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ABSTRACT

Parallel developments in neuroscience and deep learning have led to mutually
productive exchanges, pushing our understanding of real and artificial neural net-
works in sensory and cognitive systems. However, this interaction between fields
is less developed in the study of motor control. Existing experimental research
and neural network models have been focused on the production of individual be-
haviors, yielding little insight into how intelligent systems can produce a rich and
varied set of motor behaviors. In this work we develop a virtual rodent that learns
to flexibly apply a broad motor repertoire, including righting, running, leaping
and rearing, to solve multiple tasks in a simulated world. We analyze the artificial
neural mechanisms underlying the virtual rodent’s motor capabilities using a neu-
roethological approach, where we characterize neural activity patterns relative to
the rodent’s behavior and goals. We show that the rodent solves tasks by using a
shared set of force patterns that are orchestrated into task-specific behaviors over
longer timescales. Through methods familiar to neuroscientists, including repre-
sentational similarity analysis, dimensionality reduction techniques, and targeted
perturbations, we show that the networks produce these behaviors using at least
two classes of behavioral representations, one that explicitly encodes behavioral
kinematics in a task-invariant manner, and a second that encodes task-specific
behavioral strategies. Overall, the virtual rat promises to facilitate grounded col-
laborations between deep reinforcement learning and motor neuroscience.

1 INTRODUCTION

Animals have nervous systems that allow them to coordinate their movement and perform a diverse
set of complex behaviors. While complex behavior exists across the animal kingdom, mammals,
in particular, are generalists, capable of flexibly selecting and adaptively refining behaviors towards
varied goals. To date, the complexity and adaptability observed in mammals far surpasses what is
possible to produce in robots or artificial motor control systems. This suggests that studies of animal
behavior may yield basic insights into classes of algorithms capable of flexibly producing complex
movement. And while neuroscientists aim to understand how animal nervous systems are capable of
solving motor challenges, AI researchers can leverage those insights to design algorithms to flexibly
control artificial systems.

Recently, there has been renewed interest in a constructive approach in which artificial models that
solve tasks that parallel those solved by real animals serve as normative models of biological in-
telligence. Researchers have attempted to leverage these models to gain insights into the algorith-
mic objectives implemented by neurobiological circuits, prominently in vision (Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014; Kar et al., 2019), but also increasingly in other areas,
including audition (Kell et al., 2018) and navigation (Banino et al., 2018; Cueva & Wei, 2018).
However these constructive efforts have been of a more limited scope in studies of the motor sys-
tem. Existing approaches for building artificial models of motor or behavioral production, largely
focus on the production of single behaviors. In the context of locomotion, especially for research
focused on reproducing observed gait patterns of animals, efforts constructing biologically inspired
controllers have been scientifically informative (Grillner et al., 2007; Ijspeert et al., 2007; Ramdya
et al., 2017), and similar ideas have been used for animation (Coros et al., 2011) and even paleo-
biology (Nyakatura et al., 2019). In addition, reaching movements have been studied using similar
methods, though again in the context of relatively constrained behavioral paradigms (Lillicrap &
Scott, 2013), and often with supervised data available (Sussillo et al., 2015; Michaels et al., 2019).
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Together, while these approaches model the interactions between animals and their physical envi-
ronments (Chiel & Beer, 1997), they do not deal with the fundamental challenges and opportunities
of motor and behavioral control in mammals, namely using the same body and behavioral repertoire
to solve multiple distinct cognitive challenges. While some efforts have been made to analyze neu-
ral activity in reduced systems trained to solve multiple tasks (Song et al., 2017; Yang et al., 2019),
those studies have lacked the essential element of motor control in a physical environment.

Emerging deep reinforcement learning algorithms are now allowing artificial agents to perform com-
plex and adaptive movement in physical environments with egocentric sensory information that is
increasingly similar to that available to animals (Peng et al., 2016; 2017; Heess et al., 2017; Merel
et al., 2019a;b). While these artificial networks could be analyzed directly, we are not able to directly
compare the findings to biological data from animal models such as rodents, which offer a broad be-
havioral repertoire and far greater experimental tractability for manipulating and recording from the
brain. To facilitate grounded investigation into circuits capable of generating multiple behaviors
with some shared motor elements, we introduce a virtual model of a rodent, and demonstrate its
promise as a tool for understanding the computations underlying movement generation. Our virtual
rodent exists in a physical world and is equipped with a set of actuators that must be coordinated for
it to run, jump, spin, and rear. It also possesses a sensory system that allows it to use visual input
from an egocentric camera located on its head as well as proprioceptive information to sense the
configuration of its body in space. To control its body, the rodent is episodically presented with a
series of motor and cognitive tasks from which it learns end-to-end to produce effective movements
and solve tasks with high reliability.

