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ABSTRACT

Thanks to graph neural networks (GNNs), semi-supervised node classification has
shown the state-of-the-art performance in graph data. However, GNNs have not
considered different types of uncertainties associated with the class probabilities
to minimize risk increasing misclassification under uncertainty in real life. In this
work, we propose a Bayesian deep learning framework reflecting various types of
uncertainties for classification predictions by leveraging the powerful modeling and
learning capabilities of GNNs. We considered multiple uncertainty types in both
deep learning (DL) and belief/evidence theory domains. We treat the predictions
of a Bayesian GNN (BGNN) as nodes’ multinomial subjective opinions in a graph
based on Dirichlet distributions where each belief mass is a belief probability of
each class. By collecting evidence from the given labels of training nodes, the
BGNN model is designed for accurately predicting probabilities of each class and
detecting out-of-distribution. We validated the outperformance of the proposed
BGNN, compared to the state-of-the-art counterparts in terms of the accuracy of
node classification prediction and out-of-distribution detection based on six real
network datasets.

1 INTRODUCTION

Inherent uncertainties introduced by different root causes have emerged as serious hurdles to find
effective solutions for real world problems. Critical safety concerns have been brought due to lack
of considering diverse causes of uncertainties, resulting in high risk due to misinterpretation of
uncertainties (e.g., misdetection or misclassification of an object by an autonomous vehicle). Graph
neural networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2018) have gained tremendous
attention in the data science community. Despite their superior performance in semi-supervised
node classification and/or regression, they didn’t allow to deal with various types of uncertainties.
Predictive uncertainty estimation (Malinin & Gales, 2018) using Bayesian NNs (BNNs) has been
explored for classification prediction or regression in the computer vision applications, with well-
known uncertainties, aleatoric and epistemic uncertainties. Aleatoric uncertainty only considers data
uncertainty derived from statistical randomness (e.g., inherent noises in observations) while epistemic
uncertainty indicates model uncertainty due to limited knowledge or ignorance in collected data. On
the other hand, in the belief or evidence theory, Subjective Logic (SL) (Josang et al., 2018) considered
vacuity (or lack of evidence) as uncertainty in an subjective opinion. Recently other uncertainties such
as dissonance, consonance, vagueness, and monosonance (Josang et al., 2018) are also introduced.
This work is the first that considers multidimensional uncertainty types in both DL and belief theory
domains to predict node classification and out-of-distribution (OOD) detection. To this end, we
incorporate the multidimensional uncertainty, including vacuity, dissonance, aleatoric uncertainty, and
epistemic uncertainty in selecting test nodes for Bayesian DL in GNNs. We perform semi-supervised
node classification and OOD detection based on GNNs. By leveraging the modeling and learning
capability of GNNs and considering multidimensional uncertainties in SL, we propose a Bayesian
DL framework that allows simultaneous estimation of different uncertainty types associated with
the predicted class probabilities of the test nodes generated by GNNs. We treat the predictions of a
Bayesian GNN (BGNN) as nodes’ subjective opinions in a graph modeled as Dirichlet distributions
on the class probabilities, and learn the BGNN model by collecting the evidence from the given labels
of the training nodes (see Figure 1). This work has the following key contributions:
• A Bayesian framework to predictive uncertainty estimation for GNNs. Our proposed frame-

work directly predicts subjective multinomial opinions of the test nodes in a graph, with the
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Figure 1: Method Overview. our proposed framework is based on (a) Bayesian GNN designed for estimating
the different types of uncertainties including (e) vacuity, dissonance, aleatoric, and epistemic uncertainties for
the applications in graph data. The loss function includes (d) square error to reduce bias and (b) (c) two KL
components to reduce error in predicting uncertainty.

opinions following Dirichlet distributions with each belief probability as a class probability. Our
proposed framework is a generative model, so it cal be highly applicable across all GNNs and allows
simultaneously estimating different types of associated uncertainties with the class probabilities.

• Efficient approximate inference algorithms: We adopt Monte-Carlo Dropout (Gal & Ghahra-
mani, 2016) to develop an approximate Bayesian inference solution with low complexity. We
propose a Graph-based Kernel Dirichlet distribution Estimation (GKDE) method to reduce error in
predicting Dirichlet distribution. We designed an iterative knowledge distillation algorithm that
treats a deterministic GNN as a teacher network while considering our proposed Bayesian GNN
model (a realization of our proposed framework for a specific GNN) as a distilled network. This
allows the expected class probabilities based on the predicted Dirichlet distributions (i.e., outputs
of our trained Bayesian model) to match the predicted class probabilities of the deterministic GNN
model, along with uncertainty estimated in the predictions.

• Comprehensive experiments for the validation of the performance of our proposed frame-
work. Based on six real graph datasets, we compared the performance of our propose framework
with that of other competitive DL algorithms. For a fair comparison, we tweaked the DL algorithms
to consider various uncertainty types in predicted decisions.

2 RELATED WORK

Epistemic Uncertainty in Bayesian Deep Learning (BDL): Machine/deep learning (M/DL) re-
search mainly considered aleatoric uncertainty (AU) and epistemic uncertainty (EU) using BNNs
for computer vision applications. AU consists of homoscedastic uncertainty (i.e., constant errors
for different inputs) and heteroscedastic uncertainty (i.e., different errors for different inputs) (Gal,
2016). A BDL framework was presented to estimate both AU and DU simultaneously in regression
settings (e.g., depth regression) and classification settings (e.g., semantic segmentation) (Kendall
& Gal, 2017). Later, a new type of uncertainty, called distributional uncertainty (DU), is defined
based on distributional mismatch between the test and training data distributions (Malinin & Gales,
2018). Dropout variational inference (Gal & Ghahramani, 2016) is used as one of key approximate
inference techniques in BNNs. Other methods (Eswaran et al., 2017; Zhang et al., 2018) measure
overall uncertainty in node classification but didn’t consider uncertainty decomposition and GNNs.
Uncertainty Quantification in Belief/Evidence Theory: In the belief/evidence theory domain, un-
certainty reasoning has been substantially explored, such as Fuzzy Logic (De Silva, 2018), Dempster-
Shafer Theory (DST) (Sentz et al., 2002), or Subjective Logic (SL) (Jøsang, 2016). Belief theory
focuses on reasoning of inherent uncertainty in information resulting from unreliable, incomplete,
deceptive, and/or conflicting evidence. SL considered uncertainty in subjective opinions in terms of
vacuity (i.e., lack of evidence) and vagueness (i.e., failing in discriminating a belief state) (Jøsang,
2016). Recently, other uncertainty types have been studied, such as dissonance (due to conflicting
evidence) and consonance (due to evidence supporting composite states) (Josang et al., 2018).
In deep NNs, SL is considered to train a deterministic NN for supervised classification in computer
vision applications (Sensoy et al., 2018). However, they didn’t consider a generic way of estimating
multidimensional uncertainty using Bayesian DL for GNNs used for the applications in graph data.
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3 PROPOSED APPROACH

Now we define the problem of uncertainty-aware semi-supervised node classification and then present
a Bayesian GNN framework to address the problem.

