
REBUTTAL FOR COOPERATIVE GRAPH NEURAL NET-
WORKS

1 EXPERIMENTS ON HOMOPHILIC NODE CLASSIFICATION

Table 1: Results on homophilic datasets. Top
three models are colored by First, Second, Third.

pubmed cora

MLP 87.16 ± 0.37 75.69 ± 2.00
GCN 88.42 ± 0.50 86.98 ± 1.27
GraphSAGE 88.45 ± 0.50 86.90 ± 1.04
GAT 87.30 ± 1.10 86.33 ± 0.48
Geom-GCN 87.53 ± 0.44 85.35 ± 1.57
GCNII 90.15 ± 0.43 88.37 ± 1.25

SUMGNN 88.58 ± 0.57 84.80 ± 1.71
MEANGNN 88.66 ± 0.44 84.50 ± 1.25

CO-GNN(Σ,Σ) 89.39 ± 0.39 86.43 ± 1.28
CO-GNN(µ, µ) 89.60 ± 0.42 86.53 ± 1.20
CO-GNN(∗, ∗) 89.51 ± 0.88 87.44 ± 0.85

SUMGNN gain +0.91% +1.92%
MEANGNN gain +1.06% +2.40%
GCN gain +1.25% +0.53%

In this experiment, we evaluate CO-GNNs on the
homophilic node classification benchmarks cora
and pubmed (Sen et al., 2008).

Setup. We assess MEANGNN, SUMGNN
and their corresponding CO-GNNs counterparts
CO-GNN(µ, µ) and CO-GNN(Σ,Σ) on the ho-
mophilic graphs and their 10 fixed splits provided
by Pei et al. (2020), where we report the mean ac-
curacy, standard deviation and the accuracy gain
due to the application of CO-GNN. We also use
the results provided by Bodnar et al. (2023) for
the classical baseline: GCN (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018), Geom-GCN (Pei et al.,
2020) and GCNII (Chen et al., 2020).

Results. Table 1 illustrates a modest performance
increase of 1-2% across all datasets when transi-
tioning from SUMGNN, MEANGNN, and GCN
to their respective CO-GNN counterparts. These
datasets are highly homophilic, but CO-GNNs
nonetheless show improvements on these datasets
(even though, modest) compared to their envi-
ronment/action network architectures, leading to
competitive results overall.

2 EXPERIMENTS ON ZINC

Table 2: Results on ZINC(12k).
Top three models are colored by
First, Second, Third.

ZINC

GCN 0.469 ± 0.002
GIN 0.408 ± 0.008
GraphSAGE 0.410 ± 0.005
GAT 0.463 ± 0.002
MoNet 0.407 ± 0.007
GatedGCN 0.422 ± 0.006
PNA 0.320 ± 0.032

SUMGNN 0.464 ± 0.005
CO-GNN(Σ,Σ) 0.316 ± 0.010

SUMGNN gain -31.90%

In this experiment, we evaluate CO-GNNs on the ZINC (12k
graphs) graph classification benchmark (Dwivedi et al., 2023).

Setup. We evaluate SUMGNN and its CO-GNN counterpart
CO-GNN(µ, µ) on the ZINC (12k graphs) dataset with no edge
features, and report the Mean Average Error (MAE) and standard
deviation over 10 different seeds. The results for the baselines
GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), Graph-
SAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018),
MoNet (Monti et al., 2017), GatedGCN (Bresson & Laurent,
2018) and PNA (Corso et al., 2020) are from Bouritsas et al.
(2022). We also the accuracy gain due to the application of
CO-GNNs.

Results. The objective of this task strongly correlates with cycle
counts (rings in organic molecules), so those subgraph GNNs
that explicitly inject such information will perform strongly. For
fairness, we only considered GNN architectures that do not inject
such subgraph counts. From Table 2, we can see that CO-GNNs
outperform all architectures, including GAT, GatedGCN, and
PNA.

1



3 ABLATION STUDY ON HETEROPHILIC DATASETS

In this experiment, we perform an ablation study for CO-GNN architectures on the heterophilic graph
classification benchmarks roman-empire, amazon-ratings, minesweeper, tolokers, and questions
(Platonov et al., 2023).

