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ABSTRACT

Mutual Information between agent Actions and environment States (MIAS) quan-
tifies the influence of agent on its environment. Recently, it was found that in-
trinsic motivation in artificial agents emerges from the maximization of MIAS.
For example, empowerment is an information-theoretic approach to intrinsic mo-
tivation, which has been shown to solve a broad range of standard RL benchmark
problems. The estimation of empowerment for arbitrary dynamics is a challenging
problem because it relies on the estimation of MIAS. Existing approaches rely on
sampling, which have formal limitations, requiring exponentially many samples.
In this work, we develop a novel approach for the estimation of empowerment
in unknown arbitrary dynamics from visual stimulus only, without sampling for
the estimation of MIAS. The core idea is to represent the relation between ac-
tion sequences and future states by a stochastic dynamical system in latent space,
which admits an efficient estimation of MIAS by the “Water-Filling” algorithm
from information theory. We construct this embedding with deep neural networks
trained on a novel objective function and demonstrate our approach by numeri-
cal simulations of non-linear continuous-time dynamical systems. We show that
the designed embedding preserves information-theoretic properties of the original
dynamics, and enables us to solve the standard AI benchmark problems.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) provides a solid framework for calculating an optimal policy
given a reward function, which is provided to the agent by an external expert with specific domain
knowledge. This dependency on the expert domain knowledge may restrict the applicability of DRL
techniques because, in many domains, it is hard to define an ultimate reward function.

On the other hand, intrinsically-motivated artificial agents do not require external domain knowl-
edge but rather get a reward from interacting with the environment. This motivates the study of
intrinsically-motivated AI in general, and to develop efficient intrinsically-motivated methods in
particular as an alternative and/or complementary approach to the standard reinforcement learning
setting.

In recent works, different intrinsically-motivated approaches were introduced (Klyubin et al., 2005;
Klyubin et al., 2005; Wissner-Gross & Freer, 2013; Salge et al., 2013b; Pathak et al., 2017). Among
others, the empowerment method reviewed in Salge et al. (2014) is an information-theoretic quantity
that proposes to use the diversity of future states distinguishably-achievable by agent as an intrinsic
reward. Previously, empowerment has proved to solve a broad range of the standard AI benchmarks
(Salge et al., 2014; 2013b; Tiomkin et al., 2017; Klyubin et al., 2005). Despite the empirical success,
the computational burden of the estimation of empowerment is significant, because it involves the
estimation of mutual information between high-dimensional random variables, which is known to
be a hard problem (McAllester & Statos, 2018). The latter is usually done by extensive sampling
methods. The computation burden is high even for known dynamics and fully observable state
space. This significantly limits the applicability of empowerment to real-life scenarios, ubiquitous
in biology and engineering, where an agent observes the environment through sensors (e.g. vision)
and does not know an exact dynamical model of the environment.

In this work, we present a novel approach for efficient estimation of empowerment from visual
observations (images) in an unknown dynamical environment. The new approach enables us to avoid
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computationally expensive sampling in high dimensional state/action spaces, which is required for
the estimation of MIAS.

The ability to efficiently estimate empowerment from images opens new directions in the study of
intrinsic motivation in both biological and engineering systems, where the interaction between the
agent and the environment can be represented by a perception-action cycle, schematically repre-
sented in Figure 1.

Figure 1: Intrinsically Motivated Perception and Action Cycle. Left-to-right: (a) the observations
with the corresponding action sequences are embedded to the latent space by DNNs, where the
final states are constrained to be linear in the action sequences (non-linear in the initial states). (b)
Gaussian channel capacity between the embedded actions and the embedded final states is computed
efficiently by the ’Water-filling’ algorithm. (c) an intrinsic reward is derived, triggering the agent
to derive a corresponding action, which is injected to the environment. The observations from the
environment are perceived by the agent’s sensors, closing the loop.

This figure provides a broader perspective of our approach, elucidating our contribution to intrinsi-
cally motivated perception action cycle, IMPAC, comprising of (a) sensors for information collec-
tion, (b) embedding to the latent space, (c) efficient estimation of intrinsic rewards by maximization
of MIAS in the latent space, (d) deriving the control signal from intrinsic reward, and (e) applying
the control signal to environment by actuators.