3.1 PROBLEM DEFINITION

Given an input graph G = (V,E, r,yL), where V = {1, · · · , N} is a ground set of nodes, E ⊆ V×V
is a ground set of edges, r = [r1, · · · , rN ]T ∈ RN×d is a node-level feature matrix, ri ∈ Rd is
the feature vector of node i, yL = {yi | i ∈ L} are the labels of the training nodes L ⊂ V, and
yi ∈ {1, . . . ,K} is the class label of node i. We aim to predict: (1) the class probabilities of
the testing nodes: pV\L = {pi ∈ [0, 1]K | i ∈ V \ L}; and (2) the associated multidimensional
uncertainty estimates introduced by different root causes: uV\L = {ui ∈ [0, 1]m | i ∈ V \ L},
where pi,k is the probability that the class label yi = k and m is the total number of uncertainty types.

3.2 MULTIDIMENSIONAL UNCERTAINTY QUANTIFICATION

Multiple uncertainty types may be estimated, such as aleatoric uncertainty, epistemic uncertainty,
vacuity, dissonance, among others. The estimation of the first two types of uncertainty relies on the
design of an appropriate Bayesian DL model with parameters, θ. Following (Gal, 2016), node i’s
aleatoric uncertainty is: Aleatoric[pi] = EProb(θ|G)

[
H(yi|r;θ)

]
, where H(·) is Shannon’s entropy

of Prob(pi|r;θ). The epistemic uncertainty of node i is estimated by:

Epistemic[pi] = H
[
EProb(θ|G)[(yi|r;θ)]

]
− EProb(θ|G)

[
H(yi|r;θ)

]
(1)

where the first term indicates entropy (or total uncertainty).
Vacuity and dissonance can be estimated based on the subjective opinion for each testing node
i (Josang et al., 2018). Denote i’s subjective opinion as [bi1, · · · , biK , vi], where bik(≥ 0) is the
belief mass of the k-th category, vi(≥ 0) is the uncertainty mass (i.e., vacuity), and K is the total
number of categories, where

∑K
k=1 bik + vi = 1. i’s dissonance is obtained by:

ω(bi) =

K∑
k=1

(bik∑K
j=1,j 6=k bijBal(bij , bik)∑K

j=1,j 6=k bij

)
, (2)

where the relative mass balance between a pair of belief masses bij and bik is expressed by
Bal(bij , bik) = 1 − |bij − bik|/(bij + bik). To develop a Bayesian GNNs framework that pre-
dicts multiple types of uncertainty, we estimate vacuity and dissonance using a Bayesian model.
In SL, a multinomial opinion follows a Dirichlet distribution, Dir(pi|αi), where αi ∈ [1,∞]K

represents the distribution parameters. Given Si =
∑K
k=1 αik, belief mass bi and uncertainty mass

vi can be obtained by bik = (αik − 1)/Si and vi = K/Si.

3.3 PROPOSED BAYESIAN DEEP LEARNING FRAMEWORK

Let p = [p1, . . . ,pN ]> ∈ RN×K denote the class probabilities of the node in V, where pi =
[pi1, . . . , piK ]> refers to the class probabilities of a specific node i. As shown in Figure 1, our
proposed Bayesian GNN framework can be described by the generative process:
• Sample θ from a predefined prior distribution, i.e., N (0, I).
• For each node i ∈ V: (1) Sample the class probabilities pi from a Dirichlet distribution: Dir(pi|αi),

where αi = fi(r;θ) is parameterized by a GNN network α = f(r;θ) : RN×d → [1,∞]N×K

that takes the attribute matrix r as input and directly outputs all the node-level Dirichlet parameters
α = [α1, · · · ,αN ], and θ refer to the hyper-parameters of the GNN network; and (2) Sample
yi ∼ Cat(yi|pi), a categorical distribution on pi.

In this design, the graph dependencies among the class labels in yL and yV\L are modeled via the
GNN network f(r;θ). Our proposed framework is different from the traditional Bayesian GNN
network (Zhang et al., 2018) in that the output of the former are the parameters of node-level Dirichlet
distributions (α), but the output of the latter are directly node-level class probabilities (p). The
conditional probability of p, Prob(p|r;θ), can be obtained by:

Prob(p|r;θ) =
∏N

i=1
Dir(pi|αi), αi = fi(r;θ) (3)

where the Dirichlet probability function Dir(pi|αi) is defined by:

Dir(pi|αi) =
Γ(Si)∏K

k=1 Γ(αik)

∏K

k=1
pαik−1ik , Si =

∑K

k=1
αik (4)
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Based on the proposed Bayesian GNN framework, the joint probability of y conditioned on the input
graph G and the node-level feature matrix r can be estimated by:

Prob(y|r;G) =

∫ ∫
Prob(y|p)Prob(p|r;θ)Prob(θ|G)dpdθ, (5)

where Prob(θ|G) is the posterior probability of the parameters θ conditioned on the input graph G,
which are estimated in Sections 3.4 and 3.6.
The aleatoric uncertainty and the epistemic uncertainty can be estimated using the equations de-
scribed in Section 3.2. The vacuity associated with the class probabilities (pi) of node i can be
estimated by: Vacuity(pi) = EProb(θ|G)[vi] = EProb(θ|G)

[
K/
∑K
k=1 αik

]
. The dissonance of node i

is estimated as: Disso.[pi] = EProb(θ|G)

[
ω(bi)

]
, where ω(bi) is defined in Eq. (2).

