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A PROOF OF EQUATION (T1)

Given the initial state-action pair (sg, ag), the bellman expectation equation (Sutton, 2018) is written
as:

Q" (s0,a0) = E [r(s0,a0) + V7™ (s1)]
s1~P(:|s0,a0)
H—-1
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According to the definition of optimal Q-value: Q* (s, ag) = max, Q™ (so, ag), we have:
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For Equation (I6), we derive the optimal policy  is the greedy policy selecting actions with the
greatest Q*-value as follows:
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Therefore, we have ay_; = argmax, Q@*(sg—1,a). Similarly, continuing to use dynamic pro-
gramming on Equation (17), we finally get: a; = arg max, Q*(s;,a), (i =1,2,--- , H — 1). Thus
we claim that the optimal policy is induced by the optimal value and use the symbol 7+ instead of
7 in Equation (T6) to obtain Equation (TT).

B DERIVATION FROM EQUATION (T1]) TO EQUATION (12])

Given the learned dynamic preditor P, reward predictor 7, and estimated optimal Q-value Q*, we
first substitute these three functions for the ground-truth functions in the right side of Equation (TT)):
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max E lz 7 7 (st, ar) + 4" max Q*(sH,aH)] (18)
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However, due to the estimation error between learned functions and ground-truth functions,
Q* (s, ay) is typically not equal to B, ~p {f(st, at) + vy maxg Q* (se11, a)} Therefore, instead

of using dynamic programming to derive that the optimal policy is the greedy policy as in Proof[A]
we have to use search to solve formula (T8).
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However, we can use the conclusion derived with ground-truth functions to make assumptions to
reduce the policy space for search. We assume that the optimal policy for formula (I8)) maps states
to actions with top-K highest Q-values. Denote the constrained policy space as HQ*, where V7 €

y.,Vs € S,Va ¢ top-K (Q*(s,-)), we have m(als) = 0. we make the following assumption:

the optimal policy of formula is in the constrained policy space, i.e.,ﬂz}* € HQ*. Under this
assumption, formula is equivalent to:
H—1
max E Zth(st,at)+7HmaxQ*(sH,aH) (19)
WGHQ* S1,0,8g~P =0 ang
Ay, G -1~ -

Then we maximize formula (I9) over a, to find the optimal initial action. Considering the above
assumption, ag € top-K (Q*(so, -)). Thus we have the objective for search as:
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C UPPER BOUND OF SEARCH-BASED Q-VALUE ESTIMATION

Let function f (s, ag) be equal to formula and let 7, be the optimal policy of formula
We have:

H—
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We make the following assumption similar to EfficientZero-v2 (Wang et al.,|2024):

Assumption C.1. Assume the state transition, reward, and Q-value estimations error are upper
bounded by ¢, €, € respectively. The error bound of each estimation is formulated as:

S —selll < e 2
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Theorem C.2. Define s;, a; to be the states and actions resulting from current policy using ground-
truth dynamics P and reward function r and similarly define s;, a; using learned functions P and .
Assume the learned reward function 7 to be L,.-Lipschitz and the estimated optimal Q-function o
to be Lg-Lipschitz. Assume the estimation errors of learned functions are bounded as in Assumption
Then we have the error between search-based Q-value estimation f (s, ag) and ground-truth
Q-value Q* (s, ap) bounded as:

. 14" v=7" P "
| f(s0,a0) — Q" (s0,a0)| < 5 € + — e+ € | s+ e (25)
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For the second term in inequality (26):
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Analysis. We expect the search-based Q-value

the estimated Q-values Q* (s,
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s f(s,a) have an upper error bound no greater than

a), which is formulated as the following inequality:
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Based on inequality (30), we derive the following condition:

€ + B LT_’YHLQ_LT_LQ ’YH €. < ¢
11—y " 1—v 1—~H l—q 1—qH ) =@

€Y

The inequality (31)) means that if the weighted sum of rewards estimation error €, and state transition
estimation error €, are less than or equal to the Q-values estimation error €, then the search-based
optimal Q-values have a lower upper-bound of error than estimated optimal Q-values.

