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ABSTRACT

Convolutional layer utilizes the shift-equivalent prior of images which makes it
a great success for image processing. However, commonly used down sampling
methods in convolutional neural networks (CNNs), such as max-pooling, average-
pooling, and strided-convolution, are not shift-equivalent. This destroys the shift-
equivalent property of CNNs and degrades their performance. In this paper, we
propose a novel pooling method which is strict shift equivalent and anti-aliasing
in theory. This is achieved by (inverse) Discrete Fourier Transform and we call
our method frequency pooling. Experiments on image classifications show that
frequency pooling improves accuracy and robustness w.r.t shifts of CNNs.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved great success on image processing (Goodfel-
low et al.{(2016), natural language processing|Yin et al.[(2017), game playingMnih et al.|(2013) and
so on. One of the reasons is that convolutions utilize the shift-equivalent prior of signals. Modern
CNN s include not only convolutional layers but also down sampling or pooling layers. As an im-
portant part of CNNs, pooling layers are used to reduce spatial resolution of feature maps, aggregate
spatial information, and reduce computational and memory cost.

Based on classical Nyquist sampling theorem [Nyquist| (1928)), the sampling rate must be at least
as twice as the highest frequency of a signal. Otherwise, frequency aliasing will appear, i.e. high-
frequencies of the signal alias into low-frequencies. To anti-alias, a traditional solution is that ap-
plying low-pass filter to the signal before down sampling it. Following the spirit of blurred down
sampling, early CNNs use average pooling to achieve down sampling |Lecun et al|(1989). Later,
empirical evidence suggests max-pooling |Scherer et al|(2010) and strided-convolutions [Long et al.
(2015)) provide better performance. They are widely used in CNNs but they don’t consider about
anti-aliasing.

Shift-equivalent is another expected property of pooling. Because shift-nonequivalent poolings de-
stroy the shift-equivalent of CNNs and thus the shift-equivalent prior of signals is not fully utilized.
Unfortunately, they are not shift-equivalent. Worse, small shifts in the input can drastically change
the output when stacking multiple max-pooling or strided convolutions [Engstrom et al.|(2017); Azu-
lay & Weiss| (2018));|Zhang| (2019).

Recently, [Zhang| (2019) propose anti-aliasing pooling (AA-pooling) by low-pass filtering before
down sampling. They observe increased accuracy and better generalization on image classification
when low-pass filtering is integrated correctly. Specifically, they decompose a pooling operator with
down sampling factor s into two parts: a pooling operator with factor 1 and a blur filter with factor
s. Although AA-pooling reduces the aliasing effects and makes the outputs more stable w.r.t input
shifts, it is not strict shift-equivalent in theory.

In this paper, we propose a novel pooling which is strict shift equivalent in theory. We first trans-
form a signal or image into frequency domain via Discrete Fourier Transform (DFT). Then we only
retain its low frequencies, i.e. the frequencies which are smaller than half of resolution of the down
sampled signal. Finally, we transform the low frequencies back into time domain via inverse DFT.
We call our method frequency pooling (F-pooling). We summarize our contributions as followings:
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Figure 1: Simple tests of shift-equivalent. Blue lines are obtained by pooling, up sampling, and
shift in order. Orange lines are obtained by shift, pooling, and up sampling in order. All Pooling
operations down sample original signals by a factor 4. The shift operation shifts original signals by
2 pixels. The up sampling operation is set to equation[8] Best viewed on screen.

o We formally define shift-equivalent of functions which contain down sampling operations.
A suitable up sampling operation I/ must be involved in the definition. Without it, the
definition is ill-posed.

e We prove that F-pooling is the optimal anti-aliasing down sampling operation given /. We
also prove that F-pooling is shift equivalent. To best of our knowledge, F-pooling is the
first pooling method which has those properties.

e Experiments on CIFAR-100 and a subset of ImageNet demonstrate that F-pooling remark-
ably increases accuracy and robustness w.r.t shifts of commonly-used network architec-
tures.