3.4 BAYESIAN INFERENCE WITH DROPOUT

The marginalization in Eq. (5) is generally intractable. A dropout technique is used to obtain an
approximate solution and use samples from the posterior distribution of models (Gal & Ghahramani,
2016). Due to this reason, we adopt a dropout technique in (Gal & Ghahramani, 2015) for variational
inference in Bayesian CNNs where Bernoulli distributions are assumed over the network’s weights.
This dropout technique allows us to perform probabilistic inference over our Bayesian DL framework
using GNNs. For Bayesian inference, we identify a posterior distribution over the network’s weights,
given the input graph G and observed labels yL by Prob(θ | G), where θ = {W1, . . . ,WL, b1, ..., bL},
L is the total number of layers and Wi refers to the GNN’s weight matrices of dimensions Pi × Pi−1,
and bi is a bias vector of dimensions Pi for layer i = 1, · · · , L.
Since the posterior distribution is intractable, we use a variational inference to learn q(θ,γ), a
distribution over matrices whose columns are randomly set to zero, approximating the intractable
posterior by minimizing the Kullback-Leibler (KL)-divergence between this approximated distribution
and the full posterior, which is given by:

min
γ

KL(q(θ,γ)‖Prob(θ|G)) (6)

where γ = {M1, . . . ,ML,m1, . . . ,mL} are the variational parameters, where Mi ∈ RPi×Pi−1 and
mi ∈ RPi . We define Wi in q(θ,γ) by:

Wi = Midiag([zij ]
Pi
j=1), zij ∼ Bernoulli(di) for i = 1, . . . , L, j = 1, . . . , Pi−1 (7)

where d = {d1, . . . , dL} is the dropout probabilities with zij of Bernoulli distributed random
variables. The binary variable zij = 0 corresponds to unit j in layer i − 1 being dropped out as
an input to layer i. We can obtain the approximate model of the Gaussian process from (Gal &
Ghahramani, 2015). The dropout probabilities, di’s, can be optimized or fixed (Kendall et al., 2015).
For simplicity, we fix di’s in our experiments, as it is beyond the scope of our study. In (Gal &
Ghahramani, 2015), the minimization of the cross entropy (or square error) loss function is proven
to minimize the KL-divergence (see Eq. (6)). Therefore, training the GNN model with stochastic
gradient descent enables learning of an approximated distribution of weights, which provides good
explainability of data and prevents overfitting.
For the dropout inference, we performed training a GNN model with dropout before every weight
layer and dropout at test time to sample from the approximate posterior (i.e., stochastic forward
passes, a.k.a. Monte Carlo dropout; see Eq. (8)). At the test stage, we infer the joint probability
Eq. (5) by:

Prob(y|r;G) ≈ 1

M

∑M

m=1

∫
Prob(y|p)Prob(p|r;θ(m))dp, θ(m) ∼ q(θ), (8)

which can infer the Dirichlet parameters α as: α ≈ 1
M

∑M
m=1 f(r,θ(m)), θ(m) ∼ q(θ).

As our model is a generative model to predict Dirichlet distribution parameters, we use a loss function
to compute its Bayes risk with respect to the sum of squares loss ‖y− p‖22 by:

L(γ) =
∑

i∈L

∫
‖yi − pi‖22 · Prob(pi|r;γ)dpi =

∑
i∈L

∑K

j=1

(
yij − E[pij ]

)2
+ Var(pij) (9)

Eq. (9) aims to minimize the prediction error and variance, leading to maximizing classification
accuracy of each training node by removing excessive misleading evidence (Sensoy et al., 2018).
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3.5 GRAPH-BASED KERNEL DIRICHLET DISTRIBUTION ESTIMATION

To better learn the Dirichlet distribution from our Bayesian GNN framework, we proposed a Graph-
Based Kernel Dirichlet Distribution Estimation (GKDE). The key idea of GKDE is estimating prior
Dirichlet distribution parameters for each node based on training nodes (see Figure 1 (b)). And then,
we leave prior Dirichlet distribution in the training process to learn two trends: (i) nodes with high
vacuity (due to lack of evidence) will be shown far from training nodes; and (ii) nodes with high
dissonance (due to conflicting evidence) will be shown in the class boundary.
Based on SL, let each training node represent one evidence for its class label. Denote the contribution
of evidence estimation for target node j from node i by h(yi, dis(i, j)) = [h1, . . . , hk, . . . , hK ] ∈
[0, 1]K and hk(yi, dis(i, j)) is obtained by:

hk(yi, dis(i, j)) =

{
0 yi 6= k

σ
√

2π · g(dis(i, j)) yi = k
(10)

where g(dis(i, j)) = 1
σ
√
2π
e−

dis(i,j)2

2σ2 is the Gaussian kernel function to estimate the distribution
effect between nodes i and j, and dis(i, j) means the node distance (shortest path between nodes
i and j), and σ is the bandwidth parameter. The prior evidence estimation based GKDE: êj =∑
i∈L h(yi, dis(i, j)), and the prior Dirichlet distribution α̂j = êj + 1. During training process, we

minimize the KL-divergence between model predictions of Dirichlet distribution and prior distribution:
min KL[Dir(α)‖Dir(α̂)].

3.6 A TEACHER NETWORK FOR REFINED INFERENCE

our key contribution is that the proposed Bayesian GNN model is capable of estimating various
uncertainty types to predict existing GNNs. As one of the preferred features, the expected class
probabilities generated by our Bayesian GNNs model should be consistent with the predicted class
probabilities of the GNN model. In addition, our Bayesian GNN model is a generative model and
may not necessarily always outperform GNN models (i.e., discriminative models) for the task of node
classification prediction when uncertainty-based prediction is not fully benefited.
To refine the inference of our proposed model, we leverage the principles of Knowledge Distillation
in DL (Hinton et al., 2015). In particular, we consider our proposed model as a distilled model
and a deterministic GNN model as a teacher model, as shown in Figure 1 (c). The key idea is to
train our proposed model to imitate the outputs of the teacher network on the class probabilities
while minimizing the loss function of our proposed model. We observed that the modeling of data
uncertainty in our proposed model provides useful information to further improve the accuracy of the
deterministic GNN model. Therefore, we consider propagating the useful information back to the
teacher model to help train itself.
Let us denote Prob(y | r;β) as the joint probability of class labels via a deterministic GNN model,
where β refers to model parameters. The probability function Prob(y | r;γ,G) is estimated based on
Eq. (8) using the variational parameters γ. We measure the closeness between Prob(y | r;β) and
Prob(y | r;γ,G) with KL-divergence to be minimized while minimizing their own loss functions
based on the labeled nodes. This leads to solving the following optimization problem:

minγ,β L(γ) + L(β) + λ ·
(

KL[Prob(y | r;γ,G) ‖ Prob(y | r;β)] + KL[Dir(α)‖Dir(α̂)]
)

(11)

where L(β) is the loss function (i.e., cross entropy) of the deterministic GNN model and λ is a
trade-off parameter. Our inference algorithm using backpropagation is detailed in the Appendix.

4 EXPERIMENTS

In this section, we describe our experimental settings and demonstrate the performance of our
proposed model based on semi-supervised node classification. For the performance comparison and
analysis of our model and other existing counterparts, we demonstrate and analyze the obtained
results in terms of the overall classification accuracy.

4.1 DATASETS

We use six datasets, including three citation network datasets (Sen et al., 2008) (i.e., Cora, Citeseer,
Pubmed) and three new datasets (Shchur et al., 2018) (i.e., Coauthor Physics, Amazon Computer,
and Amazon Photo). We summarize the description and experimental setup of the used datasets in
Table 1. For all the used datasets, we deal with undirected graphs with 20 training nodes for each

5



Under review as a conference paper at ICLR 2020

Table 1: Description of datasets and their experimental setup for the node classification prediction.