We then ask “Can a neuroscientist understand a virtual rodent?” – a more grounded take on the
originally satirical “Can a biologist fix a radio?” (Lazebnik, 2002) or the more recent “Could a
neuroscientist understand a microprocessor?” (Jonas & Kording, 2017). We take a more sanguine
view of the tremendous advances that have been made in computational neuroscience in the past
decade, and posit that the supposed ‘failure’ of these approaches in synthetic systems is partly a
misdirection. Analysis approaches in neuroscience were developed with the explicit purpose of
understanding sensation and action in real brains, and often implicitly rooted in the types of archi-
tectures and processing that are thought relevant in biological control systems. With this philosophy,
we use analysis approaches common in neuroscience to explore the types of representations and dy-
namics that the virtual rodent’s neural network employs to allow it to coordinate multiple complex
movements in the service of solving motor and cognitive tasks.

2 APPROACH

2.1 VIRTUAL RODENT BODY

We implemented a virtual rodent body in MuJoCo (Todorov et al., 2012), based on measurements
of laboratory rats (see Appendix A.1). The rodent body has 38 controllable degrees of freedom. The
tail, spine, and neck consist of multiple segments with joints, but are controlled by tendons that co-
activate multiple joints (spatial tendons in MuJoCo). Upon publication, we will release the rodent
model.

Figure 1: (A) Anatomical skeleton of a rodent (as reference; not part of physical simulation). (B) A
body designed around the skeleton to match the anatomy and model collisions with the environment.
(C) Purely cosmetic skin to cover the body. (D) Semi-transparent visualization of (A)-(C) overlain.
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2.2 TASKS THE VIRTUAL RODENT

Figure 2: Visualizations of four tasks the virtual rodent is trained to solve: (A) jumping over gaps
(“gaps run”), (B) foraging in a maze (“maze forage”), (C) escaping from a hilly region (“bowl es-
cape”), and (D) touching a ball twice with a forepaw with a precise timing interval between touches
(“two-tap”).

We implemented four tasks (adapted from Merel et al. (2019a); Tassa et al. (2018) as well as (Kawai
et al., 2015)) to encourage diverse motor behaviors in the rodent. The tasks are as follow: (1) Run
along a corridor, over “gaps”, with a reward for traveling along the corridor at a target velocity
(Figure 2A). (2) Collect all the blue orbs in a maze, with a sparse reward for each orb collected
(Figure 2B). (3) Escape a bowl-shaped region by traversing hilly terrain, with a reward proportional
to distance from the center of the bowl (Figure 2C). (4) Approach orbs in an open field, activate
them by touching them with a forepaw, and touch them a second time after a precise interval of
800ms with a tolerance of ±100ms; there is a time-out period if the touch is not within the tolerated
window and rewards are provided sparsely on the first and second touch (Figure 2D).

For it to be possible for all tasks to be performed by a single agent, they must share an observation
and action space. The observation space for all tasks consists of proprioceptive inputs as well as
“raw” egocentric RGB-camera (64×64 pixels) input from a head-mounted camera. The proprio-
ceptive inputs include internal joint angles and angular velocities, the positions and velocities of the
tendons that provide actuation, egocentric vectors from the root (pelvis) of the body to the positions
of the head and paws, a vestibular-like upright orientation vector, touch or contact sensors in the
paws, as well as egocentric acceleration, velocity, and 3D angular velocity of the root. We do not
provide the agent with a cue or context indicating which task it is in. Rather, the agent must infer
which task it is in from the visual input and behave appropriately.

