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A APPENDIX

A.1 PROOF OF EQUIVALENT FORMULATION RESULTS

A.1.1 PROOF OF PROPOSITIONI]

Proof. First we can express |(x, a;)|? as a function of z*, 2, a;:

[(z,a;)]> = |(Re(z) — ilm(z))" (Re(a i)+i1m(ai))!2
= ((Re(x), Re(a;)) + (Im(z),Im(a,)))* + ((Re(z), Im(a;)) — (Im(z), Re(a;)))”
= (@, af)’+ (" a})* (14)

We can then rewrite f as:

flw) =3 (@*.al) + (7 af)’ — (2", af)? ~ @ a)?)

=5 (fet e+ emah) @) aa)!
ot b (@, ab)? + 2(a af et af )
—2(xT,a)(x" " al)? - 2(x”, a0 ) (&, a])?
~2atal Pt ) - 2o a0 )?) (15)

From here we can notice that the scalar products can be written as scalar products with (a;)®*

indeed for two vectors u, v, we have

(u,af)?*(v,a})? = (Z Uz‘l(af)za) (Z Ui, (%ﬂz@) (Z Uiy (af)zs) <Z Uiy (azr)u)

= Z (a;L)h (a;r)iz (a;r)iz (a;r)muiluizvisvm
i1,12,13,14

= (@) uu®vev). (16)

i

This allows to write f in the following form:

f(x) = Z <(a;r)®47 () 4 () + (wh+)®4 + (wu—)®4

+ 22N @ (x7)%% + 2(:ch"’)®2 ® (wu_)®2
~2a) @ (25)72 - 227 @ (2F)
(

-9 w+)®2 ® (wtl+)®2 _ 2(137)@2 ® (xh+)®2>

— <Z(a?_)®47 ()@t 4 (27)® + (mh+)®4 I (mh*)®4

(@h)*? @ (27)%% +2(2)** © (2'7)*?
(x+)®2 ® (wh—)®2 _ 2(:13_)®2 ® (wh—)®2
(

h+)®2>. (17)

+ 2
2

8

— o) @ (5P — 2(x7) 2 @ (

We get the expected result by chosing:
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Ux®): = (@) + (7)) + (2 h+)@’4 (@)
+2(xM)®2 @ (27)%2 4 2(x")®? © (F7)®2
2z ")? @ (2'7)® - 2(x7)*? @ (a')®?
2(21)® @ («")®? - 2(27)*? @ (2*)®? (18)
O
A.2 PROOF OF LANDSCAPE RESULTS
A.2.1 PROOF OF PROPOSITION[2]
Proof. In order to use tensor S, it is be useful to notice that:
<s URLURUVR v Z sL1,12113714u11u22U13U14
11,12,93,%4
= Z Uil Ui2 1}7;31)2‘4
i1 =2 #£i3=14
+ Z uilui2visvi4
i1=13A12=14
-+ Z uiluhvisvu
i1=147F12=13
=+ 3 Z uiluigvig_vm
= [Jull?[|v][* + 2(u,v)*. (19)

Then we have:
o(8,U(z™)) =0<3II=’E+4 +3lla (|t + 3t + 3t
+2(2x*,27)? + [zt |l )1?) + 2(2(2, m”’>2 + e 2 ))
= 2(2a®, &) + b2t )1?) - 222, 25 )% + [l )Pl 1)
= 2(2(x”, @) + [l |7l 7) - 2(2(2t, )2 + |w+||2||w”+ll2)>- (20)

We can notice that ||z ||? = ||z ~||? = ||=||?, that (z*, 2~) = 0 (and same result holds for ") and
that:

(e, 22 4+ (2t 2 )2+ (7, 2 )2 4 (2t )2
=2 ((Re(x), Re(z)) + (Im(), Im(z")))” + 2 ((Re(x), Im(z)) — (Im(z), Re(?)))
=2|(x, 2")|2. 21)
We can thus simplify the previous expression as:

c(S,U()) = 8c (|l|* + 2" — [{a, %) * — [|*|2°]?) == g(z*).