Cora Citeseer Pubmed Co. Physics Ama.Computer Ama.Photo

#Nodes 2,708 3,327 19,717 34, 493 13, 381 7, 487
#Edges 5,429 4,732 44,338 282, 455 259, 159 126, 530
#Classes 7 6 3 5 10 8
#Features 1,433 3,703 500 8,415 767 745
#Training nodes 140 120 60 100 200 160
#Validation nodes 500 500 500 500 500 500
#Test nodes 1,000 1,000 1,000 1000 1,000 1000

category. We chose the same dataset splits as in (Yang et al., 2016) with an additional validation
node set of 500 labeled examples for the hyperparameter obtained from the citation datasets, and
followed the same dataset splits in (Shchur et al., 2018) for Coauthor Physics, Amazon Computer,
and Amazon Photo datasets, for fair comparison.

4.2 COMPARING SCHEMES

We conduct the extensive comparative performance analysis based on our Bayesian models and
a number of other state-of-the-art counterparts. Our proposed Bayesian models are: (1) BGCN
(Bayesian GCN), which is a Bayesian GNN framework in Section 3.3 where training and test nodes
are selected based on (Sen et al., 2008) for the citation network datasets and are randomly selected
for the new three datasets; (2) BGCN-T (BGCN with a Teacher network) which is the same as
BGCN except using a teacher network (Hu et al., 2016); and (3) BGAT-T (Bayesian Graph ATtention
network with a Teacher network) is BGCN-T except using GAT (Veličković et al., 2018).

Table 2: Semi-supervised node classification accuracy.

Cora Citeseer Pubmed

ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.1
LP 68.0 45.3 63.0
DeepWalk 67.2 43.2 65.3
ICA 75.1 69.1 73.9
Planetoid 75.7 64.7 77.2
GCN 81.5 70.3 79.0
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3
BGCN 81.2± 1.0 71.0± 0.6 79.0± 0.2
BGCN-T 82.0± 0.6 71.2± 0.6 79.3± 0.4
BGAT-T 83.8± 0.7 73.2± 0.7 79.1± 0.2

Co.Physics Ama.Computer Ama.Photo

GAT* 92.5± 0.9 78.0± 19.0 85.7± 20.3
GCN* 92.8± 1.0 82.6± 2.4 91.2± 1.2
GCN 93.0± 0.8 79.7± 1.3 91.6± 1.2
BGCN 93.3± 0.8 78.3± 1.6 90.2± 1.6
BGCN-T 93.2± 0.8 84.1± 1.3 92.3± 1.2

GCN* and GAT* are implemented from (Shchur et al., 2018)

Our Bayesian models are compared against
a number of the state-of-the-art counterparts.
For evaluating three citation datasets (i.e.,
Cora, Citeseer, Pubmed), we compared our
models with: (1) GCN (Kipf & Welling,
2016); (2) GAT (Veličković et al., 2018);
(3) manifold regularization (ManiReg) (Belkin
et al., 2006); (4) semi-supervised embedding
(SemiEmb) (Weston et al., 2012); (5) label
propagation (LP) (Zhu et al., 2003); (6) skip-
gram based graph embeddings (DeepWalk) (Per-
ozzi et al., 2014); (7) iterative classification al-
gorithm (ICA) (Lu & Getoor, 2003); and (8)
Planetoid (Yang et al., 2016). We selected
these for the comparison with our models based
on (Veličković et al., 2018) for fair comparison
with the latest comparable models. Using Coau-
thor Physics, Amazon Computer, and Amazon Photo, we compared the performance of our models
with that of GCN and GAT.
4.3 MODEL SETUPS

For BGCN-T and BGAT-T, we choose two graph convolutional layers in which the first layer is 16
hidden units for GCN and 64 hidden units for GAT, and removed a softmax layer. Our models are
initialized using Glorot initialization (Glorot & Bengio, 2010) and trained to minimize loss using the
Adam SGD optimizer (Kingma & Ba, 2014). For time complexity analysis, refer to the Appendix.
4.4 EXPERIMENTAL RESULTS & ANALYSIS

In Table 2, we summarized the mean percentage of classification accuracy with a standard deviation
of each model compared in this experiment. The results prove that our model achieves the best
accuracy result across all six datasets. To be specific, our proposed BGCN is able to improve over
GCN by a margin of 0.7%, 1.1%, 0.4%, 0.4%, 1.5% and 1.2% on Cora, Citeseer, Pumbed, Coauthor
Physics, Amazon Computer, and Amazon Photo, respectively. In addition, our proposed BGAT-T
model improves 0.7% for both Cora and Citeseer datasets over GAT. Notice that BGCN-T even
outperforms BGCN particularly on the Cora dataset. These results prove that the teacher network can
prevent overfitting, leading to a further improvement in classification prediction.

5 UNCERTAINTY ANALYSIS
In Section 4, we showed that our Bayesian GNN framework with the teacher network improves
prediction performance. In this section, we study the effectiveness of prediction based on different
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(a) PR curves on Cora (b) PR curves on Citeseer (c) PR curves on Pubmed

Figure 2: PR curves for Node Classification Prediction: BGCN-T is used to predict node classi-
fication where test nodes are selected based on the low extent of uncertainty. The PR curves of all
compared models can be found in the Appendix.

types of uncertainty. We studied the different types of uncertainty-aware node classification and
out-of-distribution in terms of the area under the ROC (AUROC) and Precision-Recall (AUPR) curves
in both experiments as in (Hendrycks & Gimpel, 2016) for three citation network datasets. For the
OOD detection, we randomly selected 1-3 categories as OOD categories and trained the models
only based on training nodes of the other categories. Due to the space constraint, we summarize the
description of datasets and experimental setup for the OOD detection in the Appendix.
To better evaluate our multiple uncertainties, we compare our model with two baseline models:
(1) GCN Entropy which uses GCN (Kipf & Welling, 2016) with the softmax probability entropy
measuring uncertainty; and (2) GCN-Drop. where one of the two uncertainty types (i.e., aleatoric, or
epistemic uncertainty) adapts Monte-Carlo Dropout (Gal & Ghahramani, 2016) into the GCN model.
In the OOD, we also consider Distributional uncertainty (Malinin & Gales, 2018).

5.1 QUALITY OF UNCERTAINTY METRICS

Table 3: Node classification prediction in AUPR.
Data Model AUPR

Va. Dis. Al. Ep. En.