2.3 TRAINING A MULTI-TASK POLICY

Figure 3: The virtual rodent agent architecture. Egocentric visual image inputs are encoded into
features via a small residual network (He et al., 2016) and proprioceptive state observations are
encoded via a small multi-layer perceptron. The features are passed into a recurrent LSTM module
(Hochreiter & Schmidhuber, 1997). The core module is trained by backpropogation during training
of the value function. The outputs of the core are also passed as features to the policy module (with
the dashed arrow indicating no backpropogation along this path during training) along with shortcut
paths from the proprioceptive observations as well as encoded features. The policy module consists
of one or more stacked LSTMs (with or without skip connections) which then produce the actions
via a stochastic policy.
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Emboldened by recent results in which end-to-end RL produces a single terrain-adaptive policy
(Peng et al., 2016; 2017; Heess et al., 2017), we decided to train a single model on the multiple
motor-control-reliant tasks. To train a single policy to perform all four tasks, we used an IMPALA-
style setup for actor-critic DeepRL (Espeholt et al., 2018); parallel workers collected rollouts, logged
them to a replay, from which a central learner sampled data to perform updates. The value-function
critic was trained using off-policy correction via V-trace. To update the actor, we used a variant of
MPO (Abdolmaleki et al., 2018) where the E-step is performed using advantages determined from
the empirical returns and the value-function, instead of the Q-function (Anonymous, 2019). Em-
pirically, we found that the “escape” task was more challenging to learn during interleaved training
relative to the other tasks. Consequently, for the results we present, we trained a single-task expert
on the escape task and trained the multi-task policies using kickstarting for that task (Schmitt et al.,
2018), with a weak coefficient (.001 or .005). Kickstarting on this task made the seeds more reliably
solve all four tasks, facilitating comparison of the multi-task policies with different architectures
(i.e. the policy having 1, 2, or 3 layers, with or without skip connections across those layers). The
result of this training procedure is a single neural network that is capable of using visual inputs to
determine how to behave as well as coordinating its body to move in ways required to solve the
tasks. See video examples of a single policy solving episodes of each task: gaps, forage, escape, and
two-tap.

3 ANALYSIS

To characterize the principles and mechanisms by which the networks control the virtual rodent,
we logged the animal’s kinematics, joint angles, and computed forces, sensory inputs, and neural
activity during 25 trials per task from each network architecture. We borrow analyses and perturba-
tion techniques from neuroscience, where a range of techniques have been developed to analyze the
properties of real neural networks, albeit often in the context of more reduced experiments.

Figure 4: Virtual rats learn to use a broad set of shared and task-specific locomotor behaviors. (A)
t-SNE embedding of 60 behavioral features describing the pose and kinematics of the virtual rat,
colored by hand-labeling of coarse behavioral categories. t-SNEs were made using the Barnes-Hut
approximation with a perplexity of 30. (B) Examples of the animal pose over 25 different regions
of the map. (C) Power spectral density of four different behavioral feature categories, computed by
averaging the spectral density of the top ten principal components of each motor feature, weighted by
the variance they explain. (D) We embedded the feature matrices of the same feature categories into
two-dimensions using multidimensional scaling, which revealed the emergence of task-specificity
in behaviors at longer timescales.
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3.1 ETHOLOGY OF THE VIRTUAL RODENT

Taking inspiration from ethological approaches, we begin our analysis with a careful evaluation
of the virtual rodent’s behavior. The rodent locomotes using a set of actuators that produce joint
specific forces and kinematics on short timescales. On longer timescales, the force patterns across
the body are organized into coordinated, re-used behaviors, such as running, jumping, and turning,
many of which are challenging from the standpoint of motor control. To systematically examine
the classes of behaviors these networks learn to generate, and how they are differentially deployed
across tasks, we adopted a behavioral mapping approach, where we generated a set of features
describing the pose and kinematics of animals and embedded them in 2D using t-SNE (Berman
et al., 2014). Features were computed by taking the top 15 principal components of the virtual
rat’s joint angles and marker positions to yield a set of eigenpostures (Stephens et al., 2008). We
then computed the top 15 principal components of the Morlet wavelet transform of these two sets
of eigenpostures, on 25 scales between either 1 to 25 Hz timescales (behavioral features) , 0.3 to
5 Hz (slow behavioral features) or 5-25 Hz (fast behavioral features). In all cases, this yielded a
60 dimensional feature set describing the animals pose and kinematics. Embedding these features
using t-SNE (Maaten & Hinton, 2008) produced a behavioral map in which virtual rodent behaviors
are segregated to different regions of the map. The map captures some of the relationship structure
among the broad range of locomotor behaviors, including rearing, jumping, running, climbing and
spinning (see video). These behavioral features, which vary over a longer timescale than forces
or velocity, provided a complementary basis for characterizing the animal’s behavior (Figure 4C).
Interestingly, while patterns of activation of low level motor features were largely shared across
tasks (Figure 4D). In contrast, longer timescale behaviors, especially slow behavioral features, were
more differentiated across tasks, suggesting that the network learned to adapt similar movements in
a selective manner for different tasks (Figure 4D).