While our proposed scheme is broadly applicable, we demonstrate the new scheme in two different
domains: intrinsically motivated stabilization of non-linear dynamical systems and intrinsically-
safe deep reinforcement learning. Our approach for the estimation of MIAS in the embedded space
provides a qualitatively similar MIAS landscape compared to the corresponding one in the origi-
nal space. We study in details the embedded MIAS of inverted pendulum, which is an important
non-linear dynamics and a prototype for upright stabilization in various biological and engineering
systems.

The paper is organized as follows: in Section 2 we compare our work with previous relevant works.
Especially, table 1 in provides a thorough comparison between existing methods for the estimation
of empowerment with regard to essential criteria, and differentiates our work from the existing state
of the art. In Section 3 we provide the necessary formal background to present our approach. In
Section 4 we present the method, with the implementation described in Section 5. In Section 6 we
demonstrate the proposed method by numerical simulations, and compare to the analytical solution
derived in the previous work (Salge et al., 2013a). Finally, in Section 7 we conclude, and propose
promising continuations of this work.

2 RELATED WORKS

In this section, we compare our approach to the existing approaches for the estimation of empow-
erment. The criteria for comparison are: (a) knowledge of the dynamical model, (b) the ability to
estimate MIAS from high dimensional visual input, (e.g. images/video) and (c) the need for sam-
pling for the estimation of MIAS. The first criterion is important because the dynamics model is
often inaccessible in real-life environments. The second criterion is important in that the interaction
(perception-action cycle) between the agent and environment involves the use of sensors (e.g., cam-
eras). The third criterion is important because sampling of high-dimensional data is hard and it is
desired to have an alternative approach for the estimation of MIAS. The hardness of the estimation
of mutual estimation is a theoretical one, as it requires an exponential number of samples to esti-
mate mutual information (McAllester & Statos, 2018). One of the contributions of this work is an
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efficient representation scheme, achieved by deep neural networks, which does not require sampling
for the estimation of mutual information. This is the first work that makes it possible to estimate
empowerment from images with unknown dynamics and without sampling.

Table 1: Comparison of methods for the estimation of empowerment.

Method Unknown dynamics Visual input Sampling

Salge et al. (2013a) no no no
Mohamed & Rezende (2015) yes yes yes
Gregor et al. (2016) yes yes yes
Karl et al. (2017) yes no yes
Tiomkin et al. (2017) no no no
our work yes yes no

As shown at Table 1, the proposed method has the least assumptions, (unknown dynamics, visual
input, no sampling for the estimation of MIAS) compared to existing methods, which makes it
applicable to a broader class of problems. Also, this approach eliminates the need for externally
provided rewards, (which is usually hand-shaped and fine-tuned), in certain classical RL problems.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESS

A Markov decision process (MDP) is a discrete-time control model with parameters S: the state
space, A: the action space, p(s′ | s, a): the transition probability model, r(s, a) ∈ R: the reward
function, p0: the initial state distribution, H: the horizon in number of steps and γ: the reward
discount factor.

In reinforcement learning, we try to find policy π to maximize the expected sum of returns along a
trajectory, maxθ E

[∑H−1
t=0 r(st, at)|πθ

]
.

3.2 EMPOWERMENT

In this work, we use the established definition of empowerment as a function of state (Klyubin
et al., 2005). The empowerment at state st is the channel capacity between the action sequence
aTt

.
= (at, at+1, . . . , aT−1) and the final state sT .

Emp(st) = max
ω(aTt |st)

I(sT , a
T
t | st),

where I(sT , aTt | st) is the corresponding mutual information functional, and ω(· | ·) is a probability
distribution of action trajectories conditioned on st.

In order to estimate empowerment one needs to estimate information capacity over the probability
distributions of action sequences, which is a hard optimization problem.