F-pooling has other two properties: 1) it adapts to variable input size and variable down sampling
factor; 2) it is a global operation while previous pooling methods are local operations. However,
they are not the main point of this paper. Instead, we focus on shift-equivalent and anti-aliasing.

2 METHOD

In this section, we first define shift-equivalent for CNNs formally. Then we describe F-pooling in
detail and prove its properties. Finally we discuss our implementation and analyze its computational
complexity.

2.1 WHAT IS SHIFT-EQUIVALENT

Denote X as an hg x wy X c tensor where hg, wg, and c are the height, width, and number of
channels of X respectively. Denote Y as an h; X wj X c tensor. We suppose hg > hq and wy > wy.
M : X — Y is a pooling operation and &/ : Y — X is a up sampling operation. We say M is
shift-equivalent if and only if

Shiftan,nwUMX) =UMShIft an,nw(X) )
V(AR Aw), U
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Figure 2: An illustration of the forward process of F-pooling. We assume the lowest frequencies are
at center.

That is, if there is a suitable up sampling operation ¢/ which makes /M and Shiftap A com-
mutable, then M is shift-equivalent. The shift operation is required to be circular or periodic. When
a shifted element hits the edge, it rolls to other side.

Shiftan,sw(Xap) = X(atAh)%ho, (b+Aw) %wo )

where % is the modulus function. Our definition of shift-equivalent is similar with the one in|Zhang
(2019). The difference is that we introduce an up sampling ¢/ to make this definition more strict.
Without introducing U, the definition of shift-equivalent for pooling is ill-posed. Suppose M down
samples signals by a factor s. Without introducing ¢/, one may define shift-equivalent as follows:

ShiftAh/s,Aw/s . M(X) =M. ShiftAh,Aw(X), V(Ah, A’LU) (3)

However, Shiftap s aw/s is not operable for discrete signals when Ah%s # 0 or Ah%s # 0.
To make the shifted element which is not on lattice operable, one must interpolate or up sample the
down sampled signals. This leads to the definition in equation I}

As in equation [T} to make M shift-equivalent, one must find the corresponding up sampling opera-
tion U. For a given M, the first line in equation [I| may hold for some up sampling operations. But
it may not hold for other up sampling operations.

2.2 F-POOLING

The basic idea of F-pooling is removing the high frequencies of signals and reconstructing the sig-
nals only using the low frequencies. In this paper, high frequencies mean the frequencies which are
beyond Nyquist frequency, i.e. half of signal resolution. And low frequencies mean the frequencies
which are not higher than Nyquist frequency. To remove high frequencies, we first transform signals
into frequency domain via DFT. Then we remove high frequencies and retain the low frequencies.
Finally, we transform the low frequencies back to time domain via inverse DFT (IDFT). Figure
gives an illustration of the forward process of F-pooling.

Since 2D (inverse) DFT can be decomposed into two 1D (inverse) DFT, we provide the formal
representation of F-pooling in 1D case. Denote x € R as input signal and y € C™. Without loss
of generality, we suppose M is even. Fy € CV*¥ is the so-called DFT-matrix:

w0 Wit w?\}(N_l)
Wl whl wl'(N—l)
Fy=| " Mo M 4)
wng_l)'O CL)SVN—1)‘1 o w](VN—1)~(N—1)

where wy = e 2™/N F? is the inverse DFT-matrix. By definition, %F ~F% = I where I is
identity matrix. We denote 7,, as a operation which selects the first ;4 rows and the last 1 rows of a
matrix.

T/L(X) = [Xlzu; XN—M—H:N] 5
That is we select the basis of frequencies ranged in [—p, i), due to periodicity of DFT. When ap-
plying T, to a signal, we obtain its lowest 1 frequencies. Then the function of F-pooling for 1D
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signals is represented as:
1 % de
y = v FuTyFyx </ px ©6)

where P € CM*¥ is the transform matrix of F-pooling.

Now we formalize F-pooling for CNNs. Recall that X is an hg X wg X ctensorand Y is an hy X wy X ¢
tensor. We apply F-pooling to each channel of X.