3.2 REPRESENTATIONAL STRUCTURE OF THE VIRTUAL RODENT’S NEURAL NETWORK

Figure 5: Representational structure of the rodent’s neural network. (A) Example dissimilarity
matrices of the core and policy networks, behavioral features, and actuator forces, computed across
50 different behavioral categories. (B) CKA index of neural and behavioral dissimilarity matrices for
3 and 1 policy layer architectures. (C) CKA index of neural dissimilarity matrices for all network
layers. (D) Average CKA index between policy layers and behavioral features, compared across
architectures. Points show values from individual network seeds.

In addition to behavioral parameters, we concurrently measured and analyzed the neural activity of
LSTM cell units in each layer. Inspection of neural activity during task performance revealed that
core and policy units operate on distinct timescales (See Appendix A.2, Figure 9). Units in the core
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are typically active over timescales of 1-10 seconds, likely representing variables associated with
context and reward. In contrast, units in policy layers are more active over subsecond timescales,
likely encoding motor and behavioral features.

To quantify which aspects of behavior were encoded in the core and policy layers, we used represen-
tational similarity analysis, which can provide a global measure of how well behavioral parameters
are encoded in networks, and how this encoding varies across layers and architectures (Kriegeskorte
& Diedrichsen, 2019; Kornblith et al., 2019). To compute how well a population encodes behavioral
parameters, such as forces or behaviors, we can compute the dissimilarity of the neural represen-
tations between neurons in a given layer across different categories of force patterns or behaviors
(Figure 5A). We balanced these categories by dividing each behavioral feature class into 50 clusters
using k-means. Following computation of the dissimilarity matricies, one can compare the corre-
lation, dot product, or other similarity metrics such as the centered kernel alignment (CKA) index
between the behavioral dissimilarity matrix and neural dissimilarity matrix, or between different
neural dissimilarity matricies. The former provides a measure of how well a neural population en-
codes a behavioral feature, while the later provides information regarding how similar this encoding
pattern is over neural populations.

Representational analyses revealed that core and policy layers encoded distinct behavioral features.
Policy layers contained greater information about behaviors, especially over fast timescales while
core layers showed more moderate encoding that was stronger for slow behavioral features (Figure
5B). In networks trained with three policy layers, representations were distributed in timescales
across layers, with the last layer (Policy 2) showing stronger encoding of fast behavioral features,
and the first layer (Policy 0) instead showing stronger encoding of slow behavioral features. The
pattern of behavioral encoding was shared across policy layers, but highly distinct from the core
(Figure 5C). In networks with a single policy layer, a broader set of behavioral representations were
present in both core and policy layers. The strength of behavioral encoding was similar across all
architectures tested (Figure 5D).

Figure 6: Task Selectivity in the core and policy networks. (A) We embedded the feature matrices
of core and policy networks into two-dimensions using multidimensional scaling, which revealed
task-specificity in core representations. (B) CKA index of the policy and core across different task
conditions. (C) The CKA index between the dissimilarity matrices of each activation layer across
tasks for different behavioral features. (D) The similarity of behavioral feature encoding (CKA
index) across different architectures. Points show values from individual seeds.

We then investigated how these networks are able to differentiate movements in a task-specific man-
ner, by characterizing how the representational structure varied across tasks. Embedding population
activity into two-dimensions using multidimensional scaling revealed that core neuron representa-
tions were highly distinct across tasks, while policy layers contained more overlap (Figure 6A). To
quantify this task-dependent coding, we compared the representations of the same behaviors over
tasks. First, we computed the dissimilarity matricies of behaviors within each task. Second, we
detected the shared set of behaviors across tasks, and computed the correlation (CKA) between the
task-specific dissimilarity matricies across this shared set of tasks (Figure 6B). This analysis revealed
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that policy layers tended to possess a relatively similar encoding of behavioral features, especially
fast behavioral features, over tasks (Figure 6C; Appendix A.3, Figure 10). Core layer representations
across almost all behavioral categories were more variable across tasks. Notably, slow behavioral
feature encodings were also more variable across tasks. Overall, this is consistent with the interpre-
tation that policy networks possess a fixed, short timescale representation of behaviors, while core
networks contain a longer timescale representation of behavioral sequences or abstract encodings of
task variables.

Interestingly, when comparing this cross-task encoding similarity across architectures, we found that
one layer networks showed a marked increase in the similarity of behavioral encoding across tasks
(Figure 6D). This suggests that in networks with lower computational capacity, animals must rely
on a smaller, shared behavioral representation across tasks.

3.3 DYNAMICAL PROPERTIES OF VIRTUAL RODENT NEURAL NETWORK ACTIVITY

Figure 7: Neurons in core and policy networks show sequential activity during stereotyped behavior.
(A) Example video stills showing the virtual rat engaged in the two-tap task (B) Average absolute
z-scored activity traces of all 128 neurons in each layer during performance of the two-tap sequence.
Traces are sorted by the time of peak average firing rate. Dashed lines indicate the times of first and
second taps. Sequential neural activity is present during the two-tap sequence.