4 PROPOSED APPROACH

The key idea of our approach is to represent the relation between action sequences and corresponding
final states by a linear function in the latent space and to construct a Gaussian linear channel in this
space. Importantly, even though the relation between action sequences and future states is linear,
the dependency of future states on initial states is non-linear. This representation of a non-linear
dynamical system enables us to compute empowerment by an efficient “water-filling” algorithm in
the latent space, as explained in Section 4.4.
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4.1 INTERACTION MODEL

We assume that an agent can control a dynamical system, f : S× A 7→ S, by its actions:

st+1 = f(st, at, ηt), (1)

where S is the state space, A is the action space, st is the state at time t, at is the action at time t,
and ηt is assume to be Gaussian process noise. The agent does not know the dynamical model, f ,
but rather it observes the current state, st, through its visual sensors, providing it with an image νt.
Then, it derives and applies an action, at, and the system moves to the next state, st+1. The agent
has access to the previous state and action trajectories, {τi}Ni=1, τi = {νit , ait}Tt=1, where N and T
are the number of trajectories and the length of each trajectory, respectively.

4.2 EMBEDDED SPACES

From the collected data, {τi}Ni=1, we embed tuples in the form of (νi, ai+k−1i , νi+k) where ai+k−1i =
(ai, ai+1, · · · , ai+k−1). Observations and actions are embedded by deep neural networks to the
latent spaces Z ∈ Rdz and B ∈ Rdb , respectively. These two spaces are related by a linear equation:

zt+k = A(zt)b
t+k−1
t , (2)

where zt is the embedded representation of the image νt. A(zt) is the state dependent matrix that re-
lates the embedded action sequence, bt+k−1t to the future embedded state, zt+k. This representation
was suggested previously by Salge et al. (2013a) in the original state space with known dynamics.
The existence of such representation in the embedded space, and a practical method for its calcula-
tion from images is one of the contributions of our work. The dimensions ofA are dz×db, where dz
is the dimension of the embedded state, and db is the dimension of the embedded action sequence,
respectively. The architecture for the embedding and the objective function is provided in Section 5

4.3 INFORMATION CHANNEL IN EMBEDDED SPACE

To compute mutual information between embedded action sequences, bt+k−1t and embedded states,
zt+k, we inject Gaussian noise, η ∼ N (0dz×dz , Idz×dz ), in the embedded space. Finally, we
construct the Gaussian linear channel in embedded spaces:

zt+k = A(zt)b
t+k−1
t + η (3)

This formulation of dynamical control systems in the latent space admits an efficient estimation of
MIAS as explained in the next section.

4.4 CHANNEL CAPACITY IN LATENT SPACE

To compute the information capacity of the channel given in Eq. 4.3, we apply the ”Water-Filling”
algorithm (Cover & Thomas, 2012), which is a computationally efficient method for the estimation
of capacity, C∗, of a linear Gaussian channel given by Eq. 4.3:

C∗(zt) =max
pi

1

2

n∑
i=1

log(1 + σi(zt)pi), (4)

under the constraint on the total power,
∑n
i=1 pi = P , where {σi(zt)}ni=1 are the singular values of

the channel matrix, A(zt), and P is the total power in the latent space.

5 ARCHITECTURE

The most crucial component of the IMPAC scheme is the embedding from sensor inputs (in our
case, images) and action sequences, into latent state and action tensors while remaining consistent
with the real environment dynamics. In this section, we organize our discussion around how a single
sample: {St, at, · · · , at+T−1, St+T } fits in the training of our deep neural networks, as illustrated
in Figure 2. We will explain each individual components of the block diagram and wrap up by
discussing the whole picture.
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Figure 2: An illustration of data flow around a single training sample.

5.1 EMBEDDING OF IMAGE OBSERVATIONS

The left side and right side of the block diagram in Figure 2 embeds raw observations (images).

In this work, we take images scaled down to 64 × 64 as observations. The image resolution is
chosen as a balance of clarity and performance: visual features of the environments are retained
while training batches can be fit on a single GPU. Since one single RGB image is not enough
to capture some particular information in the environment (e.g. velocity), we concatenate images
from a few consecutive states to form one observation when needed. When encoding multi-channel
images into meaningful latent vectors, we use an auto-encoder and decoder pair parameterized by
convolutional neural networks. Given a training sample {St, at, · · · , at+T−1, St+T }, both St and
St+T are encoded into their respective latent vectorsZt andZt+T using a same CNN encoder. When
we embed images into latent space, we want state information to be retained. Thus, the latent tensor
Zt is decoded back using a deconvolutional network for reconstruction of image Ŝt. The objective is
to make St and Ŝt stay close to each other. The encoder and decoder network details are presented
in Appendix B.