D GAMES

We select 20 Atari games maintaining the difficulty distribution of full Atari 2600 games defined
by |Gulcehre et al| (2020), which includes 9 easy games, 9 medium games, and 2 hard games.
We use 15 out of 20 games for training and the remaining 5 for OOD generalization experi-
ments. The 15 training games are: Phoenix, Centipede, SpaceInvaders, Carnival,
NameThisGame, Assault, Atlantis, DemonAttack, BeamRider, ChopperCommand,
Seaquest, TimePilot, StarGunner, Berzerk, Zaxxon. The 5 held-out games are: Pong,
Robotank, YarsRevenge, Gravitar, MsPacman. Details about the size of action spaces and
game difficulties are shown in Table 6]

Table 6: Atari Games: Name, Game difficulty, Action Space, and Type.

Game Difficulty ~ Action Space Type
Assault Medium 7 Train
Atlantis Hard 18 Train
BeamRider Medium 9 Train
Berzerk Hard 18 Train
Carnival Medium 6 Train
Centipede Medium 18 Train
ChopperCommand Easy 18 Train
DemonAttack Easy 6 Train
Gravitar Easy 18 Fine-tune
MsPacman Medium 9 Fine-tune
NameThisGame Easy 6 Train
Phoenix Easy 8 Train
Pong Medium 6 Fine-tune
Robotank Medium 18 Fine-tune
Seaquest Easy 18 Train
Spacelnvaders Easy 6 Train
StarGunner Medium 18 Train
TimePilot Easy 10 Train
YarsRevenge Medium 18 Fine-tune
Zaxxon Easy 18 Train

E EXPERIMENTAL DETAILS

E.1 IMPLEMENT DETAILS
E.1.1 JOWA

We implement JOWA based on the codes of IRIS (Micheli et al., 2022ﬂ We train the tokenizer
VQ-VAE using the following loss function:

L(E,D,E) = ||z — D(2)|l1 + [[sg(E(x)) — E(Z)H% +[[sg(€(2)) — E(x)Hg + Lyperceptual (T, D(2))

where E, D, £ are encoder, decoder, and embedding table respectively. sg(-) is the stop-gradient
operator. The last term is the perceptual loss (Johnson et al.,[2016)). We list the hyperparameters of
VQ-VAE in Table[/|and 8] After the first stage of pretraining, the VQ-VAE is frozen.

'https://github.com/eloialonso/iris
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Table 7: Encoder / Decoder hyperparameters.
We list the hyperparameters for the encoder, the

same ones apply for the decoder. Table 8: Embedding table hyperparameters.
Hyperparameter Value Hyperparameter Value
Frame dimensions (h, w) 84 x 84 Vocabulary size 2048
Layers 3 Tokens per frame (K) 36
Residual blocks per layer 2 Token embedding dimension 512
Channels in convolutions 64

Self-attention layers at resolution 6/12

In addition to the vocabulary embedding and position embedding, we add a learnable task embed-
ding for observation tokens and action tokens respectively. Our transformer are based on minGPTE]
with FlashAttention (Dao et al.,2022) for acceleration. The hyperparameters of JOWA'’s transformer
backbone are listed in Table 9l and

Table 10: Different hyperparameters of trans-

Table 9: Same hyperparameters of transformer former for 3 JOWA variants.

for 3 JOWA variants.
Hyperparameter Value Model Layers Hidden size Heads
dropoutrate 0 JOWA-70M 6 768 12
i ; JOWA-150M 12 768 12

Table 11: Hyperparameters of Q-heads for 3 JOWA variants.

Model Layers MLP Hidden dimension ~ Number of heads  Dropout
JOWA-40M 3 768 1 0.01
JOWA-70M 3 1024 1 0.01
JOWA-150M 3 1792 3 0.01

The observation predictor, reward predictor, and terminal predictor are 2-layers MLP. The Q-heads
are MLP with dropout, layer normalization, and Mish activations from |Hansen et al.[ (2024). The
hyperparameters of Q-heads for JOWA are shown in Table [[I} The training hyperparameters of
JOWA are shown in Table 12

E.1.2 MTBC

We implement MTBC based on JOWA. We remove the observation predictor, reward predictor,
and terminal predictor. We change the output dimension of Q-heads to 18 and train the heads as a
18-class classification problem. All hyperparameters are kept the same as JOWA.