Cora
BGCN-T 90.4 95.4 92.6 88.0 93.4

GCN-Drop. - - 92.7 90.0 93.6
GCN - - - - 94.1

Citeseer
BGCN-T 80.0 85.6 82.2 75.2 83.5

GCN-Drop. - - 82.3 77.8 83.7
GCN - - - - 83.2

Pubmed
BGCN-T 85.6 90.9 88.9 90.0 89.3

GCN-Drop. - - 88.6 85.6 89.0
GCN - - - - 89.2

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, En.: Entropy

In Figure 2, we used BGCN-T to pre-
dict node classification when test nodes
are selected based on the lowest uncer-
tainty for a given type. First of all, all
uncertainty types show decreasing pre-
cision as recall increases. This implies
that all uncertainty types are to some ex-
tent the indicators of prediction accuracy
because low uncertainty increases predic-
tion accuracy. In Figure 2, we can ob-
serve almost 100% performance of preci-
sion when recall is close to zero on Cora and over 95% on Pubmed. Further, the outperformance of
Dissonance uncertainty is obvious among all. This indicates that low uncertainty with few conflicting
evidence is the most critical factor to enhance classification prediction accuracy, compared to low
extent of other uncertainty types. In addition, although epistemic uncertainty was very low, epistemic
uncertainty performs the worst among all. This also indicates that epistemic uncertainty is not
necessarily helpful to enhance prediction accuracy in semi-supervised node classification. Lastly, we
found that vacuity is not as important as dissonance because accurate prediction is not necessarily
dependent upon a large amount of information, but is more affected by less conflicting (or more
agreeing) evidence to support a single class.
In Table 3, although all BGCN-T models with the five different uncertainty types do not necessarily
outperform all the existing models (i.e., GCN Entropy and variants of GCN-Drop.), the outperfor-
mance of Dissonance is fairly impressive. This result confirmed that low uncertainty caused by
dissonance is the key to maximize node classification prediction accuracy. To better understand
different uncertainty types, we used t-SNE (Maaten & Hinton, 2008) to represent the computed
feature representations of a pre-trained BGCN-T model’s first hidden layer on the Cora dataset in
Figure 3.

5.2 OUT-OF-DISTRIBUTION DETECTION

In this section, we discuss how different uncertainty types can prove the performance in the out-
of-distribution (ODD) detection. In Table 4, we considered 6 uncertainties with 3 models for
our performance comparison. Note that Distributional uncertainty is the the most recent model
showing the best performance in the OOD detection. Across the three citation network datasets,
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Figure 3: Graph embed-
ding representations of the
Cora dataset for classes
and the extent of uncer-
tainty: (a) shows the rep-
resentation of seven differ-
ent classes; (b) shows our
model prediction; and (c)-
(f) present the extent of
uncertainty for respective
uncertainty types, includ-
ing vacuity, dissonance,
aleatoric, epistemic.

particularly BGCN-T Aleatoric and BGCN-T Vacuity showed significantly better performance,
strikingly outperforming Distributional uncertainty.
In OOD detection, epistemic uncertainty performed the worst because it cannot distinguish the
flat Dirichlet distribution (α = (1, . . . , 1)) from sharp Dirichlet distribution (α = (10, . . . , 10)),
resulting poor performance in OOD detection. Unlike AUPR in node classification prediction with
outperformance in BGCN-T Dissonance (see Figure 2), BGCN-T Dissonance showed the second
worst performance among the proposed BGCN-T models with other uncertainty types. This implies
that less conclusive belief mass does not help OOD detection.
Although epistemic uncertainty is known to be effective to improve OOD detection (Kendall & Gal,
2017) in computer vision applications, our result showed fairly poor performance compared to the
case other uncertainty types are used. This is because our experiment is conducted with a very small
of training nodes (i.e., 3% on Cora, 2% on Citeseer, 0.2% on Pubmed) which is highly challenging to
observe high performance particularly with epistemic uncertainty.

Table 4: AUROC and AUPR for the OOD detection.
Data Model AUROC AUPR

Va. Dis. Al. Ep. D.En. En. Va. Dis. Al. Ep. D.En. En.

Cora
BGCN-T 83.7 81.2 83.5 71.8 79.1 82.1 72.2 59.4 72.7 46.8 72.2 70.8

GCN-Drop. - - 81.9 70.5 - 80.9 - - 69.7 44.2 - 67.2
GCN - - - - - 80.7 - - - - - 66.9

Citeseer
BGCN-T 79.2 70.6 78.0 56.1 77.1 75.3 79.3 67.2 78.9 57.8 78.3 76.3

GCN-Drop. - - 72.3 61.4 - 70.6 - - 73.5 60.8 - 70.0
GCN - - - - - 70.8 - - - - - 70.2

Pubmed
BGCN-T 75.6 73.2 76.3 60.1 74.8 74.2 71.5 58.6 71.0 45.0 69.8 62.9

GCN-Drop. - - 68.7 60.8 - 66.7 - - 59.7 46.7 - 54.8
GCN - - - - - 68.3 - - - - - 55.3

Va.: Vacuity, Dis.: Dissonance, Al.: Aleatoric, Ep.: Epistemic, D.En.: Differential Entropy, En.: Entropy

6 CONCLUSION

In this work, we proposed a Bayesian GNNs framework for uncertainty-aware semi-supervised node
classification and out-of-distribution (OOD) detection for GNNs. Our proposed framework provides
an effective, efficient way of predicting node classification and detecting OOD considering multiple
uncertainty types. We leveraged the state-of-the-art techniques such as a Monte-Carlo dropout to
develop a Bayesian inference algorithm with low complexity. In addition, we leveraged the estimation
of various types of uncertainty from both DL and evidence/belief theory domains.
The key findings from this study include:
• For the overall classification prediction, our proposed BGCN, BGCN-T, or BGAT-T outperformed

the competitive baselines.
• For the node classification prediction considering various uncertainty types, we found that disso-

nance (i.e., uncertainty derived from conflicting evidence) played a significant role to improve
classification prediction accuracy when BGCN-T is used to learn classification.

• For the OOD detection, vacuity and aleatoric uncertainty played a key role when BGCN-T is used
to detect OOD. This means that less information and/or more randomness (or less predictability)
enables detecting OOD more effectively. More impressively, BGCN-T Aleatoric or Vacuity
outperformed the most recent counterpart, BCGN-T Distributional uncertainty.
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A APPENDIX

SOURCE CODE

For review purpose, the source code and datasets are accessible at https://www.dropbox.
com/sh/cs5gs2i1umdx4b6/AAC-r_EYRw9lryk95giqW8-Fa?dl=0

DESCRIPTION OF DATASETS

Cora, Citeseer, and Pubmed (Sen et al., 2008): These are citation network datasets, where a network
is a directed network where a node represents a document and an edge is a citation link, meaning
that there exists an edge when A document cites B document, or vice-versa with a direction. Each
node’s feature vector contains a bag-of-words representation of a document. For simplicity, we don’t
discriminate the direction of links and treat citation links as undirected edges and construct a binary,
symmetric adjacency matrix A. Each node is labeled with the class to which it belongs.