5.2 EMBEDDING OF ACTION SEQUENCES

The mid-lower section of Figure 2 embeds action sequences.

Standard MDPs (Section 3.1) models environment dynamics in the granularity of single steps, which
results in an exponentially large action space over long horizons. In this work, we aim to compute
information-theoretic quantities across multiple time-steps while avoiding exponential running time.
We consider a k-step dynamic model directly by embedding action sequence {at, at+1 · · · at+k−1}
into a single action bt in the latent space (1 step in the latent space corresponds to k steps in the
original space). Actions inside the sequence are concatenated into a vector and passed into an auto-
encoder to get bt. Again, to ensure that necessary information is retained in the latent action tensor,
we decode bt for reconstruction of {at, at+1 · · · at+k−1}. In our implementation, the encoder and
decoder are both fully connected MLPs. The detailed information about each layer can be found in
Appendix B.

5.3 DYNAMICAL MODEL IN LATENT SPACE

The top part of Figure 2 fits a dynamics model linear in action (non-linear in state).

As discussed in our IMPAC scheme, the water-filling algorithm computes channel capacities effi-
ciently. But as a requirement, we need to model our dynamics such that given the current state
Zt, the next state Zt+T is an affine transformation of action bt. Mathematically, if latent states
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Figure 3: Reconstruction through the latent dynamics in comparison with the ground truth. Starting
from the same upright position, a different action sequence is taken in each row. In all 3 cases,
reconstruction matches the actual observation after the actions are taken.

Zt, Zt+T have dimension dz and latent action bt have dimension db, we want to find a mapping
A : Rdz → Rdz×db such that Zt+T ≈ A(Zt)× b.
The mappingA from Zt to an dz×bz matrix is parameterized by a fully connected MLP with dz×db
output neurons. The final layer is then reshaped into a matrix. (See appendix B)

5.4 THE ENTIRE SCHEME

In the previous 3 sub-sections, we introduce 3 objectives: 1) Find an embedding of observations that
retains their information. 2) Find an embedding of action sequences that retain their information. 3)
Find a dynamics model linear in the latent action. When these three objectives are trained jointly,
the neural networks learn towards a latent space that extract information from the original space,
with a constrained dynamics model that is consistent with the actual environment. In practice,
regularization on the latent tensors is enforced at training time to encourage a better structured latent
space. The details about our choice of regularization are discussed in appendix A.

6 EXPERIMENTS

6.1 INVERTED PENDULUM

Inverted pendulum is a prototypical system for upright bi-pedal walking, and it often serves to check
new AI algorithms. Moreover, inverted pendulum is a baseline for the estimation of empowerment
in dynamical systems because its landscape is well-studied in numerous previous studies (Salge
et al., 2013b; 2014; 2013a; Karl et al., 2017; Mohamed & Rezende, 2015). So, we chose inverted
pendulum for testing our new method, and comparing it to the previous methods.

6.1.1 RECONSTRUCTION THROUGH LATENT DYNAMICS

Prior to applying the proposed model, given by Eq. 4.3, to the estimation of MIAS in the latent space,
we need to verify that our latent representation correctly encodes the dynamics of our system. One
way to do so is by comparing reconstruction of latent prediction with ground truth observation. In
the case of pendulum environment, two consecutive images are used to capture the state information
(angle and angular velocity). When we supply the initial two images for time t, along with choices
of different action sequences of length k, we expect the reconstructions to match the corresponding
observations at time t + k. As shown in Figure 3 the model is capable of reconstructing the future
images from the current images and action sequences.