Table 3: Ablation study on heterophilic datasets.

roman-empire amazon-ratings minesweeper tolokers questions

SUMGNN 82.82 ± 0.47 50.50 ± 0.47 90.81 ± 0.64 81.73 ± 0.86 78.88 ± 1.10
MEANGNN 85.05 ± 0.72 53.08 ± 0.83 92.98 ± 0.48 81.79 ± 0.55 77.05 ± 1.10

CO-GNN(Σ,Σ) 91.57 ± 0.32 51.28 ± 0.56 95.09 ± 1.18 83.36 ± 0.89 80.02 ± 0.86
CO-GNN(µ, µ) 91.37 ± 0.35 54.17 ± 0.37 97.31 ± 0.41 84.45 ± 1.17 76.54 ± 0.95

SUMGNN gain +10.56% +1.54% +4.71% +1.99% +1.44%
MEANGNN gain +7.43% +2.05% +4.66% +3.25% -0.66%

Setup. We evaluate MEANGNN, SUMGNN on the 5 heterophilic graphs, following the 10 data
splits and the methodology of Platonov et al. (2023). We report the accuracy, standard deviation
and accuracy gain due to the application of CO-GNNs for roman-empire and amazon-ratings. We
also report the mean ROC AUC, standard deviation and ROC AUC gain due to the application of
CO-GNNs for minesweeper, tolokers, and questions.

Results. Table 3 suggest a clear trend leading to improvements as a result of using CO-GNNs. The
increase in evaluation metrics is particularly prominent on the roman-empire (average increase of
9.00% accuracy) and minesweeper datasets (average increase of 4.69% ROC AUC), further showing
that CO-GNNs effectiveness is correlated with the graph topology and the task.

4 EXPERIMENTS ON REDDIT-M

Table 4: Results on REDDIT-M.
Top three models are colored by
First, Second, Third.

REDDIT-M

DGCNN 49.2 ± 1.2
DiffPool 53.8 ± 1.4
ECC OOR
GIN 56.1 ± 1.7
GraphSAGE 50.0 ± 1.3
CGMM 52.4 ± 2.2
ICGMMf 55.6 ± 1.7
GSPN 55.3 ± 2.0

CO-GNN(µ, µ) 56.3 ± 2.1

In this experiment, we evaluate CO-GNNs on the REDDIT-M
(Morris et al., 2020) graph classification dataset.

Setup. We evaluate CO-GNN(Σ,Σ) and CO-GNN(µ, µ) on the
REDDIT-M benchmark, following the risk assessment protocol
of Errica et al. (2020), and report the mean accuracy and standard
deviation. The results for the baselines DGCNN (Wang et al.,
2019), DiffPool (Ying et al., 2018), Edge-Conditioned Convolu-
tion (ECC) (Simonovsky & Komodakis, 2017), GIN (Xu et al.,
2019), GraphSAGE (Hamilton et al., 2017) are from Errica et al.
(2020). We also include CGMM (Bacciu et al., 2020), ICGMMf

(Castellana et al., 2022), and GSPN (Errica & Niepert, 2023) as
more recent baseline. OOR (Out of Resources) implies extremely
long training time or GPU memory usage.

Results. CO-GNN models achieve the highest accuracy on
REDDIT-M as reported in Table 4, despite using relatively simple
action and environment networks.

5 GAT EXPERIMENTS ON ROOTNEIGHBORS

In this experiment, we enhance GATs(Veličković et al., 2018) with an action network and evaluate on
our synthetic dataset: ROOTNEIGHBORS.

Setup. We trained a CO-GNNs architecture which uses GAT (Veličković et al., 2018) as its action
network and SUMGNN as its environment network, where α refers to the GAT architecture. We
report the Mean Average Error (MAE).

2



Table 5: Results on ROOTNEIGHBORS. Top three models are colored by First, Second, Third.

