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A IMPLEMENTATION DETAILS

Layer-level Merging Baselines. We used the official repositories for EViT (Liang et al., 2022a),
ToMe (Bolya et al., 2022), and DTEM (Lee & Hong, 2024). Since implementations and experiments
for ViT-L and ViT-H were not provided, we extended the code to include these two model configura-
tions. Aside from adding the ViT-L and ViT-H variants, all experimental settings (training schedule,
augmentations, optimizers, input resolutions, and other hyperparameters) were kept identical to the
original baselines to ensure a fair comparison.

Image Classification. We implemented image classification models using the timm li-
brary Wightman (2019), leveraging its pretrained checkpoints. The ImageNet-1K dataset Deng
et al. (2009) was used for training and evaluation, following prior works Havtorn et al. (2023); Ro-
nen et al. (2023). For the full fine-tuning experiment, we follow the exact training recipe of MAE He
et al. (2021), training VIT-B for 100 epochs and VIT-L for 50. We use a base learning rate of 1.5e-
3 and use standard augmentations, namely RandAug Cubuk et al. (2020), Random Erasing Zhong
et al. (2020), random flipping, and cropping. All training was done with 8 GPUs and used batch size
1024. We set layer decay to 0.75 during long fine-tuning. For short fine-tuning, we train the network
for 1 epoch with layer decay set to 0.99, and learning rate set to 1e-6, and disable augmentations.

Visual QA. For our Visual Question Answering (VQA) experiments, we utilized the official
LLaVA-1.5 Liu et al. (2024a) implementation and its pretrained checkpoints. Unlike the original
approach, which collects data [cite] and fine-tunes the entire dataset for one epoch, we fine-tuned
only 5% of the dataset, as we initialized from an already fine-tuned checkpoint. To adapt to this
setting, we reduced the learning rate by a factor of 10 while following all other fine-tuning proce-
dures recommended by LLaVA. The base image resolution was set to 336 with a patch size of 14,
as specified in LLaVA’s default configuration. A threshold of 5.75 was applied to determine a patch
size of 28.

Object Detection. For object detection, we employed the official EVA-02 Fang et al. (2024) im-
plementation along with its pretrained checkpoints, which utilize a window attention mechanism.
Fine-tuning was conducted following the recommended procedures outlined in EVA-02. Consistent
with our previous experiments, we fine-tuned for 5% of the total iterations while reducing the learn-
ing rate by a factor of 10. Following EVA-02’s settings, the image resolution was 1536 with a patch
size of 16. Patch sizes of 128, 64, and 32 were determined based on threshold values of 0.3, 2, and
2, respectively.

Semantic Segmentation. We also utilized the official EVA-02 implementation along with its pre-
trained checkpoints for semantic segmentation. The ADE20K dataset Zhou et al. (2019; 2017) was
used for training and evaluation. Fine-tuning followed the recommended procedures outlined in
EVA-02. In alignment with our previous experiments, we fine-tuned for 5% of the total iterations
while reducing the learning rate by a factor of 10. According to EVA-02’s settings, the image reso-
lution was either 512 or 640, with a patch size of 16. A threshold of 5.75 was applied.

B HARDWARE SETUP

All ImageNet experiments were conducted on a node of 8x NVIDIA A100s, and the experiments
on object detection, segmentation and visual QA were conducted with 8xNVIDIA RTX A6000.
The inference-time results were computed on a single GPU, along with the throughput and FLOPS
analysis. We used a single node for all work on this paper.

C ADDITIONAL RESULTS

We provide additional visualizations to illustrate how APT (Adaptive Patch Token) prunes tokens
and to analyze the qualitative effects of varying the difference threshold ω , augmentation, and scor-
ers. All visualizations were conducted using images at a resolution of 336→ 336 and a patch size of
14→ 14.
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Figure 6: Threshold Effect. Increasing the threshold increases throughput significantly, but after
approximately ω = 5.5, the accuracy begins to severely drop off, and is not ‘fixable’ with fine-
tuning.

Threshold Analysis. The main tunable parameter in APT is the entropy threshold, which can
differ per scale and controls how compressible a region must be in order to be retained. Lower
values indicate higher sensitivity, and for the vast majority of experiments in this paper, we used
ω1 = 5.5, ω2 = 4.0. In Figure 6, we vary ω1 for 3 model scales with resolution 336 and patch size
14, measuring ImageNet accuracy. We observe that for threshold values larger than 6.0, accuracy
drops off significantly, while throughput continues to increase. We find that 5.5 offers a good trade-
off between acceleration and maintaining quality, and hypothesize that this is close to the ‘true’
threshold for compressibility; beyond this point, coarse-scale patches result in information loss.
Figure 7 shows a diverse set of sample images and how our method prunes tokens with relatively
lower amounts of information (e.g., background regions or uniform color patches). We fixed ω2 =
4.0, and changed ω1 from 4.5 to 7. By observing various categories of images, one can see that
patches containing high-frequency details or salient object features are consistently preserved. In
contrast, less critical regions—such as large uniform areas—are pruned. This visualization confirms
that the model potentially increasing efficiency by ignoring parts of the image that contribute less to
the downstream task.

Augmentation Analysis. We compare how APT operates under different data augmentation tech-
niques in Figure 8. Notably, random erasing removes parts of the image, causing the overall in-
formation to be reduced from the outset. As a result, the total number of retained tokens also
decreases because many regions lose their distinguishing features. This phenomenon implies that
the speed-up gain could be higher during training or fine-tuning—when augmentations are applied
repeatedly—than during inference.

Scorer Analysis. Figure 9 contrasts the results of an entropy-based scorer with a Laplacian-based
scorer. The entropy-based scorer measures how diverse or complex the pixel-value distribution is
within a patch. If a patch has pixels with a wide range of intensities or colors, it scores higher and
is more likely to be retained. This approach naturally favors regions with intricate textures, multiple
color transitions, or high levels of detail. In comparison, the Laplacian-based scorer uses a second-
derivative operator (or second-order difference) to detect edges or sharp transitions. Specifically, it
looks at how abruptly the pixel intensity changes within a patch. As a result, if there is a strong
boundary or a sharp difference in color or brightness, the Laplacian score becomes high, signaling
that the patch likely contains important edge information and should be preserved. We generally
found that the Laplacian scorer performed slightly worse than the entropy one, likely because it
makes stronger assumptions about what is and is not important to the downstream model - the
entropy scorer has less image related inductive bias. When controlling for fraction of reduced tokens,
the Laplacian scorer consistently performed about 0.2-0.3% worse on ImageNet classification.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Threshold visualization. We can see that patches containing high-frequency details or
salient object features are consistently preserved under various thresholds. We used ω = 5.5 for
most of the experiments. Zoom in for the best view.
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Figure 8: Augmentation visualization. We observe that augmentations generally lead to fewer
tokens. In particular, Random Erasing Zhong et al. (2020), leads to regions that can be tokenized
with the large patch sizes, significantly increasing throughput compared to inference time.

Figure 9: Scorer visualization. Using a Laplacian scorer tends to place larger patches outside object
boundaries and smaller ones nearer edges and high frequency details, as it takes an approximation of
the image structure into account. On the other hand, the entropy scorer simply uses the distribution
of intensities in the patch to measure its compressibility.
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