Y:,:,?', = PhX:,:,iPZn (&S [170] (7)

where P;, € CM*" and P,, € C¥1*™0 are the transform matrices of F-pooling along vertical
direction and horizontal direction respectively. Since F-pooling can be represented as two times
matrix-matrix multiplications, its back propagation rule is easily derived.

As mentioned in section [2.1] the choice of up sampling operation ¢/ is important. In this paper, we
set U to the re-sampling method which is widely used in signal processing community. Specifically,
we transform a signal into frequency domain. Then we zero pad the transformed signal to match
the resolution of output. Finally, we transform it back to time domain. This process is some-what
symmetrical with F-pooling and can also be represented by matrix multiplications. For 1D signals,
we have:

1 *
X = MFNZ% Fury 3
where is Z is the zero padding operation.
Z, = [X1:05 05 X0 piy1:0] ©)

U is formalized in a similar way for 2D signals.

2.3 OPTIMAL ANTI-ALIASING DOWN SAMPLING

In this section, we prove that F-pooling is the optimal anti-aliasing down sampling operation under
a given up sampling operation /. We focus on 1D case because it is easy to extend the conclusion
into 2D case. Given U, the optimal anti-aliasing down sampling is obtained by solving the following
problem:

min |UMx —x||3, st. McA (10)

where A is a set of all possible anti-aliasing down sampling operations. That is, we hope to find an
anti-aliasing down sampling which minimizes the reconstruction error. Based on Nyquist sampling
theory, M must remove high frequencies of signals and this holds for F-pooling. We focus on the
optimality of F-pooling. We decompose x into low frequencies part x; and high frequencies part
Xp, l.e. X = %FI’QD% Fyx and x5, = x — x;. D, is a diagonal matrix whose the first and the last

1 diagonal elements equal to 1 while others equal to 0.

UMx — x|3 = [[UMx — x; — x4|[3 (11)
= [[UMx — x5 + |[xn|[5 + UMx,xp) — (x1,%p) (12)
= [[UMx — x||5 + |[xn]]3 (13)

equation [T3holds because the third term and the forth term of equation [I2] equal to 0. M removes
high frequencies and I/ doesn’t introduce new frequencies. Thus I/ Mx only contains low frequen-
cies. Due to the orthogonality of frequency spectrum, (UMx,xp) = 0. Similarly, (x;,x;) = 0.
When M is F-pooling, we have

1., .
|~
— P (Zy Ty ) Fax (15)
1 « de
= +FADyFyx “f %, (16)

equation [T6] holds due to the definition of operations T, Z, and D. See appendix [A] for proof.
Since the fist term of equation[I3]equals to 0, equation[I0]is minimized. Thus, we have proved that
F-pooling is the optimal anti-aliasing down sampling operation.
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Figure 3: An illustration of how to replace max-pooling, average pooling, and strided convolution
with F-pooling. We follow the settings in|Zhang|(2019).

2.4 SHIFT-EQUIVALENT

Based on shift theorem of Fourier transform, we have

FNShiftAh(X) =Fnyx®San (17)
Shiftan(Fyx) =Fyx©San (18)

k

where Saj, € CN whose kth element is e~ "~ 2" and © is element-wise multiplication. Combining
with equation [T6] we have

1
UMShiftAh(X) = NF&D%FNShiftAh(X) (19)
1
— Fx (DyFax) ©San 20)
1
= Shiftan (NFI*\IDI\z/IFNX> 2n
= Shiftan(UMX) (22)

We have proved that F-pooling is shift-equivalent. We highlight that equation [22]is not hold if other
up sampling operations are used, such as linear interpolation.

The proofs in section [2.3]and [2.4] can be easily extended for 2D signals.

2.5 DEALING WITH IMAGINARY PART

Generally, the output of F-pooling, i.e. Mx contains both real part and imaginary part. However,
for commonly used CNNs, the feature maps must be real. Thus one must ignore the imaginary part
of F-pooling. On the other hand, Mx is treated as complex in the proofs in section [2.3] and [2.4]
If we ignore the imaginary part, the conclusions in section [2.3] and [2.4] are no longer hold. That is
F-pooling is no longer the optimal anti-aliasing down sampling (but still anti-aliasing) and F-pooling
is no longer strict shift-equivalent.