Coauthor Physics, Amazon Computers, and Amazon Photo (Shchur et al., 2018): Coauthor
Physics is the dataset for co-authorship graphs based on the Microsoft Academic Graph from the
KDD Cup 2016 Challenge1. In the graphs, a node is an author and an edge exists when two authors
co-author a paper. A node’s features represent the keywords of its papers and the node’s class label
indicates its most active field of study. Amazon Computers and Amazon Photo are the segments
of an Amazon co-purchase graph (McAuley et al., 2015), where a node is a good (i.e., product),
an edge exists when two goods are frequently bought together. A node’s features are bag-of-words
representation of product reviews and the node’s class label is the product category.

EXPERIMENTAL SETUP FOR OUT-OF-DISTRIBUTION (OOD) DETECTION

For OOD detection, we summarize the experiment setup for the use of the three citation network
datasets (i.e., Cora, Citeseer, and Pubmed) in Table 5. In this setting, we still focus on the semi-
supervised node classification task, but only part of node categories are not using for training. Hence,
we suppose that our model only outputs partial categories (as we don’t know the OOD category).
For example, Cora dataset, we train the model with 80 nodes (20 nodes for each category) with the
predictions of 4 categories. Positive ratio is the ratio of out-of-distribution nodes among on all test
nodes.

Dataset Cora Citeseer Pubmed

#Number of training categories 4 3 2
#Training nodes 80 60 40
#Test nodes 1000 1000 1000
#Positive ratio 38% 55% 40.4%

Table 5: Description of datasets and their experimental setup for the OOD detection.

CALCULATION OF AUPR AND AUROC

For the calculation of precision, recall, TPR, and FPR, we select a certain φ % of nodes out of test
nodes to label them as positive (correct) based on the extent of uncertainty, the lowest uncertainty for
classification prediction and the highest uncertainty for OOD detection. And the remaining test nodes
(i.e., 100− φ %) are labeled as negative. Each test node’s prediction is checked with its ground truth
to derive AUPR and AUROC.

TIME COMPLEXITY ANALYZE

BGCN has a similar time complexity with GCN while BGCN-T has the double complexity of GCN.
In the revised paper, we will add a table showing Big-O complexity of all schemes considered. For
a given network where |V| is the number of nodes, |E| is the number of edges, C is the number of

1KDD Cup 2016 Dataset: Online Available at https://kddcup2016.azurewebsites.net/
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dimensions of the input feature vector for every node, and F is the number of features for the output
layer, the complexity of the compared schemes are: O(|E|CF ) for GCN, O(|E|CF ) for BCGN,
O(2|E|CF ) for BCGB-T, O(|V|CF + |E|F ) for GAT, and O(2|V|CF + 2|E|F ) for BGAT-T.

MODEL SETUPS FOR SEMI-SUPERVISED NODE CLASSIFICATION

As our proposed models (i.e., BGCN-T, BGAT-T) need a discriminative model to refine inference, we
use standard GCN and GAT models as teacher networks for BGCN-T and BGAT-T, respectively. For
the BGCN-T model, we use the early stopping strategy (Shchur et al., 2018) on Coauthor Physics,
Amazon Computer and Amazon Photo datasets while non-early stopping strategy is used in citation
datasets (i.e., Cora, Citeseer and Pubmed). We set bandwidth σ = 1 for all datasets in GKDE, and
set trade off parameters λ = min(1, t/200) (where t is the index of a current training epoch); and
other hyperparameter configurations are summarized in Table 6. The BGAT-T model has two dropout
probabilities, which are a dropout on features and a dropout on attention coefficients, as showed in
Table 7. We changed the dropout on attention coefficients to 0.4 at the test stage and set trade off
parameters λ = min(1, t/50), using the same early stopping strategy (Veličković et al., 2018). Note
that lack of memory (we used one Titan X GPU, 12 GB memory), we could not obtain the result for
BGAT-T on Coauthor Physics, Amazon Computer and Amazon Photo datasets.

For semi-supervised node classification, we use 50 random weight initialization for our models on
Citation network datasets. For Coauthor Physics, Amazon Computer and Amazon Photo datasets,
we report the result based on 10 random train/validation/test splits. In both effect of uncertainty on
classification prediction accuracy and the OOD detection, we report the AUPR and AUROC results
in percent averaged over 50 times of randomly chosen 1000 test nodes in all of test sets (except
training or validation set) for all models tested on the citation datasets. For BGCN-T model in these
tasks, we use the same hyperparameter configurations as in Table 6, except BGCN-T Epistemic
using 20,000 epochs to obtain the best result. For baseline models, GCN-Drop. models use the same
hyperparameters as in Table 6 to achieve the best performance, also using 20,000 training epochs
for GCN-Drop. Epistemic. GCN Entropy uses the same hyperparameter configurations in (Kipf &
Welling, 2016).

Cora Citeseer Pubmed Co.Physics Ama.Computer Ama.Photo

Hidden units 16 16 16 64 64 64
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Dropout 0.5 0.5 0.5 0.1 0.2 0.2
L2 reg.strength 0.0005 0.0005 0.0005 0.001 0.0001 0.0001
Monte-Carlo samples 500 500 500 100 100 100
Max epoch 200 200 200 100000 100000 100000

Table 6: Hyperparameter configurations of BGCN-T model.

Cora Citeseer Pubmed

Hidden units 64 64 64
Learning rate 0.01 0.01 0.01
Dropout 0.6/0.6 0.6/0.6 0.6/0.6
L2 reg.strength 0.0005 0.0005 0.001
Monte-Carlo samples 100 100 100
Max epoch 100000 100000 100000

Table 7: Hyper-parameters of BGAT-T model.
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Figure 4: Graph embedding representations of the Citeseer dataset for classes and the extent of
uncertainty: (a) shows the representation of seven different classes, (b) shows our model prediction
and (c)-(f) present the extent of uncertainty for respective uncertainty types, including vacuity,
dissonance, and aleatoric uncertainty, respectively.

ALGORITHM FOR OUR ALGORITHM

Algorithm 1: Bayesian framework with teacher network
Input: G = (V,E, r) and yL
Output: pV\L, uV\L

1 ` = 0;
2 Set hyper-parameters;
3 Initialize the parameters γ, β;
4 Calculate the prior Dirichlet distribution Dir(α̂);
5 repeat
6 Forward pass to compute α, Prob(pi|r;G), Prob(yi|r;β) for i ∈ V;
7 Compute joint probability Prob(y|r;G), Prob(y|r;β);
8 Backward pass via the chain-rule the calculate the sub-gradient gradient: g(`) = ∇ΘL(Θ)

9 Update parameters using step size η via Θ(`+1) = Θ(`) − η · g(`)

10 ` = `+ 1;
11 until convergence
12 Calculate pV\L, uV\L

13 return pV\L, uV\L

B ADDITIONAL EXPERIMENT RESULTS

Further experiment have been run in addition to the uncertainty analysis in section 5. First, we show
more uncertainty visualization result in network node classification for Citeseer dataset. To better
understand the performance of uncertainty quality clearly for each uncertainty, we show the AUROC
and AUPR curves for all models and uncertainties.
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(a) PR curves on Cora (b) PR curves on Citeseer (c) PR curves on Pubmed

Figure 5: PR curves of node classification prediction for all models and uncertainties.