While representational similarity analysis assessed the overall representational structure of the pop-
ulation, it failed to provide insight into dynamical network mechanisms that may underlie the pro-
duction of behavior, as well as more abstract features that reflect the reward structure of the task. For
instance, in the two-tap task, peak activity in core and policy units was sequentially organized (Fig-
ure 7), uniformly tiling time between both taps of the two-tap sequence. This sequential activation in
policy networks was observed across tasks and behaviors, including during jumping (see video), and
notably during running, where, consistent with policy networks encoding short-timescale kinematic
features in a task-invariant manner, neural activity sequences during running were largely conserved
across tasks (See Appendix A.3, Figure 10). Interestingly, we also observed that neural variability is
reduced during the inter-trial interval when more stereotyped behavior is demanded by the two-tap
task, which may have bearing on classic results in motor control (See Appendix A.4, Figure 11).

To systematically examine the types of sequential or dynamical activity present in core and policy
networks, we examined the dynamics of the networks’ population vector over time. We first applied
principal components analysis (PCA) to the activity during the performance of single tasks, and
visualized the gradient of the population vector as a vector field. Figure 8A shows such a vector
field representation of the first two principal components of the core and final policy layer during
the two-tap task. We generated vector fields by discretizing the PC space into a two-dimensional
grid and calculating the average neural activity gradient with respect to time for each bin. The vector
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fields showed strong signatures of rotational dynamics across all layers. To quantify the frequency
of these dynamical patterns, we turned to jPCA, a dimensionality reduction method that extracts
rotational dynamics in neural activity by fitting a rotational linear dynamical system to neural data
(Churchland et al., 2012). The resulting jPCs form an orthonormal basis that spans the same space
as the first six traditional PCs, while maximally emphasizing rotational dynamics. Figure 8B shows
the vector fields of the first two jPC planes for the core and final policy layers along with their
characteristic frequency. Consistent with our previous findings, jPC planes in the core have lower
characteristic frequencies than those in policy layers across tasks (Figure 8C). The jPC planes also
individually explained a large amount of total neural variability, suggesting that they are informative
dimensions for describing population activity (Figure 8D).

Figure 8: Latent network dynamics within tasks reflect rodent behavior on different timescales. (A)
Vector field representation of the first two principal components of neural activity in the core and
final policy layers during the two-tap task. PC spaces show signatures of rotational dynamics. (B)
Vector field representation of first two jPC planes for the core and final policy layers during the two-
tap task. Apparent rotations within the different planes are associated with behaviors and behavioral
features of different timescales, labeled above. Columns denote layer (as in (A)), while rows denote
jPC plane. (C) Characteristic frequency of rotations within each jPC plane. Groups of three points
respectively indicate the first, second, and third jPC planes for a given layer. Rotations in the core
are slower than those in the policy. (D) Variance explained by each jPC plane.

These rotational dynamics in the policy and core jPC planes were respectively associated with the
production of behaviors and the reward structure of the task, respectively. For example, in the two-
tap task, rotations in the fastest jPC plane in the core were concurrent with the approach to reward,
while rotations in the second fastest jPC were concurrent with long timescale transitions between
running to the orb and performing the two-tap sequence. Similarly, the fastest jPC in policy layers
was associated with the phase of running, while the second fastest was associated with the phase
of the two-tap sequence, (see video). This trend of core and policy neural dynamics respectively
reflecting behavioral and task-related features was also present in other tasks. For example, in the
maze forage task, the first two jPC planes in the core respectively correlated with reaching the
target orb and discovering the location of new orbs, while those in the policy were correlated with
low-level locomotor features such as running phase (see video). Along with our representational
similarity analysis, these findings further support a model in which the core layer transforms sensory
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information into a sensorimotor contextual signal in a task-specific manner while the policy uses this
signal and sensory inputs to generate appropriate behaviors in a more task-independent fashion. For
a more complete set of behaviors with neural dynamics visualizations overlain, see Appendix A.5.

3.4 CONSEQUENCES OF NEURAL PERTURBATIONS

To demonstrate these differing roles of core and policy units in respectively controlling movement
and task-relevant features, we performed causal perturbations of different neuronal subsets in the
two-tap task. We identified two stereotyped behaviors (rears and spinning jumps) that were reliably
used in two different seeds of the agent to reach the orb in the two-tap task. We ranked neurons
according to their degree of modulation of their z-scored activity during the performance of these
behaviors. We then inactivated subsets of neurons by clamping their activity to their mean val-
ues between the first and second taps and observed the effects of inactivation on trial success and
behavior.