Fortunately, when the resolution of down sampled signals is odd, the imaginary part of Mx is zero.
Suppose M = 2u + 1, the frequencies ranged in [—u, u] are retained. Due to its symmetry, Mx
only contains real part. If M = 2y, the frequencies ranged in [—u,u) are retained. In this case,
Mx contains imaginary part. But we can recover the symmetry and eliminate the imaginary part by
setting (—u)th frequency to zero. We call this trick odd padding. A drawback of odd padding is that
more information is lost during down sampling which may reduces accuracy.

Whether Mx contains imaginary part is very important in theory. It determines the theoretical
nature of F-pooling. In practice, we find there are no significant differences if we don’t use odd
padding. In figure [T} odd padding is used. On real-world datasets, i.e. CIFAR and ImageNet, odd
padding is not used in this paper. We show the effects of odd padding in appendix [B]

2.6 IMPLEMENTATION

We implement F-pooling in PyTorch [Paszke et al.| (2017). Theoretically, it is best to implement
F-pooling with fast Fourier transform (FFT) and inverse FFT. Suppose F-pooling down samples
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Table 1: Accuracy and consistency on sub-ImageNet

accuracy/consistency | densenet-121 | resnet-50 | mobilenet-v2

Origin 77.47/59.48 | 74.44/59.46 | 73.01/59.80
AA-pooling 77.14/60.60 | 76.12/63.16 | 74.03/59.44
F-pooling 77.56/62.39 | 76.05/63.70 | 74.72/63.37

Table 2: Accuracy and consistency on CIFAR-100 with shift augment

accuracy/consistency | densenet-41 | resnet-18 | resnet-34
Origin 74.90/40.83 | 75.52/32.44 | 76.56/32.05
AA-pooling 75.55/37.54 | 77.43/33.49 | 76.95/38.56
F-pooling 75.45/40.90 | 77.36/40.00 | 77.68/35.91

an hg X wp X c tensor to a hy; X wy X ¢ tensor. Then its time complexity is chowg log(woho)).
Unfortunately, we find such a implementation in PyTorch is comparatively slow.

Instead, we implement F-pooling via 1 x 1 convolutions. As in equation [/} 2D F-pooling can
be represented as two times matrix-matrix multiplications along vertical direction and horizontal
direction respectively. This is equivalent to 1 x 1 convolutions along vertical direction and direction
horizontal. First, we use two 1 X 1 X wgy X wj convolutions to compute the real part and imaginary
part of X. . ;P in equation This requires 2chywow; float multiplications. Now X is mapped to
an hg X wy X c tensor. We use another two 1 x 1 X hg X hy convolutions to compute the real part
of Y. This requires 2chghiw; float multiplications. Thus the total number of float multiplications
is 2cwy (howo + hohy). If we first use two 1 x 1 X hg X hy convolutions then use two 1 X 1 x wqg X
wy convolutions, the total number of float multiplications becomes 2chy (howo + wowy ). Its time
complexity is O(howo(hy + wq)) which is higher than the optimal complexity.

F-pooling requires much more computational costs than average pooling or max-pooling. F-pooling
is faster than a convolutional layer when the resolution of feature maps is smaller than the number
of channels, as the situations of image classifications. Moreover, the number of pooling layers is
limited compared with the number of convolutional layers. Thus, introducing F-pooling will not
introduce too many computational costs into CNNs.

Zhang| (2019) claims that it is important to integrate anti-aliasing pooling into CNNs in a correct
way. In this paper, we follow their settings. Specifically, a max-pooling with stride s is replaced
with a max-pooling with stride 1 and an F-pooling with stride s. A convolution with stride s is
replaced with a convolution with stride 1 and an F-pooling with stride s. An average pooling with
stride s is replaced with an F-pooling with stride s. See the illustration in figure 3]

3 EXPERIMENTS

3.1 1D SIGNALS

We test the shift-equivalent of F-pooling on 1D signals. In the first row of figure [I] the original
signal is a sine curve with period 16 and 256 discrete elements. In the second row of figure|l} the
original signal is a randomly selected row of a 512 x 512 image. We apply max-pooling, average
pooling, and F-pooling with stride 4 to those signals. As shown in figure[I] F-pooling is perfectly
shift-equivalent. And average pooling is better than max-pooling from shift-equivalent perspective.
odd padding is used here.