GRAPH EMBEDDING REPRESENTATIONS OF DIFFERENT UNCERTAINTY TYPES

To better understand different uncertainty types, we used t-SNE (t-Distributed Stochastic Neighbor
Embedding (Maaten & Hinton, 2008)) to represent the computed feature representations of a pre-
trained BGCN-T model’s first hidden layer on the Citeseer dataset.

Six Classes on Citeseer Dataset: In Figure 4 (a), a node’s color denotes a class on the Citeseer
dataset where 6 different classes are shown in different colors. Figure 4 (b) is our prediction result.

For Figures 4 (c)-(f), the extent of uncertainty is presented where a blue color refers to the lowest
uncertainty (i.e., minimum uncertainty) while a red color indicates the highest uncertainty (i.e.,
maximum uncertainty) based on the presented color bar. To examine the trends of the extent of
uncertainty depending on either training nodes or test nodes, we draw training nodes as bigger circles
than test nodes. Overall we notice that most training nodes (shown as bigger circles) have low
uncertainty (i.e., blue), which is reasonable because the training nodes are the ones that are already
observed. Now we discuss the extent of uncertainty under each uncertainty type.

Vacuity: In Figure 4 (c), although most training nodes show low uncertainty, we observe majority of
test nodes in the mid cluster show high uncertainty as appeared in red.

Dissonance: In Figure 4 (d), similar to vacuity, training nodes have low uncertainty. But unlike
vacuity, test nodes are much less uncertain. Recall that dissonance represents the degree of conflicting
evidence (i.e., discrepancy between each class probability). However, in this dataset, we observe a
fairly low level of dissonance and the obvious outperformance of Dissonance in node classification
prediction.

Aleatoric uncertainty: In Figure 4 (e), a lot of nodes show high uncertainty with larger than 0.5
except a small amount of training nodes with low uncertainty. High aleatoric uncertainty positively
affects, showing high performance in OOD detection.

Epistemic uncertainty: In Figure 4 (f), most nodes show very low epistemic uncertainty because
uncertainty derived from model parameters can disappear as they are trained well. Therefore, non-
distinctive low uncertainty for most nodes do not help much to select good test nodes to improve
performance in node classification.

PR AND ROC CURVES

AUPRC for the OOD Detection: Figure 6 shows the AUPRC for the OOD detection when BGCN-T
is used to detect OOD in which test nodes are considered based on their high uncertainty level, given
a different uncertainty type, such as vacuity, dissonance, aleatoric, epistemic, or entropy (or total
uncertainty). Also to check the performance of the proposed models with a baseline model, we added
BGCN-T with test nodes randomly selected (i.e., Random).

Obviously, in BGCN-T Random, precision was not sensitive to increasing recall while in BGCN-T
(with test nodes being selected based on high uncertainty) precision decreases as recall increases.
But although most BGCN-T models with various uncertainty types used to select test nodes shows
sensitive precision to increasing recall (i.e., proving uncertainty being an indicator of improving OOD
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(a) PR curves on Cora (b) PR curves on Citeseer (c) PR curves on Pubmed

Figure 6: PR cuves of OOD detection for all models and uncertainties.

(a) ROC curves on Cora (b) ROC curves on Citeseer (c) ROC curves on Pubmed

Figure 7: ROC curves of OOD detection for all models and uncertainties.

detection), BGCN-T Epistemic even performed worse than the baseline (i.e., BGCN-T Random). This
is because epistemic uncertainty cannot distinguish the flat Dirichlet distribution (α = (1, . . . , 1))
from sharp Dirichlet distribution (α = (10, . . . , 10)), which leads to no effective selection of
test nodes for improving the performance in OOD detection. In addition, unlike AUPR in node
classification prediction, which showed the best performance in BGCN-T Dissonance (see Figure 5),
BGCN-T Dissonance showed the second worst performance among the proposed BGCN-T models
with other uncertainty types. This means that less conflicting information does not help OOD
detection. On the other hand, overall we observe BGCN-T Aleatoric or Vacuity performs the best
among all while BGCN-T Entropy also performs fairly well as the third best. From this finding,
we can claim that to improve OOD detection, more randomness with high aleatoric uncertainty and
less information with high vacuity can help boost the accuracy of the OOD detection. Although the
uncertainty level observed from aleatoric uncertainty and entropy was quite similar, the performance
in OOD detection is not necessarily similar, as shown in Figures 6 (b) and (c) on Citeseer and Pubmed.
The reason is that BCGN-T Aleatoric provides test nodes with more distinctive uncertainty levels
while BCGN-T Entropy doesn’t. This is because BCGN-T Entropy combines the aleatoric and
epistemic uncertainty where epistemic uncertainty is mostly highly low, ultimately leading to poor
distinctions of nodes based on different uncertainty levels.

AUROC for the OOD Detection: First, we investigated the performance of our proposed BGCN-
T models when test nodes are selected based on seven different criteria (i.e., 6 uncertainties and
random). Like AUPR in Figure 5, based on BGCN-T, we considered a baseline by selecting test
nodes randomly while five different uncertainty types are used to select test nodes based on the order
of high uncertainty. For AUROC in Figure 7, we observed much better performance in most BGCN-T
models with all uncertainty types except epistemic uncertainty. Although epistemic uncertainty
is known to be effective to improve OOD detection (Kendall & Gal, 2017) in computer vision
applications, our result showed fairly poor performance compared to the case other uncertainty
types are used. This is because our experiment is conducted with a very small of training nodes
(i.e., 3% on Cora, 2% on Citeseer, 0.2% on Pubmed) which is highly challenging to observe high
performance particularly with epistemic uncertainty. Recall that we used 200 epochs to train nodes
for all models except BCGN-T Epistemic which was trained with 20,000 epochs. In this experiment,
even BGCN-T Vacuity performed the best although BGCN-T Dissonance, BGCN-T Aleatoric, or
BGCN-T Entropy performs comparably. But on Citeseer and Pubmed datasets, we also observed
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relatively low performance with BGCN-T Dissonance. This finding is also well aligned with what
we observed in Table 4 (in paper). BGCN-T Vacuity performs the best on Cora and Citeseer datasets
while BGCN-T Aleatoric performed the best on Pubmed dataset. Obviously BGCN-T Aleatoric and
BGCN-T Vacuity outperform BGCN-T Distributional in OOD detection.