A.2.2 PROOF OF PROPOSITION 3]
Proof. To simplify notation, we denote J = {(i1,42,43,%4) | 1 < d1,42,i3,74 < 2n} and all
summations over j are for 5 € J. We also write:

K

Uzh) = E ERT1 | ® To g @ T3k @ Tag
k=1
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withz; x € {xT, 27, 2T, 2"~} and g}, = +1.

Recall that:

f(x™) = (T, U(=™))
g(x™) = ¢(S,U(z™))
Vi) => cT;VU;(z")

Vg(zT) = ZchVUj($+). (22)

Using this we can write:

(V@™),Vg(a™) = (Vg(x™), Vf(2T))
= (Vg(a™), ) _cT;VU;)

= (Vg(@*),) (T, —S; +5;)VU,)
= (Vg(z™),Vg(x™)) + (Vg(zT), ZC(TZ] -$;)VU;)
= |[Vy(= ||2+ZZ Vy(z U))ic(T - 8);

HVQ ||2+ZZ Z T S)L1 i2,i3,ia€k

i k 11,12,i3,%4

I@1,k) i
8 < oz

O(x2,k)iy
* oz
O(@3,k)is

33:;-"
(@4 k)i,

oz

(@21 )in (3,1 )is (T, )i
(@1,k)i, (®3,1)i5 (Tak )iy

+ (@1.k)iy (21 )in (Tak )iy

+ (®1,1)ir (T2,1)is (ws,k)ig,)- (23)

) ; e
Ifax, =a, then%: imip- Moy = @, then%:fh:iﬁnlfugnand

1,—;,_, otherwise. In each case we can write:

> (Volat ) A2 — (a9 g(at),

)
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for some My, € {Ign, 0, (?" _OI") } Then we have

(Vf(@"),Vg(x®)) = [IVg(™)|* + Z ( (T—8,e, M1 Vg(x") @ T2 @ T3k @ Ta k)

+ (T =S, er@1p ® My, Vg(xt) @ @3 @ Ta )
+c(T—8,exT1 1 @ T2y, @ M3 Vg(z") @ x4 1)

+c(T—S,epx1 1 RTa ) QT3 ® M4,ng($+)>)

> Vo(e)? - 3 (cT— Slop lee My s Vo (")

k
+ T = Slopllex Mz, Vg (™)
+cl|T = Sllop llex M3, V(@ )|

+ [T = Slopllex Mk V(™)

> [[Vg(@H)I* =) doc(lll| + l|lz*])* | Va(a™)| (24)
k
> [Vg(@®))|? = Crdoc(lz]| + 2*])* Vgl (25)

Assume we have HVg(:cJF)H > Chdoc(||z|| + ||=8]))?, then in particular Vg(x™t) # 0, and =* # 0,
so inequality (24) is strict and we must have (Vf(ach) Vg(x™)) > 0, and therefore V f(x™) # 0.

O
A.2.3 PROOF OF PROPOSITION[4]
We denote J = {(41,12,i3,%4) | 1 < iy,492,13,14 < 2n} and all summations over j are for j € J.
Proof. We have:
" H(a*u — " H, (@ )ul
=lu” [ (T-8);Hy, | u
jeJ
= CZZEk(T_s)jH(ml,k®m2,k®w3,k®w4,k)j u
jeJ k
= |u” <C DD (T =i inisia
il i27i37i4 k
10 (7(1) k io(1) 6(:30(2),16)’&”(2)
Z 5 ¥ (wa(?)),k)ia(?,) (x0(4)7k)ia(4) u
o, Z; L 1<i,i’<2n
S>> er(T=S)isinisia
11,12,13,74 K
(To(1).0)i0 ) AT (2),1)in )
5 30 4 (w2 ) (o, 2o |
4,1/ 0664 z; i
(26)
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As we saw previously in Appendix |A.2.2, we can write for some M,y €
On _In
{IQmOQm <In On ) }9