6.1.2 EMPOWERMENT LANDSCAPE

In this section, we represent the empowerment landscape computed from images by our new ap-
proach, and the optimal trajectory for swinging up the pendulum from the bottom position to the
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upright position. The optimal trajectory is computed by the standard PPO algorithm with an intrin-
sic reward given by the values of empowerment (Schulman et al., 2017b). Figure 4 represent the
empowerment landscape estimated from images:

Figure 4: Left: Empowerment landscape and the optimal trajectory. Right: Analytical solution
from Salge et al. (2013a). The x-axis is θ (angle) and the y-axis is θ̇ (angular velocity). The angle
is measured from the upright position, (θ = 0 rad corresponds to the upright position). The black
curve is the optimal trajectory for swinging up the pendulum, which starts from the bottom with
θ = π rad and θ̇ = 0 rad.

As shown in Figure 4, at the beginning the pendulum swings with a small amplitude (the dense black
dots around θ = π rad, θ̇ = 0 rad s−1), then, once accumulated enough energy, it starts traversing
the state space, and arrives at the top position, where it stabilises, (dense black points around θ =
0 rad, θ̇ = 0 rad s−1). Strikingly, the empowerment landscape computed by the proposed method
from images coincides with the empowerment landscape computed by an analytical solution (cf.
Figure 3 at Salge et al. (2013a)).

6.2 SAFETY OF RL AGENT

We hypothesize that a state is intrinsically safe for an agent when the agent has a high diversity of
future states, achievable by its actions. In this context, the higher its empowerment value, the safer
the agent is. In this experiment, we test how empowerment augmented reward function will affect
the agent’s preference between a shorter but more dangerous path and a longer but safer one.

Environment: a double tunnel environment implemented with to the OpenAI Gym API (Brockman
et al., 2016). Agent (blue) is modeled as a ball of radius 1 inside a 20×20 box. The box is separated
by a thick wall (gray) into top and bottom section. Two tunnels connect the top and bottom of the
box. The tunnel in middle is narrower but closer to the goal compared to the one on the right.

Control: In each time step, the agent can move at most 0.5 unit length in each of x and y direction.
If an action takes the agent into the walls, it will be shifted back out to the nearest surface.

Reset criterion: each episode has a maximum length of 200 steps. The environment resets when
time runs out or when the agent reaches the goal.

Since the tunnel in the middle is narrower, the control of the agent is damped in 2 ways:

1. In a particular time step, it’s more likely for the agent to bump into the walls. When this
happens, the agent is unable to proceed as far as desired.

2. The tunnel is 10 units in length. When the agent is around the middle, it will still be inside
the tunnel in the 5-step horizon. Thus, the agent has fewer possible future states.

We trained the agent with PPO algorithm (Schulman et al., 2017a) from OpenAI baselines (Dhariwal
et al., 2017) using an empowerment augmented reward function. After a parameter search, we used
discount factor γ = 0.95 over a total of 106 steps. The reward function that we choose is:

R(s, a) = 1goal + β × Emp(s)
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Figure 5: Left sub-figure: Double tunnel environment. The goal is marked in red. The agent in
blue. Right sub-figure: Empowerment landscape for the tunnel environment. The values of em-
powerment reduce at the corner and inside the tunnel where the control of the agent is less effective
compared to more open locations.

where β balances the relative weight between the goal conditioned reward and the intrinsic safety
reward. With high β, we expect the agent to learn a more conservative policy.

(a) β = 0 (b) β = 1/1600 (c) β = 1/800

Figure 6: Trajectories of trained policy.

The trajectory plots shown in Figure 6 are generated using the final trained policy of three different β
values. For clarity, only trajectories starting from the bottom are shown in the plot. Just as expected,
we observe that as β increase, the agent develops a stronger preference over a safer route, sacrificing
hitting time.

7 DISCUSSION

Intrinsically motivated artificial agents do not rely on external reward and thus, do not need domain
knowledge for solving a broad class of AI benchmark problem such as stabilization, tracking, etc.
In this work, we introduce a new method for efficient estimation of a certain type of information-
theoretic intrinsic motivation, known as empowerment. Our method estimates of mutual informa-
tion between action trajectories and final states under the minimal assumptions: estimation from
images with unknown dynamics. The solution is based on a particular embedding of states and ac-
tion sequences, which is constrained to be linear in embedded action sequences, but non-linear in
embedded states.