In both seeds analyzed, inactivation of policy units had a stronger effect on motor behavior than
the inactivation of core units (Figure 12A). This can be seen in Appendix A.6 Figure 12B, where
ablation of 64 modulated neurons in the final policy layer disrupts the performance of the spinning
jump (video). In contrast, ablation of behavior-modulated core units did not prevent the production
of the behavior, but rather affected the way in which the behavior is directed toward objects in the
environment. For example, ablation of a subset of core units during the performance of a spinning
jump often had a limited affect, but sometimes resulted in jumps that missed the target orbs (video;
See Appendix A.6, Figure 12C).

We also performed a complementary perturbation aimed to elicit behaviors by overwriting the cell
state of neurons in each layer with a time-varying average trajectory of neural activity measured
during natural performance of a target behavior. The efficacy of stimulation was found to depend
on the gross body posture and behavioral state of an animal, but was nevertheless successful in
some cases. For example, during the two-tap sequence, we were able to elicit spinning movements
common to searching behaviors in the forage task (video; See Appendix A.6, Figure 12D, E). The
efficacy of this activation was more reliable in layers closer to the motor output (Figure 12D). In
fact, activation of core units rarely elicited spins, but rather elicited sporadic dashes reminiscent of
the searching strategy of many models during the forage task (video).

4 DISCUSSION

Neuroscientists seek multiple levels of insight into animal behavior as well as the structure and
function of the nervous systems. For many computational neuroscientists and artificial intelligence
researchers alike, an aim is to reverse-engineer the nervous system at an appropriate level of ab-
straction. In the motor system, such an effort requires that we build models of animals and produce
artificial nervous systems capable of controlling their synthetic bodies across a range of behavior.
Here we introduced a virtual rodent capable of performing a variety of complex of locomotor be-
haviors. By training a single policy to solve multiple tasks with distinct, but overlapping, motor and
behavioral demands, we have produced a simplified virtual nervous system that allows us to prac-
tice the techniques applied by neuroscientists and verify the extent to which they produce sensible
and interpretable results. An assumption underlying our approach is that the morphology of the
virtual rodent body combined with the tasks we trained the neural architecture to solve will result
in basic functional similarities between real and virtual rodent nervous systems. However, the key
advantage of this approach is that while in real animals it is often difficult to measure actuator forces
and kinematics, let alone sensory inputs across many behaviors, in the virtual rodent we can fully
observe sensory inputs, neural activity, and behavior, which facilitates more comprehensive testing
of theories related to how behavior is generated.

We demonstrated that while the virtual rat used a similar set of short-timescale movements across
tasks, while task-specific behaviors emerged on longer timescales. These behaviors were controlled
by a hierarchically organized neural network, in which upper layers reflect longer-timescale repre-
sentations of behavioral context, and lower levels contain shorter-timescale information about forces
and production of individual behaviors.
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We took two perspectives to characterizing neural activity in the virtual rodent: representational
similarity and dynamical systems. While these are sometimes thought of as competing conceptual
frameworks (Shenoy et al., 2013), we found them to address structure in neural dynamics at comple-
mentary temporal scales. During individual behaviors, networks appeared to follow fixed dynamical
trajectories. Yet across multiple behaviors, the subspaces used to encode these dynamics were sim-
ilar in accordance to the similarity of each behavior. While representational methods may in some
cases show greater variation across network instances (Maheswaranathan et al., 2019), we found
that these analysis perspectives provided distinct, but aligned insights.

Incrementally and judiciously increasing the realism of the model’s embodiment, behavioral reper-
toire, and neural architecture, is a natural path for future research. Our virtual rodent possesses
fewer actuators and sensors than a real rodent, and we have yet to explore integration with olfactory,
auditory, or whisker-based sensation (see Zhuang et al. (2017)). Our virtual rodent is capable of
locomotor behaviors, but it will be productive to consider an increased diversity of behavioral tasks
– involving decision making, memory-based navigation, and working memory, which could give
insight into “cognitive” behaviors of which rodents are capable. Furthermore, biologically-inspired
design of the neural architectures and training procedures should also facilitate comparisons to real
neural recordings and manipulations. As progress is made in capturing broader capabilities of ani-
mal intelligence, we hope to more precisely isolate residual elements of animal behavior generation
that are difficult to model and expect these will parallel those elements of intelligent control that are
difficult to engineer for artificial systems.
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A APPENDIX

A.1 RAT MEASUREMENTS

In order to construct the virtual rodent model, we obtained the mass and lengths of the largest
body segments that should affect the physical properties of the virtual rodent. First, we dissected
cadavers of two female Long-Evans rats, and measured the mass of relevant limb segments and
organs. Next, we measured the lengths of body segments over the skin of animals anesthetized with
2% v/v isoflurane. We confirmed that these skin based measurements approximated bone lengths by
measuring bone lengths in a third cadaver. The care and experimental manipulation of all animals
were reviewed and approved by the appropriate Institutional Animal Care and Use Committee.