0 Ty A
) (uwf)m) = (M st)i, o -

p i
Then we have:
" Hy(z)u — u" Hy(z" )u|
c Z Z Ek(T - S)il,i27i37i4
11,i2,13,04 Kk

1
3 ((Ml,ku)il(M2,ku)i2 (3,5 )is (Ta,k)iy + (Mo pw)i, (M), (T35 )i (Ta,i)iy+

s (My )i, (M3 )iy (T2,1)i, (fvl,kz)n> ‘

cZek<T—S,

k

((MMU) ® (M pu) @ (23,1) ® (T4k) + (M pu) @ (Mapu) @ (T31) @ (T4k)+

N =

e (k) © (®2k) © (Ms ju) © (M4”“u)> >’

1
<e) IT=Sllop Y 2 1Mo ) 1|1 Mo 2) kullllzo(s), 2ok
k ceBGy
1
<ed IT=Slop Y Sl ] + [12*])
k oSy
<eY sot2lul* (|| + [=*])?
k
< Cadoc|u* (|2 + [|2*[1)*. 27)

A.2.4 PROOF OF PROPOSITION [3]

Proof. We can notice that £~ = Mz where

It is also well known that:

Hjg 2 () = 21, Hjpma)(x) = 8z2" + 4||z|°L,

H(Mm’,wz (:B) = 2(Ma)(Ma)T.
Thus, the Hessian of g with respect to u™ is given by
Hy(x") = 8c(8z ™ (2*)T +4[|a* |’ L, — 22" (") —22° (%) — |2"* |*L, — =" || L)

As ||2ft]| = ||~ ||, we get the desired result. O

A.2.5 PROOF OF PROPOSITION [

Proof. Using Proposition [5|and Proposition[d] we can write:
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()T Hy(x)a™ < 8c (8(x", ™) + 4lla™ ||l |* — 2|2 ||* — 2(2* 2*)? — [la*|* — ™% [l*~|1?)
+ Cadoclla®|* (||| + [l*])?
< 8¢ (8 ((Re(a), Re(x)) + (Im(x?), Tm(x)))” + 4]} |2[[2°]|? — 2|2 — | |* IIw“II4)
+2Ca00cl|2F[| ([l + [|l2*||*)
< 8c(8|(w, ) [* + 4llz|*||z*|* — 4ll||*) + 2Ca8ocl|2*||(|l|® + |\w“(||228))~

Then as long as the following condition is satisfied, we have (x%)” H i <0

8c(8(x, ) [* + 4ll||*|2** — 4ll||*) + 200 Cac(l]|?[l*|* + [|«*]*) < 0

by |2 1 2 1
— 8M + <4+ 45002) Iz < <4 45002) :

% * 5>~

(29)

A.2.6 PROOF OF PROPOSITION[7]

Proof. We borrow the notations from Sun et al. (2018b) and we let:
0 H

¢(x) = argmingeo o |z — xle

(And for x € Span{z®,ixf}* we just define ¢(x) = 0). Intuitively ¢(a) is the phase of x in the
real 2d plane spanned by z”. This means we can write in particular:

xt =7 (cos(gi)(ar:))a:tH + sin(gb(a:))a;h*) +wv

with v orthogonal to Span{xf*, xi~}.
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Now consider u = 1/ (cos(¢(z))zt + sin(¢(x))x"") + v’ such that |ju|| = 1 and write
(x8)?(®) = cos(p(x))xit + sin(¢p(x))x"~, we have
uTHy(xM)u > u" Hy(xF)u — Cadoe(||2"]| + [|z]])? (From Proposition )
= 8e(8(u, x™)? + 4l | ul® - 2(2*, w)® — 2(2F 7, w)? — 2|2 |? lul|?
— Cydocllul® (||| + [|z||)? (From Proposition 3)
<U,CC+>2 02
= ||u||28‘3( <82 + 4t - 20|21t - 2] 2 ) - §5o(||fb’h|| + |lz]))?
]
C
= e (st )7 + 4l 17 = 201 — 21) — Zo(la’] + ol
< (8w — (@) + (25)7®)? 4 a2’ — @) + (@)@ — 2| - 2]2*|)

