
Shakya Jayakody, Jun Wang

Department of Electrical and

Computer Engineering

MLArchSys 2024

Peridot: Accelerating Out-of-Core GCN

Data Reuse Pattern and Co-Design on GPU

Research problem

2

In the aggregation and combination phase of Graph Convolutional Networks (GCN),
chain matrix multiplication is employed, which is highly data and memory intensive.
Insufficient memory or out-of-core memory issues pose significant challenges for
large GCN modules.

Need for Efficient Data Handling in GCN

During the combination phase of GCN processing, each node's features are updated based

on its own features and the aggregated features of its neighbors. This phase is

computationally intensive for several reasons:

1. Large Volume of Data

2. High Computational Requirements

3. Dynamic Data Access Patterns

4. Scalability

3

Background: GPU Direct Storage (GDS)

❑ Reduced Latency: By eliminating the detour through CPU memory, GDS significantly

cuts down the time it takes for data to reach the GPU. This is crucial for applications

requiring real-time processing and analysis.

❑ Increased Throughput: Direct data paths allow for higher data throughput rates. This is

beneficial in environments where large volumes of data need to be processed quickly,

such as in video processing or complex simulations.

4

NVIDIA. (n.d.). GPUdirect Storage, from https://developer.nvidia.com/blog/gpudirect-storage/

GPU Direct Storage (GDS) (Continued)

❑ Enhanced Scalability: GDS makes it easier to scale applications by removing the

memory bottlenecks associated with large-scale data transfers between storage and

GPUs. This is essential for expanding the capabilities of systems without compromising

on performance.

❑ Improved Resource Utilization: By reducing the load on the CPU and its memory, other

processes can use these resources more effectively, leading to overall improved system

efficiency.

Disadvantages:

❑ Sending small data: GDS is optimized for high throughput and larger transfers, so

sending many small packets individually can lead to inefficiencies.

❑ Initialization Overhead: Setting up a direct data path between storage and the GPU in

GDS can result in higher relative latency for small data packets due to the setup

overhead.

5

Contribution

❑ Automatic Data Compression Technique : This technique utilizes operator hints to

detect sparsity based on a tiered memory hierarchy and selects the appropriate sparse

matrix compression algorithms for matrices A and B, respectively.

❑ Automatic Data Transfer Technique : This method selects a low-latency, zero-copy

path through a GPU-directed storage approach. It enables direct loading of sparse

matrices to the GPU, bypassing the CPU to minimize CPU involvement. Additionally,

verify whether the CPU is used to compress the matrix before transfer.

❑ Metadata and Data Decoupling Technique: This approach is designed for out-of-core

SpGEMM computations to optimize space allocation within a tiered memory system,

including High Bandwidth Memory (HBM), GDS, and host DRAM.

6

Peridot: Integrating GDS with GCNs and our solution for

efficient memory management

7

Peridot: Integrating GDS with GCNs and our solution for

efficient memory management (Continued)

Peridot's hierarchical memory management system offers multiple
advantages:

1. Reduced DRAM Usage: Minimizes DRAM consumption, crucial for
accelerating chain matrix multiplication processes.

2. Lower Latency: Utilizes GDS for large GCN data transfers, significantly
reducing latency.

3. CPU Offloading: By offloading data transfer tasks to GDS, Peridot
efficiently frees up CPU resources for other processes.

4. Optimized Memory Utilization: Systematic exploration and
optimization of memory allocation for CSR A and CSC B formats
ensure maximal memory efficiency.

8

Methodology

Experiment evaluation:

1. Baseline

2. Peridot

3. Peridot without GDS

9

Results

10

Conclusion

◼ Performance Improvements: The integration of advanced data
transfer techniques and memory management strategies in Peridot
leads to substantial improvements in processing large-scale graph
data.

◼ Increased Bandwidth and Reduced Latency: Demonstrated across
multiple datasets, highlighting the efficiency of the system.

◼ Effective Use of GDS: The application of GDS technology within Peridot
shows its capability to handle intensive data transfers effectively.

◼ Addressing Key Challenges: Specifically targets and overcomes the
issues of memory limitations and data transfer delays, which have
traditionally hindered the scalability of graph processing applications.

11

Related work
◼ A Systematic Survey of General Sparse Matrix-Matrix Multiplication [1]

❑ The survey categorizes SpGEMM algorithms into row-wise, column-wise, and hybrid approaches, detailing
their applicability and effectiveness across CPUs, GPUs, and distributed systems.

❑ Highlights advancements in parallel computing that improve SpGEMM performance, with a focus on
optimizing for the sparse nature of matrices to enhance computational efficiency and reduce memory
latency.

◼ Sextans: A Streaming Accelerator for General-Purpose Sparse-Matrix Dense-Matrix
Multiplicatio [2]
❑ Sextans, a novel hardware accelerator optimized for sparse-matrix dense-matrix multiplication (SpMM),

using a streaming architecture to enhance data flow and reduce memory latency.

❑ Sextans supports a variety of sparse matrix formats and densities, ensuring its applicability across diverse
scientific and data analytics domains.

◼ Accelerating sparse matrix–matrix multiplication with GPU Tensor Cores [3]
❑ The study delves into optimizing memory access patterns and computational strategies for sparse

matrices, ensuring efficient use of GPU Tensor Cores despite challenges from irregular data structures.

❑ Demonstrates the potential and benefits of adapting sparse computations to Tensor Cores, laying a
foundation for future work in optimizing sparse linear algebra operations with advanced GPU features.

12

Acknowledgement

This work was sponsored in part by the U.S. National Science
Foundation (NSF).

13

Reference

[1] Gao, J., Ji, W., Chang, F., Han, S., Wei, B., Liu, Z., & Wang, Y.

(2023). A systematic survey of general sparse matrix-matrix

multiplication. ACM Computing Surveys, 55(12), 1-36.

[2] Song, L., Chi, Y., Sohrabizadeh, A., Choi, Y. K., Lau, J., &

Cong, J. (2022, February). Sextans: A streaming accelerator for

general-purpose sparse-matrix dense-matrix multiplication.

In Proceedings of the 2022 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (pp. 65-77).

[3] Zachariadis, O., Satpute, N., Gómez-Luna, J., & Olivares, J.

(2020). Accelerating sparse matrix–matrix multiplication with GPU

Tensor Cores. Computers & Electrical Engineering, 88, 106848.

14

	Slide 1: Peridot: Accelerating Out-of-Core GCN Data Reuse Pattern and Co-Design on GPU
	Slide 2: Research problem
	Slide 3: Need for Efficient Data Handling in GCN
	Slide 4: Background: GPU Direct Storage (GDS)
	Slide 5: GPU Direct Storage (GDS) (Continued)
	Slide 6: Contribution
	Slide 7: Peridot: Integrating GDS with GCNs and our solution for efficient memory management
	Slide 8: Peridot: Integrating GDS with GCNs and our solution for efficient memory management (Continued)
	Slide 9: Methodology
	Slide 10: Results
	Slide 11: Conclusion
	Slide 12: Related work
	Slide 13: Acknowledgement
	Slide 14: Reference