E.1.3 EDT

We use the official code for EDTﬂ We implement EDT-200M based on the architecture configu-
ration of MGDT-200M, which is shown in Table We change the batch size to 512 and keep
other hyperparameters the same as its original configuration. We enable data augmentation (random
cropping and random rotation) for EDT.

E.1.4 MGDT

We implement MGDT based on the codes of EDT. We use {0¢4i, Ri+i, Gt+i, rt+i}?:0 as the input
sequences, remove the expectile regression loss L.« and observation prediction 10ss Lopservation, and

>https://github.com/karpathy/minGPT
3https://github.com/kristery/Elastic-DT
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Table 12: Training hyperparameters of JOWA.

Hyperparameter Value
Optimizer (VQ-VAE) Adam
Optimizer (except VQ-VAE) AdamW
Learning rate (VQ-VAE) 0.0001

Learning rate (except VQ-VAE, stage 1)  0.0001
Learning rate (except VQ-VAE, stage 2)  0.00005

Batch size (VQ-VAE) 2048
Batch size (except VQ-VAE) 512
Weight decay (except VQ-VAE) 0.01
Gradient clip 1.0
Discount factor () 0.99
Target Q update frequency 1000
Distributional Q [-10, 30]
Number of atoms 51
Coefficient of CQL () 0.1
Coefficient of Lyond () 0.1

Table 13: Hyperparameters of transformer for 2 MGDT variants.

Model Layers Hidden size Heads
MGDT-40M 6 768 12
MGDT-200M 10 1280 20

add the reward prediction loss to rewrite the codes of EDT into MGDT. We enable data augmentation
(random cropping and random rotation) for MGDT. The hyperparameters of transformer for two
MGDT variants are listed in Table[13

E.1.5 SCALED-QL

We implement a pytorch version of Scaled-QL from scratch, referring to the jax version of its official
preliminary codes’, We use ResNet-101 as the representation backbone, followed by 3-layers MLP
with 1024 hidden neurons and an output layer. We replace the batch normalization in ResNet with
group normalization and use a learnable spatial embeddings to aggregate the outputs of the ResNet
instead of global mean pooling. Before the output layer, we normalize the feature e as i €H2. The

le
training hyperparameters of Scaled-QL are listed in Table [T4]

For fair comparison, all methods are trained with the same batch size of 512 for 1.75M gradient
steps. For reporting results, we report the performance of the agent at the end of pretraining.

E.2 FINE-TUNING PROTOCOL

We uniformly draw 5k transitions from expert-level DQN-Replay (Agarwal et al.,|2020) (last 20%
of the original dataset) for each held-out game. Each game was fine-tuned separately to measure the
model’s transfer performance for a fixed game. we fine-tuned all methods using a batch size of 32
and learning rate of 0.00005 for 10k gradient steps. For reporting results, we report the performance
of the agent snapshot that obtain the highest score during fine-tuning.

For JOWA in the second fine-tuning stage, we set both the planning horizon and the beam width
to 2 for all fine-tuning experiments. Thus we sample batch of 6-steps segments, using planning
algorithm to synthesis the last 2 steps. Then we update JOWA with 3/4 batch (24) of real data and
1/4 batch (8) of synthetic data using COMBO loss rather than CQL loss as the L,jon. For other
baselines, we enable random cropping and random rotation for data augmentation.

*https://tinyurl.com/scaled-ql-code
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Table 14: Training hyperparameters of Scaled-

QL. Table 15: Evaluation settings of Atari.
Hyperparameter Value Hyperparameter Value
Optlmlzer Adam Sticky actions No
Learning rate 0.0002 .