(et + ||:c||>2)
> s (St ()2 4 1602 — (@)1 . (@)1 + 4]
8l — (&), (2)90) = 2P - 22| ) - Lol + e - he ] + o]
> se( 821! = 16l — @@ la] + 4le?|P Sl — ] - 22" - 2P
- S (411 + ale - e ot + o - atei @ P) )

= sc((or et - 24 - e @ o] + 2] P

- S (a1 + ale — e ot + o — atei @ P) )

> se( 2 - 24l - 2@ o] - Goalale?P + Al — D] + 2 - ot ) ).
Assume ||z — x%e’®®)|| < ||z%||. If we have

20| — 24w — wte @ o] = Zao(5lat]” + 4l — ke o)),

then we have uTHfu > 0.

Let G be the set of global minimizers of f, define:

7 C 10(x
RY = {2|x“||224||:c 2O [ > 0 (5]1a)? + a)x — ahere >||m“||>}
n {lle - 2% )| < o) }
2 — 5045
_ {m | d(z,G) < min <1, TR TN +84022;0>}
8

B 5Cad0
- {‘” | d(@,9) < 192+4c250}

For 0y small enough, note that R%O strictly contains the set of global minimizers a%¢e.

(30)

Assume that there is a local minimum at z* € R} . Write:
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v(t) = tat + (1 —t) cos(p(x))x" + (1 — t) sin(¢p(x))z" .
Consider h(t) = f(v(t)), we have (with z+ = v + 7 cos(¢(x)) 2" + rsin(p(x))xi~):

T 2
v = (22) 00 (52 +9s60)- 2o

- (dzlf))THm(t» (22). 6D

Notice that dl’l(tt) can be written as 1’ (cos(¢(z))z" + sin(¢(x))x?~) + v’, therefore A" (t) > 0,

so h is strictly convex. As h(0) is a global min of h, h(1) cannot be a critical of h, and therefore x
cannot be a critical point of f if & # % for some 6. O

A.2.7 PROOF OF PROPOSITION[§]

Proof. Recall that:
Vg(zT) = 8c (4™t ||zt |? - 22T ||z F|? — 22" (& T, 2%T) — 22" (2", 2 7)) .

‘We have:
IVg@H)|*  ~  (320)°|=|°

llae|| —+o0

Therefore from , if we take Jp such that:

32
(326)2 > (01(506)2 <— Jp < —.

(&
Then R%O contains all « for ||| large enough. Then there exists some K compact such that for all
dg < é—?, we have ¢ € R%O for all x ¢ K. Let E be an open set containing the critical points C
of g. K\E is a compact also, therefore the function %% attains its minimum on K\ E.
Take d strictly below this minimum, and from , Rgo contains all K\ E.
Now let’s consider a critical point of g(x™). We can see that:

Assume x T is a critical point.
o If ||z |2 = ||x*"||2, then we must have (z ", 2%+) = 0 and (z*, ") = 0 as %" is ortogonal

to =, which means that ||z||> = 1||z%|| and that |(z, z%)|> = (2T, 2°")? + (z*,2%")? = 0. In
that case using Proposition@ x is strictly in Rgo. for g small enough.

o If ||z ||? # 3|2+, then =+ must be in Span{x™*, 2%~ }, lets write 2+ = pa® + va’~. We
must have:

Ap(p® +v?) —4p =0
dv(p? +1v?) —4v =0

which gives either > + v? = 1, 0r p = v = 0. If g = v = 0, then & = 0, which is strictly in R}_
for 6o small enough. If 412 + % = 1, then & = ¢"a*, which is strictly in R} for 6, small enough.