3.2 IMAGE CLASSIFICATION

CIFAR-100{] we test classification of low-resolution 32 x 32 color images. This dataset contains
50k images for training and 10k images for test. Images are classified into one of 100 categories.

"https://www.cs.toronto.edu/ kriz/cifar.html
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Table 3: Accuracy and consistency on CIFAR-100 without shift augment

accuracy/consistency | densenet-41 | resnet-18 | resnet-34
Origin 71.81/33.67 | 67.60/24.58 | 68.11/23.54
AA-pooling 73.81/34.45 | 74.49/28.68 | 74.00/29.58
F-pooling 73.19/35.20 | 73.93/32.21 | 73.51/31.48

sub-ImageNet: we then test classification of high-resolution 224 x 224 color images. Original
ImageNet dataset Russakovsky et al| (2015) contains 1.28M training and 50k validation images,
classified into one of 1,000 categories. Each category has 1,280 images in average. To reduce the
computational resources for training, we use a subset of ImageNet (sub-ImageNet) in this work. We
randomly select 200 categories from 1,000 categories. For each category, we randomly select 500
images. Thus, we collect 100k images for training. And we select corresponding 10k validation
images. All models are trained on a single GPU with batchsize 64 and 100 epochs. We decrease the
initial learning rate by a factor 10 every 40 epochs. For other hyper-parameters, we follow PyTorch’s
official training script

We train CIFAR-100 using resnet-18 He et al.|(2016)) and densenet-41 |[Huang et al.| (2017). We train
sub-ImageNet using resnet-50|He et al.|(2016)), densenet-121|Huang et al.|(2017)), and mobilenet-v2
Sandler et al.|(2018). Those models are widely used as benchmarks. Max-pooling, average pooling,
and strided convolution are covered in those models. We also compare F-pooling with AA-pooling
Zhang| (2019). For a model trained on sub-ImageNet, its first down sampling operation is kept to
reduce computational costs. This setting is also used in [Zhang| (2019). The results on CIFAR-100
are averaged by 3 runs. odd padding is not used for both datasets.

We study not only accuracy but also consistency. We follow the metric of consistency used in|Zhang
(2019): we check how often the network outputs the same classification, given the same image with
two different shifts.

Eng by wo,wy 1 {arg max p(Shiftp, w,) = argmax p(Shiftp, w, )} (23)

We only evaluate diagonal shifts in this paper. For CIFAR-100, the number of shifted pixels ranges
from -7 to 7. For sub-ImageNet, it ranges from -31 to 31.

Accuracy and consistency on sub-ImageNet is shown in table [I] See appendix [C| for loss curves.
Results on CIFAR-100 with shift augment are shown in table 2| Results on CIFAR-100 without
shift augment are shown in tableE} . Based on those results, we conclude that

e F-pooling is significantly and consistently better than original pooling methods in terms of
accuracy and consistency.

e F-pooling is comparable with AA-pooling in term of accuracy. F-pooling is better than
AA-pooling in term of consistency.

e Consistency on ImageNet for all methods is much better than CIFAR-100’s. A probable
cause is that the resolution of CIFAR-100 images is too low.

3.3 STRICT SHIFT-EQUIVALENT CNNS

CNNs with F-pooling in section are not strict shift-equivalent. There are two reasons: 1) odd
padding is not used. When we ignore the imaginary part of F-pooling output, strict shift-equivalent
is destroyed; 2) Convolution layers are not strict shift-equivalent because of padding. The smaller
the resolution, the larger effects of padding. Correspondingly, we can make the whole CNN strict
shift-equivalent by: 1) use odd padding or set the resolution of F-pooling’s output to odd; 2) set the
convolutional kernel at all layers to 1 x 1. This has been verified by our experiments. But we have
not yet trained such CNNs on CIFAR-100 or ImageNet.