Model MAE

Random 0.474
SUMGNN 0.370
MEANGNN 0.329
GAT 0.442

CO-GNN(Σ,Σ) 0.196
CO-GNN(Σ, µ) 0.079
CO-GNN(Σ, α) 0.085

SUMGNN gain -47.03%
MEANGNN gain -75.99%
GAT gain -80.77%

Results. In ROOTNEIGHBORS, information needs to be propagated only from degree-6 nodes, and
GAT model, unable to detect node degrees, performs poorly. In other words, GAT may not be
able to detect which information needs to be filtered (especially structural ones). Our message-
passing paradigm generally increases the performance of GATs. To show this, we experiment with
CO-GNN(Σ, α) over ROOTNEIGHBORS, which results in an 80% decrease in MAE (Table 5), from
the initial GAT performance which was basically a random guess. In this case, the action network
allows GAT to determine the right topology, and GAT only needs to learn to average of the features.

6 VISUALIZING THE ACTIONS

The CO-GNN architecture benefits from the dynamic topology that is created by the action network.
To better understand the learned graph topology, we visualize the topology at each layer in a CO-GNN
model over the highly regular minesweepers dataset.

Dataset. The minesweeper dataset (Platonov et al., 2023) is a synthetic dataset inspired by the popular
game Minesweeper. It is a semi-supervised node classification dataset with a regular 100 × 100
grid where each node is connected to eight neighboring nodes. Each node has an input feature of
one-hot-encoded representations, showing the number of adjacent mines. A randomly chosen 50% of
the nodes has an unknown feature, indicated by a separate binary feature. The task is to correctly
identify if the querying node is a mine.

Setup. We train a 10-layered CO-GNN(µ, µ) model and present the evolution of the graph topology
from layer ℓ = 1 to layer ℓ = 8. We choose a node (black), and at every layer ℓ, we depict its
neighbors up to distance 10. In this visualization, nodes which are mines are shown in red, and other
nodes in blue. The features of non-mine nodes (indicating the number of neighboring mines) are
shown explicitly whereas the nodes whose features are hidden are labeled with a question mark.
For each layer ℓ, we gray out the nodes whose information cannot reach the black node with the
remaining layers available.

Results. Interestingly, in the early layers ℓ = 1, 2, 3, 4, the action network learns to isolate the right
section of the black node, similar to how humans would play this game: The bulk of the nodes
without neighboring mines (0 labeled nodes) initially do not help in determining whether the black
node is a mine or not. Thus, the action network prioritizes the information flowing from the left
sections of the grid where more mines are present. We find this very nice and informative: Action
network initially focuses mostly on nodes that are more informative for the task. After identifying the
most crucial information and propagating this through the network, it then requires this information
to also be communicated with the nodes that initially were labeled with 0. This leads to an almost
fully connected grid in the later layers ℓ = 7, 8.

3



The 10-hop neighborhood at layer ℓ = 1.

The 10-hop neighborhood at layer ℓ = 2.

4



The 10-hop neighborhood at layer ℓ = 3.

The 10-hop neighborhood at layer ℓ = 4.

5



The 10-hop neighborhood at layer ℓ = 5.

The 10-hop neighborhood at layer ℓ = 6.

6



The 10-hop neighborhood at layer ℓ = 7.

The 10-hop neighborhood at layer ℓ = 8.

7



REFERENCES

Davide Bacciu, Federico Errica, and Alessio Micheli. Probabilistic learning on graphs via contextual
architectures. In JMLR, 2020.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and Michael M.
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in
GNNs. In NeurIPS, 2023.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. In PAMI, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. In arXiv, 2018.

Daniele Castellana, Federico Errica, Davide Bacciu, and Alessio Micheli. The infinite contextual
graph Markov model. In ICML, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In ICML, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In NeurIPS, 2020.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. In JMLR, 2023.

Federico Errica and Mathias Niepert. Tractable probabilistic graph representation learning with
graph-induced sum-product networks. In arXiv, 2023.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In ICLR, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, 2017.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M.
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In CVPR,
2017.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
Workshop on Graph Representation Learning and Beyond, 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
graph convolutional networks. In ICLR, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress? In
ICLR, 2023.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. In AI Magazine, 2008.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In CVPR, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
Dynamic graph CNN for learning on point clouds. In TOG, 2019.

8



Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In NeurIPS, 2018.

9


	Experiments on homophilic node classification
	Experiments on zinc
	Ablation study on heterophilic datasets
	Experiments on REDDIT-M
	GAT experiments on RootNeighbors
	Visualizing the Actions