Animal (#)
63 64

Body part Mass (g)

Hindlimb L 21 26
Hindlimb R 21 26
Tail 8 10
Forelimb R 11 14
Forelimb L 12 13
Full torso 176 187
Head 26 26
Upper torso 78 71
Lower torso 98 114
Torso without organs 54 58
Intestines and stomach 22 32
Liver 26 17
Pelvis and kidneys 74 80
Jaw 2.43 4.7
Skull 23 21
Tail (base to mid) 5.92 7.2
Tail (mid to tip) 1.78 2.3
Scapula L 3.19 4.7
Humerus L 6.25 4.7
Radius/ulna L 2.61 2.8
Forepaw L 0.53 0.5
Scapula R 2.23 3.9
Humerus R 6.08 6.7
Radius/ulna R 2.17 3.3
Forepaw R 0.53 0.5
Hindpaw L 1.66 1.7
Tibia L 9 9
Femur L 13 16
Hindpaw R 1.81 1.6
Tibia R 5 6
Femur R 13 18

Total 281 301

Table 1: Before weighing, limb segments were divided at their respective joints. Mass of all seg-
ments includes all bones, skin, muscle, fascia and adipose layers. L and R refer to the left and right
sides of the animal. Precision of measurements listed without decimal places is ±0.5g
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Animal (#)
48 62 55 56 64 63 62*

Age (days) 382 82 330 330 83 83 83
Mass (g) 325 273 389 348 283 269 273

Body part Length (mm)

Ankle to claw L 40.2 39.5 39.7 37.8 39.9 41.5 39.8
Ankle to toe L 38.4 38.12 37.7 35.6 36.6 39.3 38
Ankle to pad L 23.4 22.2 23 22.12 22.5 23.3 6.4
Ankle to claw R 38.2 40.4 38.3 39.3 39.6 38.3
Ankle to toe R 37 38.7 36.3 37.7 38.6 36.2
Ankle to pad R 22.4 23.3 21.9 21.8 23.1 24.1
Tibia L 50 36.3 38.5 49.2 35.8 38.7 34.1
Femur L 44.5 31.6 32.1 37.9 33.4 35.35 32.4
Tibia R 36.7 39.1 37.9 35.1 38.4 36.18
Femur R 32.9 32.1 38.7 31.9 32.1 32.6
Pelvis 25.8 32 31.7 30.2 26.7 27.2
Wrist to claw L 15 18.8 17.6 18.6 16 19.02 19.2
Wrist to finger L 16 15.8 17.4 15.5 17.07 17.6
Wrist to pad L 6 6.4 8.34 4.9 6.1 6.4
Wrist to olecranon L 29.1 34 32.5 31.7 33.9 32.1 29.9
Humerus L 31.9 29.52 31 28.2 27 31.2 25.4
Scapula L 22.7 24 26.4 29.3 25.9 29.1 26.2
Wrist to claw R 16.8 17 17.8 15.9 16.3 18.1
Wrist to finger R 14.1 13 15.6 15.6 15.3 16.9
Wrist to pad R 5.6 5.8 6.55 5.2 5 5.8
Wrist to olecranon R 30.6 33.5 31.2 30.4 31.8 29.9
Humerus R 28.2 33.5 28.8 25 28.2 25.2
Scapula R 23.8 29.5 25.9 26.2 28.8 24.4
Headcap width 39
Headcap length 30
Skull width 38.8 23.35 23 21.8 22.8 23.9 22.2
Skull length 57 51.1 61 56.48 53.16 58.13 48
Skull height 21.59 21.5 21
Head to thoracic 48.6 71.4 68.68 65 60.4 71.2
Thoracic to sacral 73.1 73.6 62.9 65.04 64.7 68.8
Head to sacral 145 126 145.5 127.05 127.2 123.7 140.9
Head width 53.4
Ear 18 17.55 19.3 17.9 19.2 18.8
Eye 7.2 8.25 8.6 8.8 8.2 8.3

Table 2: Length measurements of limb segments used to construct the virtual rodent model from 7
female Long-Evans rats. Measurements were performed using calipers either over the skin or over
dissected bones (*). Thoracic and sacral refer to vertebral segments. L and R refer to the left and
right sides of the animal’s body.
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A.2 POWER SPECTRAL DENSITY OF CORE AND POLICY LAYERS

Figure 9: Power spectral density of four different network layers, computed by averaging the spectral
density of the top ten principal components of each matrix of activations, weighted by the variance
they explain. Notice that policy layers have more power in high frequency bands than core layers.

