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Research problem
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In the aggregation and combination  phase of Graph Convolutional Networks (GCN), 
chain matrix multiplication is employed, which is highly data and memory intensive. 
Insufficient memory or out-of-core memory issues pose significant challenges for 
large GCN modules.



Need for Efficient Data Handling in GCN

During the combination phase of GCN processing, each node's features are updated based 

on its own features and the aggregated features of its neighbors. This phase is 

computationally intensive for several reasons:

1. Large Volume of Data

2. High Computational Requirements

3. Dynamic Data Access Patterns

4. Scalability
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Background: GPU Direct Storage (GDS)

❑ Reduced Latency: By eliminating the detour through CPU memory, GDS significantly 

cuts down the time it takes for data to reach the GPU. This is crucial for applications 

requiring real-time processing and analysis.

❑ Increased Throughput: Direct data paths allow for higher data throughput rates. This is 

beneficial in environments where large volumes of data need to be processed quickly, 

such as in video processing or complex simulations.
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NVIDIA. (n.d.). GPUdirect Storage, from https://developer.nvidia.com/blog/gpudirect-storage/



GPU Direct Storage (GDS) (Continued)

❑ Enhanced Scalability: GDS makes it easier to scale applications by removing the 

memory bottlenecks associated with large-scale data transfers between storage and 

GPUs. This is essential for expanding the capabilities of systems without compromising 

on performance.

❑ Improved Resource Utilization: By reducing the load on the CPU and its memory, other 

processes can use these resources more effectively, leading to overall improved system 

efficiency.

Disadvantages:

❑ Sending small data: GDS is optimized for high throughput and larger transfers, so 

sending many small packets individually can lead to inefficiencies.

❑ Initialization Overhead: Setting up a direct data path between storage and the GPU in 

GDS can result in higher relative latency for small data packets due to the setup 

overhead.
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Contribution

❑ Automatic Data Compression Technique : This technique utilizes operator hints to 

detect sparsity based on a tiered memory hierarchy and selects the appropriate sparse 

matrix compression algorithms for matrices A and B, respectively. 

❑ Automatic Data Transfer Technique : This method selects a low-latency, zero-copy 

path through a GPU-directed storage approach. It enables direct loading of sparse 

matrices to the GPU, bypassing the CPU to minimize CPU involvement. Additionally, 

verify whether the CPU is used to compress the matrix before transfer.

❑ Metadata and Data Decoupling Technique: This approach is designed for out-of-core 

SpGEMM computations to optimize space allocation within a tiered memory system, 

including High Bandwidth Memory (HBM), GDS, and host DRAM.
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Peridot: Integrating GDS with GCNs and our solution for 

efficient memory management
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Peridot: Integrating GDS with GCNs and our solution for 

efficient memory management (Continued)

Peridot's hierarchical memory management system offers multiple 
advantages:

1. Reduced DRAM Usage: Minimizes DRAM consumption, crucial for 
accelerating chain matrix multiplication processes.

2. Lower Latency: Utilizes GDS for large GCN data transfers, significantly 
reducing latency.

3. CPU Offloading: By offloading data transfer tasks to GDS, Peridot 
efficiently frees up CPU resources for other processes.

4. Optimized Memory Utilization: Systematic exploration and 
optimization of memory allocation for CSR A and CSC B formats 
ensure maximal memory efficiency.
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Methodology

Experiment evaluation:

1. Baseline

2. Peridot

3. Peridot without GDS
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Results
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Conclusion

◼ Performance Improvements: The integration of advanced data 
transfer techniques and memory management strategies in Peridot 
leads to substantial improvements in processing large-scale graph 
data. 

◼ Increased Bandwidth and Reduced Latency: Demonstrated across 
multiple datasets, highlighting the efficiency of the system.

◼ Effective Use of GDS: The application of GDS technology within Peridot 
shows its capability to handle intensive data transfers effectively.

◼ Addressing Key Challenges: Specifically targets and overcomes the 
issues of memory limitations and data transfer delays, which have 
traditionally hindered the scalability of graph processing applications.
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Related work
◼ A Systematic Survey of General Sparse Matrix-Matrix Multiplication [1] 

❑ The survey categorizes SpGEMM algorithms into row-wise, column-wise, and hybrid approaches, detailing 
their applicability and effectiveness across CPUs, GPUs, and distributed systems.

❑ Highlights advancements in parallel computing that improve SpGEMM performance, with a focus on 
optimizing for the sparse nature of matrices to enhance computational efficiency and reduce memory 
latency.

◼ Sextans: A Streaming Accelerator for General-Purpose Sparse-Matrix Dense-Matrix 
Multiplicatio [2] 
❑ Sextans, a novel hardware accelerator optimized for sparse-matrix dense-matrix multiplication (SpMM), 

using a streaming architecture to enhance data flow and reduce memory latency.

❑ Sextans supports a variety of sparse matrix formats and densities, ensuring its applicability across diverse 
scientific and data analytics domains.

◼ Accelerating sparse matrix–matrix multiplication with GPU Tensor Cores [3] 
❑ The study delves into optimizing memory access patterns and computational strategies for sparse 

matrices, ensuring efficient use of GPU Tensor Cores despite challenges from irregular data structures.

❑ Demonstrates the potential and benefits of adapting sparse computations to Tensor Cores, laying a 
foundation for future work in optimizing sparse linear algebra operations with advanced GPU features.
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