Therefore the set of critical points C is in E := Int(R} U R} ), the interior of R} U R}
for §y small enough, and from the previous argument we must have for Jy small enough:

R5, URS, URS =R*.

19
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A.3 PROOF OF GLOBAL CONVERGENCE

A.3.1 PROOF OF PROPOSITION [9]

Proof. Since A; is real symmetric and positive sem1deﬁn1te for all © = 1,...,m, by orthogonal
.. . r r

decomposition, we can write A; = > =1 AijVsj vw, where (v;;) =y are orthonormal, for some

1<r<mnand)\;; >0forall j =1,...,7. Define

Vi=Span{v;; :i=1,...,m,j=1,...,7}

Notice that

Vi) =4) (A, zt)-b) Azt —422)\” vij, ) (At 2®) — b)) vi; € V.

1 =1 j=1

Ih

2

Therefore, Vf(z*) € V for all z* € R?". Denote V- as the orthogonal complement of the
subspace V/, then for any given initial point war, the solution ™ (-) to l| can be decomposed
as ¢ (t) = i (t) + x,. (t), where =, (t) € V and =, (t) € V* forall ¢ > 0. Note that
(@) (t) = =V f(xT(t) € V, thus z, (t) = «,. (0) and we write " (t) = = (t) + =7, (0)
forall ¢ > 0. Since f(x™) is a decreasing function over ¢ > 0,

Z Nijlvig, 2t (1)) = (A (1), 27 (1))] < \/2(<Aifc+(t),w+(t)> = bi)? + 207

< \/2f xt(t)) + 202 < \/2f () + 202

Recall that A;; > 0 for all j = 1,...,r, hence (v;j,z"(t)) is bounded over ¢ > 0 and so is
Vi, T As Span{v;; :i=1,...,m,j=1,...,r} =V, we can extract a basis of vectors
(vij, 3 (1)) p J J
v;; to form a basis of V, and denote this basis as {uy : £ = 1,...,d}. Then one can write 7, (t) =
%12:1 Ce(t)up. Notice that for each £ = 1,...,d, there must exist (i, j¢) such that v;,;, = u,.
us,
d d
a3 ()1 = ZQ =D (ug,@H () =D (i, 2 (t)?

=1 =1

is bounded over ¢ > 0. Flnally, m*(t) = a7 (t) + «{,. (0) is bounded over ¢ > 0. O

A.4 PROOF OF CONCENTRATION RESULTS

A.4.1 PROOF OF PROPOSITION (]

Proof. We can just look at the expectation entrywise. We can notice that:

(14$ ®4
e ( (3 —noe(((2))

? 11,12,13,14

+ + + +
~oee((9),(4),(9),(9),) o

All entries of af are independent and centered, so if one index among i1, s, %3, 74 is different
from the three others, the expectation is zero. If not, we can have either iy = is # i3 = i4 O
i1 =13 # ig =14 Or i1 = ig4 # ig = i3 Or i1 = iy = i3 = iy, in the first three cases:

2 2

(5, (9.5, (D)) -=(5, () -

and in the last case:

(%), (). (). (9).)-=(()) -

which achieves the proof. O
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A.4.2 PROOF OF PROPOSITION
Proof. As define in [Even & Massoulié (2021), we denote for some tensor R

IRllop = sup > Ripigigia (W) (u2)i, (us)i, (wa);,

1 @u2@us@ual|=1 91,%2,13,%4

According to [Even & Massoulié (2021), as 2 follow N(0,1I,) and E(T) = S, we have for some
absolute constant C' > 0,

P <||T — 8oy > Cy /W) < hm.

For m > Kn, as logn < n, we have,

/n+logn+5m /

If we take K large enough and § > 0 small enough (e.g., 8 < 60/ 2C?) and K > 4C/43), then the
right handside is strictly lower than éq. For such g, K > 0,

P(IT — S|lop < o) > 1 — e ™,
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