With this work, we also introduced the IMPAC framework, which allows for a systematic study of
intrinsically motivated agents in broader scenarios, including real-world physical environments like
robotics. Such real-world application of our presented approach might provide an easier and more
efficient way to incorporate intrinsic motivation compared to existing methods.
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A DETAILS OF TRAINING ALGORITHM

1. Collect trajectories using random policy and random reset.
2. Separate out tuples (St, at, at+1, · · · , at+T−1, St+T ) from trajectories. For simplicity of

notation, let aTt represent the concatenated action sequences at, at+1, · · · , at+T−1
3. Use randomly initialized encoder networks to map the observations and action sequence

into latent space. This gives us tuples (Zt, bTt , Zt+T ).
4. Use randomly initialized MLP network to get the corresponding transformation matrices
A(Zt).

5. Calculate the predicted next state in latent space Ẑt+T = A(Zt)b
T
t

6. Use randomly initialize decoder networks to reconstruct images and action sequences from
latent vectors.
S̃t = Dec(Zt)

ãTt = Dec(bTt )

S̃t+T = Dec(Ẑt+T ) Note that S̃t+T is reconstructed from latent prediction.
7. Calculate the following loss terms:

(a) Observation reconstruction error: Lobs = ||St − S̃t||22
(b) Action sequence reconstruction error: Laction = ||aTt − ãTt ||22
(c) Prediction error in latent space: Llatent = ||Zt+T − Ẑt+T ||22
(d) Prediction error in original space: Lorg = ||St+T − S̃t+T ||22

8. In additional to the loss terms, we add regularization terms to prevent latent vectors from
shrinking. This help us get consistent and comparable empowerment values across different
trials and even different environments.

(a) Regularization of latent state: Regz = |1− |Zt|22
dz
|

(b) Regularization of latent action: Regb = |1− |b
T
t |

2
2

db
|

9. Finally, we use batched gradient descent on the overall loss function to train all the neural
networks in the same loop.
L = αobsLobs + αactionLaction + αlatentLlatent + αorgLorg + αreg(Regz +Regb)

For both of our experiments, we chose
αobs = αorg = 100
αaction = 10

αlatent = αreg = 1

and were able to produce desired empowerment plots.

B DETAILS ON NEURAL NETWORK LAYERS

B.1 CONVOLUTIONAL NET FOR IMAGE ENCODING

(h1) 2D convolution: 4 filters, stride 2, 32 channels, ReLU activation
(h2) 2D convolution: 4 filters, stride 2, 64 channels, ReLU activation
(h3) 2D convolution: 4 filters, stride 2, 128 channel, ReLU activations
(h4) 2D convolution: 4 filters, stride 2, 256 channel, ReLU activations
(out) Flatten each sample to a 1D tensor of length 1024

B.2 DECONVOLUTIONAL NET FOR IMAGE RECONSTRUCTION

(h1) Fully connected layer with 1024 neurons, ReLU activation
(h1’) Reshape to 1× 1 images with 1024 channels
(h2) 2D conv-transpose: 5 filters, stride 2, 128 channels, ReLU activation
(h3) 2D convolution: 5 filters, stride 2, 64 channels, ReLU activation
(h4) 2D convolution: 6 filters, stride 2, 32 channel, ReLU activations
(out) 2D convolution: 6 filters, stride 2, C channel
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B.3 MLP FOR ACTION SEQUENCE ENCODING

(h1) Fully connected layer with 512 neurons, ReLU activation
(h2) Fully connected layer with 512 neurons, ReLU activation
(h3) Fully connected layer with 512 neurons, ReLU activation
(out) Fully conected layer with 32 output neurons

B.4 MLP FOR ACTION SEQUENCE RECONSTRUCTION

(h1) Fully connected layer with 512 neurons, ReLU activation
(h2) Fully connected layer with 512 neurons, ReLU activation
(out) Fully conected layer with T × da neurons, tanh activation then scaled to action space

B.5 MLP FOR TRANSITION MATRIX A

(h1) Fully connected layer with 1024 neurons, ReLU activation
(h2) Fully connected layer with 4096 neurons, ReLU activation
(h2) Fully connected layer with 8192 neurons, ReLU activation
(out) Fully conected layer with dz × db (1024× 32) neurons
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