±0.3 21.1±0.2 0.0±0.0 – – –
FID 25.13±0.30 25.98±0.28 24.41±0.27 24.95±0.27 30.91± 0.27 14.69 ± 0.18
VGG top 5 acc. 85.00±0.48 85.00±0.48 84.62±0.53 86.86±0.41 86.02±0.43 91.66 ± 0.43

Table 1: Comparison of conditional generative models for diverse colorization (VAE-MDN: Desh-
pande et al. (2017); cGAN: Isola et al. (2017)). We additionally compare to a state-of-the-art
regression model (‘CNN’, no diversity, Iizuka et al. (2016)), and the grayscale images alone (‘BW’).
For each of 5k ImageNet validation images, we compare the best pixel-wise MSE of 8 generated
colorization samples, the pixel-wise variance between the 8 samples as an approximation of the
diversity, the Fréchet Inception Distance (Heusel et al., 2017) as a measure of realism, and the top 5
accuracy of ImageNet classification performed on the colorized images, to check if semantic content
is preserved by the colorization.

Figure 11: Diverse colorizations produced
by our cINN.

Figure 12: Failure cases of our method. Top: Sam-
pling outliers. Bottom: cINN did not recognize
an object’s semantic class or connectivity.

VA
E

cG
A

N

Figure 13: Alternative methods have lower diver-
sity or quality, and suffer from inconsistencies
within objects, or color blurriness and bleeding
(compare Fig. 11, bottom).

Figure 14: In an ablation study, we train a cINN using the grayscale image directly as conditional
input, without a conditioning network h. The resulting colorizations largely ignore semantic content
which leads to exaggerated diversity. More ablations are found in the appendix.
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A ADDITIONAL EXPERIMENTS

A.1 ABLATION OF TRAINING IMPROVEMENTS

To demonstrate the improved stability and training speed through the improvements from Sec. 3.4,
we perform ablations, see Fig. 15. The ablations for colorization were performed for the LSUN
bedrooms task, due to training speed.

We find that for stable training at Adam learning rates of 10−3, the clamping and Haar wavelet
downsampling are strictly necessary. Without these, the network has to be trained with much lower
learning rates and more careful and specialized initialization, as used e.g. in Kingma & Dhariwal
(2018). Beyond this, the noise augmentation and permutations lead to the largest improvement in
final result. The effect of the noise is more pronounced for MNIST, as large parts of the image
are completely black otherwise. For natural images, dequantization of the data is likely to be the
main advantage of the added noise. Note however, that the training curves of the models with and
without noise augmentation is not directly comparable, as the loss differs an additional summand
≈ log(σaug.). The effect on the training speed and stability is clearly visible regardless. The
initialization only improves the final result by a small margin, but also converges noticeably faster.

MNIST
Ablation Final loss

▬▬ Full model -3.364
▬▬ No noise aug. -2.244
▬▬ No Xavier init. -3.341
▬▬ No perm. -3.198
▬▬ No clamp -0.808 (div.)

Colorization
Ablation Final loss

▬▬ Full model -2.732
▬▬ No noise aug. -2.701
▬▬ No Xavier init. -2.730
▬▬ No perm. -2.720
▬▬ No clamp 0.107 (div.)
▬▬ No Haar -2.570 (div.)

Figure 15: Training curves for each task, ablating the different improvements. "div." denotes that the
training diverges, and the lowest loss so far is given.

A.2 LSUN BEDROOMS

To provide a simpler model for more in-depth experiments and ablations, we additionally train a
cINN for colorization on the LSUN bedrooms dataset Yu et al. (2015). We use a smaller model than
for ImageNet, and train the conditioning network jointly from scratch, without pretraining. Both the
conditioning input, as well as the generated color channels have a resolution of 64× 64 pixels. The
entire model trains in under 4 hours on a single GTX 1080Ti GPU.

To our knowledge, the only diversity-enforcing cGAN architecture previously used for colorization is
the colorGAN Cao et al. (2017), which is also trained exclusively on the bedrooms dataset. Training
the colorGAN for comparison, we find it requires over 24 hours to converge stably, after multiple
restarts. The results are generally worse than those of the cINN, as shown in Fig. 16. While the
resulting pixel-wise color variance is slightly higher for the colorGAN, it is not clear whether this
captures the true variance, or whether it is due to unrealistically colorful outputs, such as in the second
row in Fig. 16.
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Metric cINN colorGAN
MSE best-of-8 6.14 6.43
Variance 33.69 39.46
FID 26.48 28.31

Table 2: Quantitative comparison between smaller cINN and colorGAN on LSUN bedrooms. The
metrics used are explained in Table 1.

cINN COLORGAN

Figure 16: Qualitative comparison between smaller cINN and colorGAN on LSUN bedrooms.

B ADDITIONAL FIGURES

B.1 COLORIZATION – INTERPOLATIONS

In the following, we show 2-dimensional interpolations in latent space. Two random latent vectors
z(1), z(2) are linearly combined:

z∗ = a1z
(1) + a2z

(2)

with varying a1, a2 ∈ [−0.9 . . . 0.9] across each axis of a grid. The center image has z∗ = 0. Note
that the images in the corners have a larger magnitude than trained for, ‖z∗‖2 ≈ 1.3E

[
‖z‖2

]
, leading

to some oversaturation artifacts, as in Fig. 12 of the main paper.
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B.2 COLORIZATION – ADDITIONAL EXAMPLES

On the following pages, we provide some additional colorized images, as well as comparisons to
alternative methods. All images are taken from the ImageNet 2012 validation set, and all methods
were trained on ImageNet 2012. As we do not observe any significant diversity for the cGAN, we
only provide a single sample.

B.2.1 GENERAL EXAMPLES
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B.2.2 HUMANS

We find that the cINN often has difficulties generating convincing skin colors, as shown below.
Clothing is colored in diverse ways, but not always with the correct connectivity and consistency.
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B.2.3 LACKING CONSISTENCY

The following failure cases exhibit a lack in consistency, in occluded objects, multi-part objects, or
reflections.
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B.2.4 COLOR IGNORES SEMANTIC CONTENT

In the following examples, the semantic content of the image was not recognized, and the generated
colors are clearly incorrect.
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B.2.5 OUTRIGHT FAILURES

For the following images, the cINN fails completely, and generates colors with seemingly little or no
connection to the grayscale image.
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