C DERIVATIONS FOR UNCERTAINTY MEASURES AND KL DIVERGENCE

This appendix provides the derivations and shows how calculate the uncertainty measures discussed
in section 3 for BGCN. Additionally, it describes how to calculate the joint probability, Dirichlet
parameters and KL-divergence between Prob(y|r;β) and Prob(y|r;γ,G).

UNCERTAINTY MEASURES

Vacuity uncertainty of Bayesian Graph neural networks for node i:

Vacuity[pi] = EProb(θ|G)[vi]

= EProb(θ|G)

[
K/

K∑
k=1

αik

]
≈ Eq(θ)

[
K/

K∑
k=1

αik

]
≈ 1

M

M∑
m=1

[
K/

K∑
k=1

α
(m)
ik

]
, α(m) = f(r,θ(m)), θ(m) ∼ q(θ)

Dissonance uncertainty of Bayesian Graph neural networks for node i:

Disso.[pi] = EProb(θ|G)

[
ω(bi)

]
≈ Eq(θ)

[
ω(bi)

]
≈ 1

M

M∑
m=1

[
ω(bi)

]
, θ(m) ∼ q(θ)

and

ω(bi) =

K∑
k=1

(bik∑K
j=1,j 6=k bijBal(bij , bik)∑K

j=1,j 6=k bij

)
,

where the relative mass balance between a pair of belief masses bij and bik is expressed by
Bal(bij , bik) = 1− |bij − bik|/(bij + bik).

Aleatoric uncertainty of Bayesian Graph neural networks for node i, followed (Malinin & Gales,
2018):

Aleatoric[pi] = EProb(θ|G)
[
H(yi|r;θ)

]
≈ Eq(θ)

[
H(yi|r;θ)

]
≈ 1

M

M∑
m=1

H
[
(yi|r;θ(m))

]
, θ(m) ∼ q(θ)

≈ 1

M

M∑
m=1

K∑
j=1

Prob(yi = j|r;θ(m)) log
(

Prob(yi = j|r;θ(m))
)
, θ(m) ∼ q(θ)
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Epistemic uncertainty of Bayesian Graph neural networks for node i, followed (Gal, 2016):

Epistemic[pi] = H
[
EProb(θ|G)[(yi|r;θ)]

]
− EProb(θ|G)

[
H(yi|r;θ)

]
≈ H

[
Eq(θ)[(yi|r;θ)]

]
− Eq(θ)

[
H(yi|r;θ)

]
≈ H

[ 1

M

M∑
m=1

Prob(yi|r;θ(m))
]
− 1

M

M∑
m=1

H
[
(yi|r;θ(m))

]
, θ(m) ∼ q(θ)

JOINT PROBABILITY

At the test stage, we infer the joint probability by:

p(y|r;G) =

∫ ∫
Prob(y|p)Prob(p|r;θ)Prob(θ|G)dpdθ

≈
∫ ∫

Prob(y|p)Prob(p|r;θ)q(θ)dpdθ

≈ 1

M

M∑
m=1

∫
Prob(y|p)Prob(p|r;θ(m))dp, θ(m) ∼ q(θ)

≈ 1

M

M∑
m=1

∫ N∑
i=1

Prob(yi|pi)Prob(pi|r;θ(m))dpi, θ(m) ∼ q(θ)

≈ 1

M

M∑
m=1

N∑
i=1

∫
Prob(yi|pi)Prob(pi|r;θ(m))dpi, θ(m) ∼ q(θ)

≈ 1

M

M∑
m=1

N∏
i=1

∫
Prob(yi|pi)Dir(pi|α

(m)
i )dpi, α(m) = f(r,θ(m)), q θ(m) ∼ q(θ)

where the posterior over class label p will be given by the mean of the Dirichlet:

Prob(yi = p|θ(m)) =

∫
Prob(yi = p|pi)Prob(pi|r;θ(m))dpi =

α
(m)
ip∑K

k=1 α
(m)
ik

The probabilistic form for a specific node i by using marginal probability,

Prob(yi|r;G) =
∑
y\yi

Prob(y|r;G)

=
∑
y\yi

∫ ∫ N∏
j=1

Prob(yj |pj)Prob(pj |r;θ)Prob(θ|G)dpdθ

≈
∑
y\yi

∫ ∫ N∏
j=1

Prob(yj |pj)Prob(pj |r;θ)q(θ)dpdθ

≈
M∑
m=1

∑
y\yi

∫ N∏
j=1

Prob(yj |pj)Prob(pj |r;θ(m))dp, θ(m) ∼ q(θ)

≈
M∑
m=1

[∑
y\yi

∫ N∏
j=1

Prob(yj |pj)Prob(pj |r;θ(m))dpj
]
, θ(m) ∼ q(θ)

≈
M∑
m=1

[∑
y\yi

N∏
j=1,j 6=i

Prob(yj |rj ;θ(m))
]
Prob(yi|r;θ(m)), θ(m) ∼ q(θ)

≈
M∑
m=1

∫
Prob(yi|pi)Prob(pi|r;θ(m))dpi, θ(m) ∼ q(θ)
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specifically for probability of label p,

Prob(yi = p|r;G) ≈ 1

M

M∑
m=1

α
(m)
ip∑K

k=1 α
(m)
ik

, α(m) = f(r,θ(m)), θ(m) ∼ q(θ)

KL-DIVERGENCE

KL-divergence between Prob(y|r;β) and Prob(y|r;γ,G):

KL[Prob(y|r;G)||Prob(y|r;β))] = EProb(y|r;G)

[
log

Prob(y|r;G)

Prob(y|r;β)

]
≈ EProb(y|r;G)

[
log

∏N
i=1 Prob(yi|r;G)∏N
i=1 Prob(yi|r;β)

]
≈ EProb(y|r;G)

[ N∑
i=1

log
Prob(yi|r;G)

Prob(yi|r;β)

]
≈

N∑
i=1

EProb(y|r;G)

[
log

Prob(yi|r;G)

Prob(yi|r;β)

]
≈

N∑
i=1

K∑
j=1

Prob(yi = j|r;G)
(

log
Prob(yi = j|r;G)

Prob(yi = j|r;β)

)

The KL divergence between two Dirichlet distributions Dir(α) and Dir(α̂) can be obtained in closed
form as follows:

KL[Dir(α)‖Dir(α̂)] = ln Γ(S)− ln Γ(Ŝ) +

K∑
c=1

(
ln Γ(α̂c)− ln Γ(αc)

)
+

K∑
c=1

(αc − α̂c)(ψ(αc)− ψ(S))

where S =
∑K
c=1 αc and Ŝ =

∑K
c=1 α̂c

18
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