. Grey-scaling True
Batch size 512 . .
. . Observation down-sampling (84, 84)
Gradient clip 1.0
. Frames stacked 4
Discount factor () 0.99 - . L
Frame skip (Action repetitions) 4
Target Q update frequency 2000 . -
LoT T, Terminal condition Game Over
Distributional Q [-20, 20] .
Max frames per episode 108K
Number of atoms o1 Evaluation noise € 0.001
Coefficient of CQL (c) 0.05 ol :
n-step returns 3

E.3 EVALUATION PROTOCOL

For all methods, each game score is calculated by averaging over 16 model rollout episode trials.
To reduce inter-trial variability, we do not use sticky actions during evaluation following [Lee et al.
(2022); [Kumar et al.| (2023)). Following standard protocols on Atari, we evaluate a noised version of
the policy with an epsilon-greedy scheme, with €.yqy = 0.001. The evaluation settings of Atari are
shown in Table[T3]

For the expert action inference of MGDT and EDT, we set the inverse temperature « to 10. For
the planning of JOWA, we set the planning horizon H to 2 for all games. The beam width are set
according to the size of valid action space of each game. Specifically, we set beam width K to 2 if the
valid action space size is less than 10, otherwise we set K in {3,4}. The planning hyperparameters
for each game are shown in Table [I6]

Table 16: Planning hyperparameters of JOWA during evaluation.

Game planning horizon  beam width ~ Action space
Assault 2 2 7
Atlantis 2 3 18
BeamRider 2 2 9
Berzerk 2 4 18
Carnival 2 2 6
Centipede 2 4 18
ChopperCommand 2 4 18
DemonAttack 2 2 6
NameThisGame 2 2 6
Phoenix 2 2 8
Seaquest 2 3 18
Spacelnvaders 2 2 6
StarGunner 2 3 18
TimePilot 2 3 10
Zaxxon 2 3 18

F RAW SCORES

We summarize the raw scores of fine-tuning experiments and ablation studies in Table [T7] and
respectively.
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Table 17: Offline fine-tuning performance on unseen games using 5k transitions, measured in terms
of DQN-normalized score, following [Lee et al.[(2022); Kumar et al.| (2023).

MTBC MGDT __ EDT __ SQL  JOWA JOWA-150M
Game Random — DQN | "oy oooM  200M 80M  150M  (scratch)
Gravitar 1730 4730 | 357 2500 2533 1375 2733 833
MsPacman 3073 30856 | 9050 12903 12107 10402 20167 786.7
Pong 207 19.5 5.8 9.7 113 13.7 17.7 8.8
Robotank 22 63.9 6.8 16.0 15.5 19.7 25.0 11.0
YarsRevenge ~ 3092.9 18089.9 | 79875 108863 112769 10838.5 17506.2 6507.0
Mean 0000 1000 | 0164 0422 0430 0360  0.647 0.196
Median 0000 1000 | 0215 0354 0325 0284 0615 0.173
QM 0000 1000 | 0205 0377 0380 0355  0.647 0.181

Table 18: Raw scores on the 6 Atari games for various training choices. The mean, median, and
IQM human-normalized score are shown in the last 3 rows and the best scores are markded in bold.

Different training losses

| Q-heads ensemble | No task

Synthetic data

Game Origin \ NoCQL No Luorid  58(Laction) MSE \ Equal Random \ embedding | in pretraining
Assault 1423.5 857.9 1650 452.7 637.6 1628.8 1258.6 1428.5 655.7
Carnival 5560 4144.6 5560 2120 620 5154.3 4160 5974.2 3492.9
Centipede 5018.9 1494.1 8146 5568.7 4097.3 5592.5 6450 3725.4 3253
NameThisGame | 12208.1 9307.1 4407.3 2108.8 1315 | 12148.6 9420 7700 5080
Phoenix 4740 140 2036.7 1920 1190 4610 4941.7 4020 193.3
Spacelnvaders 1201.7 605 3234 539.3 260 958.4 1283.3 575.4 786.3
Mean HNS 1.183 0.613 0.917 0.293 0.189 1.209 1.026 0.964 0.448
Median HNS 1.078 0.696 0.489 0.304  0.118 0.975 0.921 0.721 0.452
IQM HNS 1.123 0.637 0.659 0.307 0.126 1.049 0.931 0.824 0.464
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