Zhttps://github.com/pytorch/examples/tree/master/imagenet
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4 RELATED WORKS

Pooling which reduces the resolution of feature maps is an important part of CNNs. Early CNNs
Lecun et al.| (1989) use average pooling which is good for anti-aliasing. Later empirical evidence
suggests max-pooling [Scherer et al.[(2010) and strided-convolutions [Long et al.[(2015) provide bet-
ter performance. However, small shifts in the input can drastically change the output when stacking
multiple max-pooling or strided-convolutions Engstrom et al.|(2017));/Azulay & Weiss|(2018)). Other
variants such as|Graham|(2014); He et al.| (2015); Lee et al.[(2016) (we just list a few of them), focus
on extending the functionality of pooling [Lee et al.| (2016 or making pooling adjusted to variable
input size (Graham| (2014); He et al.| (2015).

Recently, [Zhang| (2019) shows that CNNs will have better shift-equivalent and anti-aliasing prop-
erties when low-pass filtering is integrated correctly. However, their method is not strict shift-
equivalent and anti-aliasing in theory. [Williams & Li|(2018) propose Wavelet-pooling. They decom-
pose a signal via wavelet transform and retain the lowest sub-band. This process is repeated until
the designed down sampling factor is met. The spirit of Wavelet-pooling is similar to F-pooling.
However, they claim that Wavelet-pooling is better than others because it is a global transform in-
stead of a local transform. They neither focus on shift-equivalent nor prove Wavelet-pooling is
shift-equivalent or not.

F-pooling is a complex transformation because DFT and IDFT are involved in it. Many works in-
tegrate complex transformations or complex values into neural networks. |Amin & Murase| (2009)
study single-layered complex-valued neural networks for real-valued classification problems. Com-
plex numbers represented in polar coordinates are more suitable to deal with rotations. Based on
this, |Cohen et al.| (2018)) propose spherical CNNs which are rotation-equivalent to deal with sig-
nals projected from spherical surface. [Trabelsi et al.| (2018)) propose general deep complex CNNss.
They adjust batch normalization and non-linear activations for complex CNNs. F-pooling utilizes
shift theorem of DFT and achieves shift-equivalent. This is a new success for the combination of
complex transformations and neural networks.

5 CONCLUSIONS

In this paper, we have proposed frequency pooling (F-pooling) for CNNs. As the name suggested,
F-pooling reduces the dimension of signals in frequency domain. We have defined shift-equivalent
of functions which contain down sampling operations by introducing an up sampling operation.
Under this definition, we have proved that F-pooling is the optimal anti-aliasing down sampling
operation and F-pooling is shift-equivalent. We have integrated F-pooling into modern CNNs. We
have verified that F-pooling remarkably increases accuracy and robustness w.r.t shifts of modern
CNNe .

Several issues, such as the padding of convolutions and the loss of imaginary part of F-pooling, make
the whole model shift-nonequivalent. We will train CNNs which are shift-equivalent as a whole in
the future.
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Figure 4: With odd padding, F-pooling is strict shift-equivalent. Without it, F-pooling is not strict
shift-equivalent. But the error is acceptable. Best viewed on screen.

A PROOF OF OPERATION

We prove D M = / M T M. By definition, T can be represented as an M x N matrix and Z can be
represented as a N x M matrix.

Iv Om On—vm On-nv Om Owm
Ty = 2 2 5 = 2 P)

2 O Om On-nv Onv-nm Ou Im
2 2 2 Z 2 2

(24)

where I is an M x M identity matrix and O, is an M x M zero matrix. Z% is equal to the
transpose of T% by definition. Then

Tu
2

ZyTy=1|- Oyv-m - (25)
which is the same as D M by definition.

B EFFECT OF odd padding

C LoOSS CURVES ON SUB-IMAGENET
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Figure 5: Loss curves on sub-ImageNet. Best viewed on screen.
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