A.3 COMPARISON FOR RUNNING NEURAL POPULATION ACTIVITY ACROSS TASKS

Figure 10: Average activity in the final policy layer during running cycles across different tasks. In
each heatmap, rows correspond to the average absolute zscored activity for individual neurons, while
columns denote time relative to the mid stance of the running phase. Across heatmaps, neurons are
sorted by the time of peak activity in the tasks denoted on the left, such that each column of heatmaps
contains the same average activity information with rearranged rows. Aligned running bouts were
acquired by manually segmenting the the principal component space of policy 2 activity to find
instances of mid-stance running and analyzing the surrounding 200 ms.

A.4 STEREOTYPED BEHAVIOR INITIATION AND NEURAL VARIABILITY

During the execution of stereotyped behaviors, neural variability is reduced (Figure 11). Recall that
in our setting, neurons have no intrinsic noise, but inherit motor noise through observations of the
state (i.e. via sensory reafference). This effect loosely resembles, and perhaps informs one line of
interpretation of the widely reported phenomenon of neural variability reducing with stimulus or
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task onset (Churchland et al., 2010). Our reproduction of this effect, which simply emerges from
training, suggests that variance modulation may partly arise from moments in a task that benefit
from increased behavioral precision (Renart & Machens, 2014).

Figure 11: Quantification of neural variability in inter-tap interval of two-tap task relative to the
second tap. (A) Example normalized activity traces of ten randomly selected neurons in the final
policy layer. Lines indicate mean normalized activity whiles shaded regions range from the 20th
percentile to the 80th percentile. Dashed lines indicate the times of first and second taps. (B)
Standard deviation of normalized activity across all neurons in the final policy layer as a function
of time relative to the second tap. Lines indicate the mean standard deviation while shaded regions
range from the 20th percentile to the 80th percentile. Observe that variability is reduced during the
two-tap interval.

A.5 NEURAL DYNAMICS VISUALIZED DURING TASK BEHAVIOR

For completeness, we provide links to videos of a few variants of neural dynamics for each task.

Network Visualization Task (link)

1-layer policy PCA gaps
PCA forage
PCA escape
PCA two-tap

3-layer policy PCA gaps
PCA forage
PCA escape
PCA two-tap

3-layer policy jPCA gaps
jPCA forage
jPCA escape
jPCA two-tap

Table 3: Links to representative visualizations of neural dynamics and behavior
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https://youtu.be/YviE8ZdOs-o
https://youtu.be/Pmp63jCZ9R8
https://youtu.be/VuQKHV25Dd8
https://youtu.be/tC6bMF8ZWaM
https://youtu.be/zYJEWG13SAw
https://youtu.be/1FvNZ8f1BFU
https://youtu.be/63REKsR8Mbo
https://youtu.be/xfYb8hnNrUs
https://youtu.be/O_7BUT3FVXk
https://youtu.be/XV3tz1bpjdg
https://youtu.be/ac-2km9jfL8
https://youtu.be/w51o3XGnHnc
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A.6 PERTURBATION RESULTS

Figure 12: Causal manipulations reveal distinct roles for core and policy layers in the production
of behavior. (A) Two-tap accuracy during the inactivation of units modulated by idiosyncratic be-
haviors within the two-tap sequence. Core inactivation has a weaker negative effect on trial success
than policy inactivation for several levels of inactivation. (B) Representative example of a failed
trial during core inactivation in a model that performs a spinning jump during the two-tap sequence.
The model is still able to perform the spinning jump behavior, but misses the orb. (C) Representa-
tive example of a failed trial during inactivation of the final policy layer in a model that performs a
spinning jump during the two-tap sequence. The model is incapable of producing the spinning jump
behavior while inactivated. (D) Proportion of attempts at stimulation that successfully elicited spin
behavior during the two-tap task. The efficacy of this activation was more reliable in layers closer
to the motor output. (E) Representative example of a single trial in which an extra spin occurs.
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